Movatterモバイル変換


[0]ホーム

URL:


PPTX, PDF933 views

PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)

Preferred Networks (PFN) develops cutting-edge applications of deep learning and related technologies to address real-world challenges across various industries, such as automotive, healthcare, and robotics. The company emphasizes collaboration with leading organizations to foster innovation and has been recognized for its energy-efficient supercomputers and contributions to the AI field. PFN's values focus on adaptability and forward-thinking approaches, particularly in navigating new working styles post-COVID-19.

Related topics:
In this document
Powered by AI

Keisuke Fukuda introduces himself and Preferred Networks, highlighting his interests in HPC and deep learning.

PFN's vision focuses on making devices intelligent; company details include founding date, location, key personnel, and award achievements.

PFN develops practical applications of deep learning for real-world problems, emphasizing innovation and collaboration with other companies.

Describes the work structure at PFN, including remote work practices and team organization, especially during COVID-19.

Showcases advancements in industry automation through deep learning, including a robot learning through trials and a best paper award for human-robot interaction.

PFN's collaboration with ENEOS for optimizing oil refining and educational projects like Playgram and character generation via deep learning.

Introduction to Optuna for automating hyperparameter tuning and highlights PFN's contributions to recent top-tier research publications.

Overview of PFN's GPU infrastructure and specifications of its supercomputer lineup including MN-1 and MN-2 series.

Significant milestones in deep learning performance, including rapid training times on ImageNet and achievements in object detection competitions.

Integration of AI with simulations, exploring how each can enhance capabilities in complex scenario modeling and problem-solving.

Highlights specific projects showcasing the synergy between AI and simulations in complex fields and discusses upcoming efforts in developing specialized processors.

Downloaded 23 times
Keisuke FukudaPreferred Networks, Inc.PFNにおける研究開発深層学習からMN-3開発,そして社員の働き方2022/10/19 融合情報学特別講義Ⅲ
自己紹介2● 福田圭祐 Keisuke Fukuda○ 東京工業大学(Tokyo Tech)○ Interests:■ High Performance Computing(HPC)● Perform large-scale parallel & distributed computing on supercomputers■ Joined PFN in Apr. 2017■ Distributed / Paralell Deep learning, performance optimization
Introduction toPreferred NetworksMaking the real world computable
Our Vision4We make cars, robots, and other devices more intelligent by fusing software and hardware in a sophisticatedmanner. By making devices intelligent enough to adapt to continuously changing environments and conditions, ourworld becomes computable through real-time sensing of the physical world.We do not compete in familiar territory, but rather take on ambitious technological challenges. By leveraging thelatest technologies, we want to advance the frontiers of knowledge and discover the world of the future.Making the real world computable.With our innovative and essential technologies,we venture into the unknown.
Company information5Manufacturing LogisticsTransportation Bio & HealthcarePersonal Robot EntertainmentFounded March 2014DirectorsCEO Toru NishikawaCER Daisuke OkanoharaCTO Ryosuke OkutaLocatedTokyo, Japan (HQ) ​Burlingame, CA., US(Preferred Networks America, Inc.)​Number ofEmployees270+ Engineers & Researchers(October, 2020)​
2021, 2020● No.1 on Green500 list of the world’smost energy-efficient supercomputers2019● Prime Minister’s Award, Nippon Venture Awards2018● Grand Prize37th NIKKEI Product and Service Excellence Award● Open Source Data Science Project Award, ODSC East 20182017● Japan-U.S. Innovation Awards「Emerging Leader Award」● FT ArcelorMittal Boldness in Business Awards● METI Minister’s Award, Nippon Venture Award2016● 1st Annual JEITA Venture Awards● Forbes JAPAN’s CEO OF THE YEAR 2016● 「1st place - Most innovative startup」Awards6
We develop practicalapplications of cutting-edgetechnologiesPreferred Networks (PFN) develops practicalapplications of deep learning and other cutting-edge technologies in order to solve real-worldproblems that are difficult to address with existingtechnologies.Our Focus7
Our Capabilities8Deep LearningWorld class researchersfocusing on deep learningExpertiseWide range of deep expertise fromrobotics to genomics tocomputational chemistryWorld class computationalresources designed for deeplearning applicationPrivateSuperComputerSoftwareIn-house developments of OSS andhyperparameter tuning library toaccelerate software development
● PFN collaborates with world-leading corporations and organizations to drive innovation in a wide range offields. We aim to build long-term relationships with our partners to create new innovations that lead tocreation of new businessesOur BusinessCutting-edge technologyxComputational resourcesBusiness challengesxHigh quality dataCreation ofnew businessesSoftware ApplicationsxIntellectual PropertyR&DprojectsProfitsharingPartneringCompany
Our Values10Preferred Networks is a young, yetrapidly growing companyOur Values are what make us differentAs PFN members, we question:what should we do and not do?who are we and what do we consider important?To answer these questions, we came up with thefour statements as our code of conduct, or PFN Values
● Employees: 300+ (270+ engineers & researchers)● Top Management + Corporate Officers = 12● Each team consists of an Engineering Manager + members○ Many members belong to multiple teams concurrently○ Slack-based communications, most channels are open● Working style under COVID-19 era○ WFH (Work-from-home) by default○ Slack / Zoom / Google Meet / Jamboard / Mural● We are exploring a new workign style for post COVID-19 eraHow we work in PFN11Teams (EM + 3-10 ppl. each)Corporate Officers (9)Top Management (3)
Our developments to date
Industry automation powered by deep learning technologies13Autonomous learning for bin-picking robot.The robot gathers data by trial and error andlearns the place where it is likely to pick thepiece up by using deep learning (as ofDecember 2015).https://youtu.be/ydh_AdWZflA
@ICRA 2017 voice Recognition + object picking14“Interactively Picking Real-World Objects with Unconstrained Spoken Language Instructions”arXiv:1710.06280• ICRA is a top-tier conference on robotics• Best Paper Award on Human-Robot Interaction• Technologies:• Visual recognition• Natural language processing (NLP)• The robot can understand ambiguous words:• ”The Teddy bear”• ”The brown fluffy stuff”https://youtu.be/_Uyv1XIUqhk
Factory and plant operation control using deep learning15PFN is working with ENEOS (formerly JXTGNippon Oil & Energy Corporation) on a jointresearch project regarding optimization andautomation of oil refineries.An oil refinery is a very complex system consistingof hundreds of processes and thousands of sensorsand actuators.Because of its massive production scale ofpetrochemical products, an improvement of afraction of a percent of productivity deliverssignificant cost reductions.By leveraging PFN’s deep learning technology, thejoint venture aims to automatically control andoptimize large and complex plant equipment formore efficient use of energy resources.ENEOS’ Kawasaki Refinery. ML-based control model can be used to keep plant machine operationstable against unknown external disturbanceDL-based Digital Twins for advanced automation and optimization
16https://matlantis.com
17https://petalica-paint.pixiv.dev/index_ja.htmlロボット系エンジニアが、サイドプロジェクトとして開始→正式プロジェクトへ
Crypko™: High-quality Anime Character Generation and Design18Deep learning canrevolutionize theentertainment industryPFN’s technology Crypko uses state-of-the-art generative models, a branchof techniques in deep learning, togenerate a potentially infinite set ofunique, high quality characters notcontained in the training data.Furthermore, it can fuse severalcharacters into new characters,inheriting their distinctive featuresCrypko’s character fusion. From the two characters on the top row, Crypko can generate characters on the bottomrow that inherit distinctive features of the input characters For more information please visit our entertainment page:https://preferred.jp/en/projects/entertainment/
Playgram™ / Playgram typing™: Programming education for kids19Virtual, high-quality learning experience in Computer SciencePFN has developed Playgram™, a programming education app primarily targeting students in elementaryschool and above. PFN has teamed up with Yaruki Switch Group (YSG), Japan’s leading education group with adiverse range of programs and over 1,700 schools, to build a programming course package using Playgram.Beginning August 2020, YSG will first pilot the package in three schools in the Tokyo area, both in classrooms and online.Developed by PFN’s software engineers at the forefront of artificial intelligence technologies, Playgram incorporates the K-12 ComputerScience Framework, a U.S. guideline for computer science education. The app will be available in Japanese at launchFor more infromation, please visit our Playgram website: https://playgram.jp/Bridges the gapbetween visual andtext-based codingRich 3D interface thatinspires creativityAdaptive learningsystem and user-friendly tutorials
Optuna™: Automation for Hyper-parameter Tuning20Optimize Your OptimizationAn open source hyperparameter optimization framework to automate hyperparameter searchIn deep learning, it is essential to tune hyperparameters since they control how an algorithm behaves.The precision of a model largely depends on tuning a large number of hyperparameters, including training iterations, neuralnetwork layers and channels, learning rate, batch size, and so on. Optuna, an open source technology developed at PFN,automates this trial-and-error process of optimizing the hyperparameters. It automatically finds optimal hyperparametervalues that enable the algorithm to give excellent performance. Optuna can be used for any black-box optimization problems.
Consistent contributions to Research21Examples of recent PFN publications in top-tier conferences (in 2022)● [J. Chem. Inf. Model.2022] “Molecular Design Method Using a Reversible Tree Representation of ChemicalCompounds and Deep Reinforcement Learning”● [BMVC2022] “Multi-View Neural Surface Reconstruction with Structured Light”● [NeurIPS 2022] “Unsupervised Learning of Equivariant Structure from Sequences”● [NeurIPS 2022] “Decomposing NeRF for Editing via Feature Field Distillation”● [Lung Cancer 2022] “Machine Learning-based Exceptional Response Prediction of Nivolumab Monotherapywith Circulating MicroRNAs in Non-Small Cell Lung Cancer”● [ICAIF 2022] “Theoretically Motivated Data Augmentation and Regularization for Portfolio Construction”● [ICAIF 2022] “Efficient Learning of Nested Deep Hedging using Multiple Options”● [ROMAN 2022] “F3 Hand: A Versatile Robot Hand Inspired by Human Thumb and Index Fingers”● [Nature Communications 2022] “Towards universal neural network potential for material discovery applicableto arbitrary combination of 45 elements”● [Physical Review Research 2022] “Power Laws and Symmetries in a Minimal Model of Financial MarketEconomy”
Our research & platform
Total of 2,560 GPUsTotal 200 PFLOPSListed No.1 in Japan amongst private entity1 PETA FLOPS =1,000 trillionFloating-point OperationsPer SecondOur Infrastructure23MN-Core MN-Core Board x 4CPU Intel Xeon 8260M 2way (48 physical cores)Memory 384GB DDR4Storage Class Memory 3TB Intel Optane DC Persistent MemoryNetworkMN-Core DirectConnect(112Gbps) x 2Mellanox ConnectX-6(100GbE) x 2On board(10GbE) x 2MN-3 specsDeep learning processor MN-CoreSupercomputer designed for deep learning applicationMN-1 MN-2 MN-3For more information please visit: https://projects.preferred.jp/supercomputers/en/
The MN series: PFN’s in-house supercomputers24 MN-1a (Sep. ’17〜)━ 1024 NVIDIA Tesla P100 + IB FDR━ Peak 19.1 Peta FLOPS (SP)━ #227 in Top500 Nov. 2018 MN-1b (July. ’18〜)━ 512 NVIDIA Tesla V100 + IB EDR━ Peak 57.3 Peta (tensor) Flops MN-2b (July. ’19〜)━ 1024 NVIDIA Tesla V100 + IB EDR━ 128 Peta (Tensor) Flops MN-3 (Nov. 20〜)━ We’ll later!
010203040506070Time[min]Training time of ResNet-50 (90 epochs) on ImageNetAchievement on MN-1a: ImageNet in 15 minutes252018 July2018 Nov2017 NovarXiv: 1711.04325Extremely Large Minibatch SGD: Training ResNet-50on ImageNet in 15 Minutes2018 Nov
Achievement on MN-1b: PFDet in OIC 201926
● Google AI Open Images - Object Detection Track○ Competition using Largest-class image dataset○ 12 million bounding boxes, 1.7 million images○ 454 competitiors○ Approx. 500GB (annotated subset)● Object detection: much harder than object recognition taskAchievement on MN-1b: PFDet in OIC 201827
https://tech.nikkeibp.co.jp/atcl/nxt/column/18/01006/101000005/28
Simulation ✕ AI29
○ c.f. 「演繹から帰納へ〜新しいシステム開発パラダイム〜」丸山宏, PPL2018 招待講演○ 特別なものではなく、実装手法の1つとして広く使われるようになっていくのでは?AIはコンピューターサイエンスのコア技術になっていくAIが向いている場面 AIが不向きな場面• データが大量(or 生成可能)• 誤差が許容される• 現象が複雑/原理が不明• シミュレーションが困難/計算量多い• 法則・原理が一定• 予測が目的• データが少ない• 厳密さが必要• 演繹的プログラミングが可能• シミュレーションが容易/手法が確立• 過去から未来が予測できない• メカニズムの理解が目的⇒困難なタスクは計算パワーで解く⇒計算パワーが無いと戦えないConventional Programming従来のプログラミング演繹的プログラミング(Deductive programming)Machine Learning機械学習帰納的プログラミング(Reductive programming)
Simulationとは:● 現実世界の物理法則を数式でモデル化し、計算機上で計算によって再現・予測する● 流体、天体、気象、機械設計、材料化学、・・・Simulationの課題● 複雑すぎる現象・Multiphysics(ex. 構造連成計算、気象)● 計算量の爆発Simulation31
● これまで深層学習の実用化はデータが容易に入手可能な分野(ウェブ、バーチャル)に限られていた。● 今後、実世界の問題に深層学習を導入していくためにはシミュレーション利用が不可欠である● データが21世紀の石油と言われる中で、そのデータ自身を作れるシミュレーションを揃えていくことが重要となる● またシミュレーション自体も深層学習を利用することで劇的に高速化、多様化を達成できる今後シミュレーションが重要となる32
SimulationとAI は相性が良い33Simulationの中でも難しいとされているものに対して、AIを 組み合わせて互いに補い合うAIが向いている場面 AIが不向きな場面• データが大量(or 生成可能)• 誤差が許容される• 現象が複雑/原理が不明• シミュレーションが困難/計算量多い• 法則・原理が一定• 予測が目的• データが少ない• 厳密さが必要• 演繹的プログラミングが可能• シミュレーションが容易/手法が確立• 過去から未来が予測できない• メカニズムの理解が目的Simulationが向いている場面 Simulationが不向きな場面• 少ない物理法則から、モデル化可能• 保存則などを厳密に維持可能• メカニズムの理解・予測の両方• 現象が複雑・原理が不明なものは難• 計算量が爆発するSimulationが深層学習を助ける• 網羅的なデータを入手可能• ラベルを作るのが難しい場合もラベル付が可能• 最適化、強化学習に必要なWhat-If分析が可能深層学習がSimulationを助ける• シミュレーションの高速化• データからシミュレーションを学習する• データ同化、パラメータ推定を助ける
34https://matlantis.comAI x Simulationの事例(1)
● 2022年度夏季インターンシップの成果(東京大学・助田さん)● 気象シミュレーションは、シミュレーションの中でも特に難しい分野○ 観測データが少ない(観測機器の制約)○ 計算量が多い○ 現象が複雑● このテーマでは、「計算量が多い」という課題に着目して、スパコンで実行されるシミュレーターを省メモリで模倣計算することにチャレンジ数値シミュレーションデータの低次元潜在空間における時間発展ダイナミクスの学習35AI x Simulationの事例(2)Preferred Networks Tech Blog “数値シミュレーションデータの低次元潜在空間における時間発展ダイナミクスの学習”
このあと続くDeep Learningのための専用プロセッサ「MN-Core」の開発と活用金子 紘也 Hiroya Kaneko● PFNにとっての計算能力の位置付け● 代表的なDeep Learningの高速化手法● なぜ今プロセッサ開発なのか?● MN-Coreの概要● 開発チームの働き方● 最近の成果

Recommended

PDF
【メタサーベイ】基盤モデル / Foundation Models
PDF
ゼロから始める転移学習
PDF
全力解説!Transformer
PDF
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
PPTX
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
PDF
【DL輪読会】マルチエージェント強化学習における近年の 協調的方策学習アルゴリズムの発展
PDF
Matlantisに込められた 技術・思想_高本_Matlantis User Conference
PDF
NDTスキャンマッチング 第1回3D勉強会@PFN 2018年5月27日
PDF
ブレインパッドにおける機械学習プロジェクトの進め方
PDF
BlackBox モデルの説明性・解釈性技術の実装
PDF
研究効率化Tips Ver.2
PDF
【メタサーベイ】数式ドリブン教師あり学習
PDF
最適化超入門
PDF
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
PPTX
近年のHierarchical Vision Transformer
PDF
【メタサーベイ】Transformerから基盤モデルまでの流れ / From Transformer to Foundation Models
PDF
SSII2022 [SS1] ニューラル3D表現の最新動向〜 ニューラルネットでなんでも表せる?? 〜​
 
PDF
PFP:材料探索のための汎用Neural Network Potential_中郷_20220422POLセミナー
PDF
機械学習システムのアーキテクチャアラカルト
PDF
グラフニューラルネットワークとグラフ組合せ問題
PDF
三次元表現まとめ(深層学習を中心に)
PDF
[DL輪読会]Neural Radiance Flow for 4D View Synthesis and Video Processing (NeRF...
PDF
データに内在する構造をみるための埋め込み手法
PPTX
[DL輪読会]GQNと関連研究,世界モデルとの関係について
PDF
【プレゼン】見やすいプレゼン資料の作り方【初心者用】
PDF
組合せ最適化入門:線形計画から整数計画まで
PDF
多様な強化学習の概念と課題認識
PPTX
【DL輪読会】"Instant Neural Graphics Primitives with a Multiresolution Hash Encoding"
PDF
Gatsby kaken-2017-pfn okanohara
PDF
深度学习639页PPT/////////////////////////////

More Related Content

PDF
【メタサーベイ】基盤モデル / Foundation Models
PDF
ゼロから始める転移学習
PDF
全力解説!Transformer
PDF
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
PPTX
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
PDF
【DL輪読会】マルチエージェント強化学習における近年の 協調的方策学習アルゴリズムの発展
PDF
Matlantisに込められた 技術・思想_高本_Matlantis User Conference
PDF
NDTスキャンマッチング 第1回3D勉強会@PFN 2018年5月27日
【メタサーベイ】基盤モデル / Foundation Models
ゼロから始める転移学習
全力解説!Transformer
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
【DL輪読会】マルチエージェント強化学習における近年の 協調的方策学習アルゴリズムの発展
Matlantisに込められた 技術・思想_高本_Matlantis User Conference
NDTスキャンマッチング 第1回3D勉強会@PFN 2018年5月27日

What's hot

PDF
ブレインパッドにおける機械学習プロジェクトの進め方
PDF
BlackBox モデルの説明性・解釈性技術の実装
PDF
研究効率化Tips Ver.2
PDF
【メタサーベイ】数式ドリブン教師あり学習
PDF
最適化超入門
PDF
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
PPTX
近年のHierarchical Vision Transformer
PDF
【メタサーベイ】Transformerから基盤モデルまでの流れ / From Transformer to Foundation Models
PDF
SSII2022 [SS1] ニューラル3D表現の最新動向〜 ニューラルネットでなんでも表せる?? 〜​
 
PDF
PFP:材料探索のための汎用Neural Network Potential_中郷_20220422POLセミナー
PDF
機械学習システムのアーキテクチャアラカルト
PDF
グラフニューラルネットワークとグラフ組合せ問題
PDF
三次元表現まとめ(深層学習を中心に)
PDF
[DL輪読会]Neural Radiance Flow for 4D View Synthesis and Video Processing (NeRF...
PDF
データに内在する構造をみるための埋め込み手法
PPTX
[DL輪読会]GQNと関連研究,世界モデルとの関係について
PDF
【プレゼン】見やすいプレゼン資料の作り方【初心者用】
PDF
組合せ最適化入門:線形計画から整数計画まで
PDF
多様な強化学習の概念と課題認識
PPTX
【DL輪読会】"Instant Neural Graphics Primitives with a Multiresolution Hash Encoding"
ブレインパッドにおける機械学習プロジェクトの進め方
BlackBox モデルの説明性・解釈性技術の実装
研究効率化Tips Ver.2
【メタサーベイ】数式ドリブン教師あり学習
最適化超入門
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
近年のHierarchical Vision Transformer
【メタサーベイ】Transformerから基盤モデルまでの流れ / From Transformer to Foundation Models
SSII2022 [SS1] ニューラル3D表現の最新動向〜 ニューラルネットでなんでも表せる?? 〜​
 
PFP:材料探索のための汎用Neural Network Potential_中郷_20220422POLセミナー
機械学習システムのアーキテクチャアラカルト
グラフニューラルネットワークとグラフ組合せ問題
三次元表現まとめ(深層学習を中心に)
[DL輪読会]Neural Radiance Flow for 4D View Synthesis and Video Processing (NeRF...
データに内在する構造をみるための埋め込み手法
[DL輪読会]GQNと関連研究,世界モデルとの関係について
【プレゼン】見やすいプレゼン資料の作り方【初心者用】
組合せ最適化入門:線形計画から整数計画まで
多様な強化学習の概念と課題認識
【DL輪読会】"Instant Neural Graphics Primitives with a Multiresolution Hash Encoding"

Similar to PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)

PDF
Gatsby kaken-2017-pfn okanohara
PDF
深度学习639页PPT/////////////////////////////
PDF
Open source ai_technical_trend
PPTX
Introduction to Deep learning
PPTX
Data-driven AI for Self-Adaptive Software Systems
PPTX
Beyond data and model parallelism for deep neural networks
PDF
End to end MLworkflows
PDF
Artificial Intelligence Chapter 9 Negnevitsky
PDF
Deep learning and applications in non-cognitive domains II
PDF
Machine Learning @NECST
PDF
Introduction-to-Neural-Networks-and-Deep-Learning.pptx.pdf
PDF
[GTC 2019] Bringing Personal Robots Home: Integrating Computer Vision and Hum...
PDF
Hasegawa gfke 2014
PDF
"Deep Learning Beyond Cats and Cars: Developing a Real-life DNN-based Embedde...
PPTX
Philosophy of Deep Learning
PDF
Chainer OpenPOWER developer congress HandsON 20170522_ota
PDF
20181212 ibm aot
PPTX
Intelligent Ruby + Machine Learning
PDF
INTELLIGENT MALWARE DETECTION USING EXTREME LEARNING MACHINE
PDF
Deep learning and applications in non-cognitive domains I
Gatsby kaken-2017-pfn okanohara
深度学习639页PPT/////////////////////////////
Open source ai_technical_trend
Introduction to Deep learning
Data-driven AI for Self-Adaptive Software Systems
Beyond data and model parallelism for deep neural networks
End to end MLworkflows
Artificial Intelligence Chapter 9 Negnevitsky
Deep learning and applications in non-cognitive domains II
Machine Learning @NECST
Introduction-to-Neural-Networks-and-Deep-Learning.pptx.pdf
[GTC 2019] Bringing Personal Robots Home: Integrating Computer Vision and Hum...
Hasegawa gfke 2014
"Deep Learning Beyond Cats and Cars: Developing a Real-life DNN-based Embedde...
Philosophy of Deep Learning
Chainer OpenPOWER developer congress HandsON 20170522_ota
20181212 ibm aot
Intelligent Ruby + Machine Learning
INTELLIGENT MALWARE DETECTION USING EXTREME LEARNING MACHINE
Deep learning and applications in non-cognitive domains I

More from Preferred Networks

PDF
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2
PDF
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
PDF
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
PDF
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
PDF
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
PDF
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
PDF
PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜
PDF
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
PDF
PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...
PDF
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
PDF
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
PDF
わかる!metadata.managedFields / Kubernetes Meetup Tokyo 48
PDF
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
PDF
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
PDF
Topology Managerについて / Kubernetes Meetup Tokyo 50
PDF
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
PDF
PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
PDF
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
PDF
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
PDF
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
PFN Summer Internship 2021 / Kohei Shinohara: Charge Transfer Modeling in Neu...
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
わかる!metadata.managedFields / Kubernetes Meetup Tokyo 48
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
Topology Managerについて / Kubernetes Meetup Tokyo 50
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る

Recently uploaded

PDF
Top Tech Stacks for Developing Scalable Social Networking Apps.pdf
PDF
The Scarcity of Engineering Craftsmanship
PDF
How to Find an App Developer in Phoenix.pdf
PPTX
Building smarter with AI - From Idea to Market at Warp Speed
DOCX
Top Digital Workplace & Intranet Trends 2025
PPTX
Soft(ware) Stories: Tecnologia, Identità e Giustizia di genere nel mondo digi...
PDF
ICTlecture1 for 1st Semester Students of BS(CS)
PDF
GMIS 2025 - CAHSI ML Workshop By Dr. Lynne Grewe
 
PDF
AI and Generative AI: Dual-Use Risks and Autonomous Threats.pdf
PPTX
Which Tableau Alternative Offers Better Customization and Embeddability.pptx
PPTX
Testing AI-Based Software Systems - From Theory to Practice - Shay Ginsbourg
DOCX
A A Comprehensive Guide on Unicode Text Converter
PPTX
White Label Travel Portal Solutions for B2C, B2B & B2E
PDF
HTML_Final notes_with_header_and_footer.pdf
PPTX
LLM_Evaluation_Frameworks_Comparison.pptx
PPTX
ETH Belgrade 2025 - AI Agent Custody and Fund Access
PDF
Workshop about mORMot 2 during EKON: write a clean-architecture TDD sample
PDF
Comprehensive Logging with mORMot 2 on Delphi and FPC
PPTX
Curated Help for T-Tests in IBM SPSS Statistics
PPTX
LangSmith_and_LLM_Evaluation_Session 1.pptx
Top Tech Stacks for Developing Scalable Social Networking Apps.pdf
The Scarcity of Engineering Craftsmanship
How to Find an App Developer in Phoenix.pdf
Building smarter with AI - From Idea to Market at Warp Speed
Top Digital Workplace & Intranet Trends 2025
Soft(ware) Stories: Tecnologia, Identità e Giustizia di genere nel mondo digi...
ICTlecture1 for 1st Semester Students of BS(CS)
GMIS 2025 - CAHSI ML Workshop By Dr. Lynne Grewe
 
AI and Generative AI: Dual-Use Risks and Autonomous Threats.pdf
Which Tableau Alternative Offers Better Customization and Embeddability.pptx
Testing AI-Based Software Systems - From Theory to Practice - Shay Ginsbourg
A A Comprehensive Guide on Unicode Text Converter
White Label Travel Portal Solutions for B2C, B2B & B2E
HTML_Final notes_with_header_and_footer.pdf
LLM_Evaluation_Frameworks_Comparison.pptx
ETH Belgrade 2025 - AI Agent Custody and Fund Access
Workshop about mORMot 2 during EKON: write a clean-architecture TDD sample
Comprehensive Logging with mORMot 2 on Delphi and FPC
Curated Help for T-Tests in IBM SPSS Statistics
LangSmith_and_LLM_Evaluation_Session 1.pptx

PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)

  • 1.
    Keisuke FukudaPreferred Networks,Inc.PFNにおける研究開発深層学習からMN-3開発,そして社員の働き方2022/10/19 融合情報学特別講義Ⅲ
  • 2.
    自己紹介2● 福田圭祐 KeisukeFukuda○ 東京工業大学(Tokyo Tech)○ Interests:■ High Performance Computing(HPC)● Perform large-scale parallel & distributed computing on supercomputers■ Joined PFN in Apr. 2017■ Distributed / Paralell Deep learning, performance optimization
  • 3.
  • 4.
    Our Vision4We makecars, robots, and other devices more intelligent by fusing software and hardware in a sophisticatedmanner. By making devices intelligent enough to adapt to continuously changing environments and conditions, ourworld becomes computable through real-time sensing of the physical world.We do not compete in familiar territory, but rather take on ambitious technological challenges. By leveraging thelatest technologies, we want to advance the frontiers of knowledge and discover the world of the future.Making the real world computable.With our innovative and essential technologies,we venture into the unknown.
  • 5.
    Company information5Manufacturing LogisticsTransportationBio & HealthcarePersonal Robot EntertainmentFounded March 2014DirectorsCEO Toru NishikawaCER Daisuke OkanoharaCTO Ryosuke OkutaLocatedTokyo, Japan (HQ) ​Burlingame, CA., US(Preferred Networks America, Inc.)​Number ofEmployees270+ Engineers & Researchers(October, 2020)​
  • 6.
    2021, 2020● No.1on Green500 list of the world’smost energy-efficient supercomputers2019● Prime Minister’s Award, Nippon Venture Awards2018● Grand Prize37th NIKKEI Product and Service Excellence Award● Open Source Data Science Project Award, ODSC East 20182017● Japan-U.S. Innovation Awards「Emerging Leader Award」● FT ArcelorMittal Boldness in Business Awards● METI Minister’s Award, Nippon Venture Award2016● 1st Annual JEITA Venture Awards● Forbes JAPAN’s CEO OF THE YEAR 2016● 「1st place - Most innovative startup」Awards6
  • 7.
    We develop practicalapplicationsof cutting-edgetechnologiesPreferred Networks (PFN) develops practicalapplications of deep learning and other cutting-edge technologies in order to solve real-worldproblems that are difficult to address with existingtechnologies.Our Focus7
  • 8.
    Our Capabilities8Deep LearningWorldclass researchersfocusing on deep learningExpertiseWide range of deep expertise fromrobotics to genomics tocomputational chemistryWorld class computationalresources designed for deeplearning applicationPrivateSuperComputerSoftwareIn-house developments of OSS andhyperparameter tuning library toaccelerate software development
  • 9.
    ● PFN collaborateswith world-leading corporations and organizations to drive innovation in a wide range offields. We aim to build long-term relationships with our partners to create new innovations that lead tocreation of new businessesOur BusinessCutting-edge technologyxComputational resourcesBusiness challengesxHigh quality dataCreation ofnew businessesSoftware ApplicationsxIntellectual PropertyR&DprojectsProfitsharingPartneringCompany
  • 10.
    Our Values10Preferred Networksis a young, yetrapidly growing companyOur Values are what make us differentAs PFN members, we question:what should we do and not do?who are we and what do we consider important?To answer these questions, we came up with thefour statements as our code of conduct, or PFN Values
  • 11.
    ● Employees: 300+(270+ engineers & researchers)● Top Management + Corporate Officers = 12● Each team consists of an Engineering Manager + members○ Many members belong to multiple teams concurrently○ Slack-based communications, most channels are open● Working style under COVID-19 era○ WFH (Work-from-home) by default○ Slack / Zoom / Google Meet / Jamboard / Mural● We are exploring a new workign style for post COVID-19 eraHow we work in PFN11Teams (EM + 3-10 ppl. each)Corporate Officers (9)Top Management (3)
  • 12.
  • 13.
    Industry automation poweredby deep learning technologies13Autonomous learning for bin-picking robot.The robot gathers data by trial and error andlearns the place where it is likely to pick thepiece up by using deep learning (as ofDecember 2015).https://youtu.be/ydh_AdWZflA
  • 14.
    @ICRA 2017 voiceRecognition + object picking14“Interactively Picking Real-World Objects with Unconstrained Spoken Language Instructions”arXiv:1710.06280• ICRA is a top-tier conference on robotics• Best Paper Award on Human-Robot Interaction• Technologies:• Visual recognition• Natural language processing (NLP)• The robot can understand ambiguous words:• ”The Teddy bear”• ”The brown fluffy stuff”https://youtu.be/_Uyv1XIUqhk
  • 15.
    Factory and plantoperation control using deep learning15PFN is working with ENEOS (formerly JXTGNippon Oil & Energy Corporation) on a jointresearch project regarding optimization andautomation of oil refineries.An oil refinery is a very complex system consistingof hundreds of processes and thousands of sensorsand actuators.Because of its massive production scale ofpetrochemical products, an improvement of afraction of a percent of productivity deliverssignificant cost reductions.By leveraging PFN’s deep learning technology, thejoint venture aims to automatically control andoptimize large and complex plant equipment formore efficient use of energy resources.ENEOS’ Kawasaki Refinery. ML-based control model can be used to keep plant machine operationstable against unknown external disturbanceDL-based Digital Twins for advanced automation and optimization
  • 16.
  • 17.
  • 18.
    Crypko™: High-quality AnimeCharacter Generation and Design18Deep learning canrevolutionize theentertainment industryPFN’s technology Crypko uses state-of-the-art generative models, a branchof techniques in deep learning, togenerate a potentially infinite set ofunique, high quality characters notcontained in the training data.Furthermore, it can fuse severalcharacters into new characters,inheriting their distinctive featuresCrypko’s character fusion. From the two characters on the top row, Crypko can generate characters on the bottomrow that inherit distinctive features of the input characters For more information please visit our entertainment page:https://preferred.jp/en/projects/entertainment/
  • 19.
    Playgram™ / Playgramtyping™: Programming education for kids19Virtual, high-quality learning experience in Computer SciencePFN has developed Playgram™, a programming education app primarily targeting students in elementaryschool and above. PFN has teamed up with Yaruki Switch Group (YSG), Japan’s leading education group with adiverse range of programs and over 1,700 schools, to build a programming course package using Playgram.Beginning August 2020, YSG will first pilot the package in three schools in the Tokyo area, both in classrooms and online.Developed by PFN’s software engineers at the forefront of artificial intelligence technologies, Playgram incorporates the K-12 ComputerScience Framework, a U.S. guideline for computer science education. The app will be available in Japanese at launchFor more infromation, please visit our Playgram website: https://playgram.jp/Bridges the gapbetween visual andtext-based codingRich 3D interface thatinspires creativityAdaptive learningsystem and user-friendly tutorials
  • 20.
    Optuna™: Automation forHyper-parameter Tuning20Optimize Your OptimizationAn open source hyperparameter optimization framework to automate hyperparameter searchIn deep learning, it is essential to tune hyperparameters since they control how an algorithm behaves.The precision of a model largely depends on tuning a large number of hyperparameters, including training iterations, neuralnetwork layers and channels, learning rate, batch size, and so on. Optuna, an open source technology developed at PFN,automates this trial-and-error process of optimizing the hyperparameters. It automatically finds optimal hyperparametervalues that enable the algorithm to give excellent performance. Optuna can be used for any black-box optimization problems.
  • 21.
    Consistent contributions toResearch21Examples of recent PFN publications in top-tier conferences (in 2022)● [J. Chem. Inf. Model.2022] “Molecular Design Method Using a Reversible Tree Representation of ChemicalCompounds and Deep Reinforcement Learning”● [BMVC2022] “Multi-View Neural Surface Reconstruction with Structured Light”● [NeurIPS 2022] “Unsupervised Learning of Equivariant Structure from Sequences”● [NeurIPS 2022] “Decomposing NeRF for Editing via Feature Field Distillation”● [Lung Cancer 2022] “Machine Learning-based Exceptional Response Prediction of Nivolumab Monotherapywith Circulating MicroRNAs in Non-Small Cell Lung Cancer”● [ICAIF 2022] “Theoretically Motivated Data Augmentation and Regularization for Portfolio Construction”● [ICAIF 2022] “Efficient Learning of Nested Deep Hedging using Multiple Options”● [ROMAN 2022] “F3 Hand: A Versatile Robot Hand Inspired by Human Thumb and Index Fingers”● [Nature Communications 2022] “Towards universal neural network potential for material discovery applicableto arbitrary combination of 45 elements”● [Physical Review Research 2022] “Power Laws and Symmetries in a Minimal Model of Financial MarketEconomy”
  • 22.
  • 23.
    Total of 2,560GPUsTotal 200 PFLOPSListed No.1 in Japan amongst private entity1 PETA FLOPS =1,000 trillionFloating-point OperationsPer SecondOur Infrastructure23MN-Core MN-Core Board x 4CPU Intel Xeon 8260M 2way (48 physical cores)Memory 384GB DDR4Storage Class Memory 3TB Intel Optane DC Persistent MemoryNetworkMN-Core DirectConnect(112Gbps) x 2Mellanox ConnectX-6(100GbE) x 2On board(10GbE) x 2MN-3 specsDeep learning processor MN-CoreSupercomputer designed for deep learning applicationMN-1 MN-2 MN-3For more information please visit: https://projects.preferred.jp/supercomputers/en/
  • 24.
    The MN series:PFN’s in-house supercomputers24 MN-1a (Sep. ’17〜)━ 1024 NVIDIA Tesla P100 + IB FDR━ Peak 19.1 Peta FLOPS (SP)━ #227 in Top500 Nov. 2018 MN-1b (July. ’18〜)━ 512 NVIDIA Tesla V100 + IB EDR━ Peak 57.3 Peta (tensor) Flops MN-2b (July. ’19〜)━ 1024 NVIDIA Tesla V100 + IB EDR━ 128 Peta (Tensor) Flops MN-3 (Nov. 20〜)━ We’ll later!
  • 25.
    010203040506070Time[min]Training time ofResNet-50 (90 epochs) on ImageNetAchievement on MN-1a: ImageNet in 15 minutes252018 July2018 Nov2017 NovarXiv: 1711.04325Extremely Large Minibatch SGD: Training ResNet-50on ImageNet in 15 Minutes2018 Nov
  • 26.
    Achievement on MN-1b:PFDet in OIC 201926
  • 27.
    ● Google AIOpen Images - Object Detection Track○ Competition using Largest-class image dataset○ 12 million bounding boxes, 1.7 million images○ 454 competitiors○ Approx. 500GB (annotated subset)● Object detection: much harder than object recognition taskAchievement on MN-1b: PFDet in OIC 201827
  • 28.
  • 29.
  • 30.
    ○ c.f. 「演繹から帰納へ〜新しいシステム開発パラダイム〜」丸山宏,PPL2018 招待講演○ 特別なものではなく、実装手法の1つとして広く使われるようになっていくのでは?AIはコンピューターサイエンスのコア技術になっていくAIが向いている場面 AIが不向きな場面• データが大量(or 生成可能)• 誤差が許容される• 現象が複雑/原理が不明• シミュレーションが困難/計算量多い• 法則・原理が一定• 予測が目的• データが少ない• 厳密さが必要• 演繹的プログラミングが可能• シミュレーションが容易/手法が確立• 過去から未来が予測できない• メカニズムの理解が目的⇒困難なタスクは計算パワーで解く⇒計算パワーが無いと戦えないConventional Programming従来のプログラミング演繹的プログラミング(Deductive programming)Machine Learning機械学習帰納的プログラミング(Reductive programming)
  • 31.
  • 32.
    ● これまで深層学習の実用化はデータが容易に入手可能な分野(ウェブ、バーチャル)に限られていた。● 今後、実世界の問題に深層学習を導入していくためにはシミュレーション利用が不可欠である●データが21世紀の石油と言われる中で、そのデータ自身を作れるシミュレーションを揃えていくことが重要となる● またシミュレーション自体も深層学習を利用することで劇的に高速化、多様化を達成できる今後シミュレーションが重要となる32
  • 33.
    SimulationとAI は相性が良い33Simulationの中でも難しいとされているものに対して、AIを 組み合わせて互いに補い合うAIが向いている場面AIが不向きな場面• データが大量(or 生成可能)• 誤差が許容される• 現象が複雑/原理が不明• シミュレーションが困難/計算量多い• 法則・原理が一定• 予測が目的• データが少ない• 厳密さが必要• 演繹的プログラミングが可能• シミュレーションが容易/手法が確立• 過去から未来が予測できない• メカニズムの理解が目的Simulationが向いている場面 Simulationが不向きな場面• 少ない物理法則から、モデル化可能• 保存則などを厳密に維持可能• メカニズムの理解・予測の両方• 現象が複雑・原理が不明なものは難• 計算量が爆発するSimulationが深層学習を助ける• 網羅的なデータを入手可能• ラベルを作るのが難しい場合もラベル付が可能• 最適化、強化学習に必要なWhat-If分析が可能深層学習がSimulationを助ける• シミュレーションの高速化• データからシミュレーションを学習する• データ同化、パラメータ推定を助ける
  • 34.
  • 35.
    ● 2022年度夏季インターンシップの成果(東京大学・助田さん)● 気象シミュレーションは、シミュレーションの中でも特に難しい分野○観測データが少ない(観測機器の制約)○ 計算量が多い○ 現象が複雑● このテーマでは、「計算量が多い」という課題に着目して、スパコンで実行されるシミュレーターを省メモリで模倣計算することにチャレンジ数値シミュレーションデータの低次元潜在空間における時間発展ダイナミクスの学習35AI x Simulationの事例(2)Preferred Networks Tech Blog “数値シミュレーションデータの低次元潜在空間における時間発展ダイナミクスの学習”
  • 36.
    このあと続くDeep Learningのための専用プロセッサ「MN-Core」の開発と活用金子 紘也Hiroya Kaneko● PFNにとっての計算能力の位置付け● 代表的なDeep Learningの高速化手法● なぜ今プロセッサ開発なのか?● MN-Coreの概要● 開発チームの働き方● 最近の成果

[8]ページ先頭

©2009-2025 Movatter.jp