活動領域: ソーシャルメディアのデータマイニング 楽しさのデータマイニング・ユーザー体験還元 2900万人以上の人々へ 各人のつながり・楽しみ・好み 個性にあった適切なサービス提供 Data Mining Machine Learning of Fun PatternMining Clustering Classification Regression Recommendation TimeSeriesAnalysis StatisticalAnalysis NaturalLanguageProcessing ..etc Social Media Experience Social Graph Detailed Actions Changes of Status Social Communications Personality ..etc 8
数理解析手法の実ビジネスへの適用 2004年 博士号取得後 数理解析手法を実ビジネス適用の方法論構築主な領域◆活動の数理モデル化・解析手法◆活動の分析手法・再構築手法◆活動の実行制御・実績解析システム… 内容抜粋 “Decoupling Executions in Navigating Manufacturing "Unified graph representation of processes Processes for Shortening Lead Time and Its Implementation for scheduling with flexible resource to an Unmanned Machine Shop”, assignment", 14
15.
数理解析手法の実ビジネスへの適用:活動例 活動の統一グラフモデルを構築・解析 Unified graphical model of processes and resources 青字:割付モデル属性 [ ] : OptionalNode ・priority(優先度) Edge ・duration(予定時間) [・earliest(再早開始日時) ] Process EdgeProcess [・deadline(納期) ] [・or(条件集約数) ] 前プロセスの終了後に後プロセスがプロセスを表す 開始できること表す ・attributes(属性) preemptable(中断可否), successive(引継ぎ可否) Uses Edge workload(作業負荷) Processが使用する uses uses uses uses uses uses Assign Region を表すAssign Region Assigns from Edge同一Resourceを割付け続ける Assign Regionに assigns from assigns from 指定Resourceの子Resource集合の範囲を表す assigns assigns 中から割付けることを示す 企業01 [process] has has [startDate(開始日時)] [endDate(終了日時)] Assigns Edge 製品01 組織A StartDateからEndDateまでの間Resource has Assign RegionにResourceを割付対象要素を表す has has has has has has 割付けることを表す ・capacity(容量) ・calender(カレンダー) AAA01 AAB02 … 山田さん 田中さん 鈴木さん ・attributes(属性) Has Edge 東さん Resourceの所有関係を表す 15
数理解析手法の実ビジネスへの適用:活動例 ビジネスとともに 学術分野でも貢献変動性から生じる動的な課題 ・リソースの競合 ・滞留 ・納期遅延 …一品一様な業務プロセスを含む統計解析・制御数理モデル ・統計的な有効変数算出 ・統計数理モデル化 -優先順位制御 -実行タイミング制御 -統計フィードバック -適正リソース量算出 ・予測数理体系論文(体系の一部)M.Nakao, N. Kobayashi, K.Hamada, T.Totsuka, S.Yamada,“Decoupling Executions in Navigating Manufacturing Processes for Shortening Lead Time and Its Implementationto an Unmanned Machine Shop”,CIRP Annals - Manufacturing Technology Volume 56, Issue 1, Pages 171-174 (2007) 17
18.
思い より広く蓄積されたデータを有効活用し 世界の未来をよりよいものにしていきたい データマイニング+WEB勉強会@東京 Google Group: http://groups.google.com/group/webmining-tokyo 18
19.
現在の活動領域 ソーシャルメディアのデータマイニング活用 2900万人以上の人々へ 各人のつながり・楽しみ・好み 個性にあった適切なサービス配信 日々20億以上の活動の活用 Social Media Social Graph Fun Like Personality Objective Process Data Mining Machine Learning 各人のつながり、楽しみ、好み、個性にあった より適切なサービス提供 19
20.
よりよい世界の実現 ソーシャル・活動情報の活用により より適切な情報・サービス配信される世界を実現したい Social Media Social Graph Fun Like Personality Objective Process Data Mining Machine Learning 各人のつながり、楽しみ、好み、個性にあった より適切なサービス提供 20
21.
よりよい世界の実現 ソーシャル・活動情報の活用により より適切な情報・サービス配信される世界を実現したい 世界中の人々が 個々人のつながり・楽しみ・好みにあった適切な情報・サービスを 自ら探さなくても得ることができる世界 Social Media Social Graph Fun Like Personality Objective Process Data Mining Machine Learning 各人のつながり、楽しみ、好み、個性にあった より適切なサービス提供 21