Movatterモバイル変換


[0]ホーム

URL:


RFC 9348A YANG Data Model for IP-TFSJanuary 2023
Fedyk & HoppsStandards Track[Page]
Stream:
Internet Engineering Task Force (IETF)
RFC:
9348
Category:
Standards Track
Published:
ISSN:
2070-1721
Authors:
D. Fedyk
LabN Consulting, L.L.C.
C. Hopps
LabN Consulting, L.L.C.

RFC 9348

A YANG Data Model for IP Traffic Flow Security

Abstract

This document describes a YANG module for the management of IPTraffic Flow Security (IP-TFS) additions to Internet Key Exchange Protocol version 2 (IKEv2) and IPsec.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained athttps://www.rfc-editor.org/info/rfc9348.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.

Table of Contents

1.Introduction

This document defines a YANG module[RFC7950] for the management of the IPTraffic Flow Security (IP-TFS) extensions defined in[RFC9347]. IP-TFS provides enhancements to an IPsec tunnelSecurity Association (SA) to provide improved traffic confidentiality. Trafficconfidentiality reduces the ability of traffic analysis to determine identityand correlate observable traffic patterns. IP-TFS offers efficiency whenaggregating traffic in fixed-size IPsec tunnel packets.

The YANG data model in this document conforms to the NetworkManagement Datastore Architecture (NMDA) defined in[RFC8342].

The published YANG modules for IPsec are defined in[RFC9061]. This document uses these models as a general IPsec model that is augmented for IP-TFS.The models in[RFC9061] provide for both an IKE and an IKE-less model.

2.Overview

This document defines configuration and operational parameters of IP TrafficFlow Security (IP-TFS). IP-TFS, defined in[RFC9347],defines a security association for tunnel mode IPsec with characteristicsthat improve traffic confidentiality and reduce bandwidth efficiency loss.These documents assume familiarity with the IPsec concepts describedin[RFC4301].

IP-TFS uses tunnel mode to improve confidentiality by hiding inner packetidentifiable information, packet size, and packet timing. IP-TFS provides ageneral capability allowing aggregation of multiple packets in uniform-size outer tunnel IPsec packets. It maintains the outer packet size by utilizing combinations of aggregating, padding, and fragmenting innerpackets to fill out the IPsec outer tunnel packet.Padding is used to fill the packet when no data is available to send.

This document specifies an extensible configuration model for IP-TFS. Thisversion utilizes the capabilities of IP-TFS to configure fixed-size IP-TFSpackets that are transmitted at a constant rate. This model is structured to allow for different types of operation through future augmentation.

The IP-TFS YANG module augments the IPsec YANG module from[RFC9061]. IP-TFS makes use of IPsec tunnelmode and adds a small number of configuration items to IPsec tunnel mode. Asdefined in[RFC9347], any SA configured to use IP-TFS supportsonly IP-TFS packets, i.e., no mixed IPsec modes.

The behavior for IP-TFS is controlled by the source.The self-describing format of an IP-TFS packet allows a sending side to adjustthe packet size and timing independently from any receiver. Both directionsare also independent, e.g., IP-TFS may be run only in one direction.This means that counters, which are created here for both directions, may be 0 or not updated in the case of an SA that uses IP-TFS only in on direction.

Cases where IP-TFS statistics are active for one direction:

Case where IP-TFS statistics are active for both directions:

The IP-TFS model supports IP-TFS configuration and operational data.

This YANG module supports configuration of fixed-size and fixed-rate packets,as well as elements that may be augmented to support future configuration. Theprotocol specification[RFC9347] goes beyond this simple,fixed mode of operation by defining a general format for any type of scheme.In this document, the outer IPsec packets can be sent with fixed or variablesize (without padding). The configuration allows the fixed packet size to bedetermined by the path MTU. The fixed packet size can also be configured if avalue lower than the path MTU is desired.

Other configuration items include:

Congestion Control:
A congestion control setting to allow IP-TFS to reduce the packet rate when congestion is detected.
Fixed-Rate Configuration:
The IP-TFS tunnel rate can be configured by takinginto account either layer 2 overhead or layer 3 overhead. Layer 3 overheadis the IP data rate, and layer 2 overhead is the rate of bits on the link. The combination of packet size and rate determines thenominal maximum bandwidth and the transmission interval when fixed-size packetsare used.
User Packet Fragmentation Control:
While fragmentation is recommendedfor improved efficiency, a configuration is provided if users wish to observethe effect of no fragmentation on their data flows.

The YANG operational data allows the readout of the configured parameters, aswell as the per-SA statistics and error counters for IP-TFS. Per-SA IPsec packetstatistics are provided as a feature, and per-SA IP-TFS-specific statistics are providedas another feature.Both sets of statistics augment the IPsec YANG modules withcounters that allow observation of IP-TFS packet efficiency.

IPsec YANGmanagement objects are set in[RFC9061]. IP-TFS YANG augments the IKE andthe IKE-less models. In these models, the Security Policydatabase entry and Security Association entry for an IPsectunnel can be augmented with IP-TFS. In addition, this model uses YANG types defined in[RFC6991].

3.YANG Management

3.1.YANG Tree

The following is the YANG tree diagram[RFC8340] for the IP-TFSextensions.

module: ietf-ipsec-iptfs  augment /nsfike:ipsec-ike/nsfike:conn-entry/nsfike:spd            /nsfike:spd-entry/nsfike:ipsec-policy-config            /nsfike:processing-info/nsfike:ipsec-sa-cfg:    +--rw traffic-flow-security       +--rw congestion-control?           boolean       +--rw packet-size       |  +--rw use-path-mtu-discovery?   boolean       |  +--rw outer-packet-size?        uint16       +--rw (tunnel-rate)?       |  +--:(l2-fixed-rate)       |  |  +--rw l2-fixed-rate?          yang:gauge64       |  +--:(l3-fixed-rate)       |     +--rw l3-fixed-rate?          yang:gauge64       +--rw dont-fragment?                boolean       +--rw max-aggregation-time?         decimal64       +--rw window-size?                  uint16       +--rw send-immediately?             boolean       +--rw lost-packet-timer-interval?   decimal64  augment /nsfike:ipsec-ike/nsfike:conn-entry/nsfike:child-sa-info:    +--ro traffic-flow-security       +--ro congestion-control?           boolean       +--ro packet-size       |  +--ro use-path-mtu-discovery?   boolean       |  +--ro outer-packet-size?        uint16       +--ro (tunnel-rate)?       |  +--:(l2-fixed-rate)       |  |  +--ro l2-fixed-rate?          yang:gauge64       |  +--:(l3-fixed-rate)       |     +--ro l3-fixed-rate?          yang:gauge64       +--ro dont-fragment?                boolean       +--ro max-aggregation-time?         decimal64       +--ro window-size?                  uint16       +--ro send-immediately?             boolean       +--ro lost-packet-timer-interval?   decimal64  augment /nsfikels:ipsec-ikeless/nsfikels:spd/nsfikels:spd-entry            /nsfikels:ipsec-policy-config/nsfikels:processing-info            /nsfikels:ipsec-sa-cfg:    +--rw traffic-flow-security       +--rw congestion-control?           boolean       +--rw packet-size       |  +--rw use-path-mtu-discovery?   boolean       |  +--rw outer-packet-size?        uint16       +--rw (tunnel-rate)?       |  +--:(l2-fixed-rate)       |  |  +--rw l2-fixed-rate?          yang:gauge64       |  +--:(l3-fixed-rate)       |     +--rw l3-fixed-rate?          yang:gauge64       +--rw dont-fragment?                boolean       +--rw max-aggregation-time?         decimal64       +--rw window-size?                  uint16       +--rw send-immediately?             boolean       +--rw lost-packet-timer-interval?   decimal64  augment /nsfikels:ipsec-ikeless/nsfikels:sad/nsfikels:sad-entry:    +--ro traffic-flow-security       +--ro congestion-control?           boolean       +--ro packet-size       |  +--ro use-path-mtu-discovery?   boolean       |  +--ro outer-packet-size?        uint16       +--ro (tunnel-rate)?       |  +--:(l2-fixed-rate)       |  |  +--ro l2-fixed-rate?          yang:gauge64       |  +--:(l3-fixed-rate)       |     +--ro l3-fixed-rate?          yang:gauge64       +--ro dont-fragment?                boolean       +--ro max-aggregation-time?         decimal64       +--ro window-size?                  uint16       +--ro send-immediately?             boolean       +--ro lost-packet-timer-interval?   decimal64  augment /nsfike:ipsec-ike/nsfike:conn-entry/nsfike:child-sa-info:    +--ro ipsec-stats {ipsec-stats}?    |  +--ro tx-pkts?        yang:counter64    |  +--ro tx-octets?      yang:counter64    |  +--ro tx-drop-pkts?   yang:counter64    |  +--ro rx-pkts?        yang:counter64    |  +--ro rx-octets?      yang:counter64    |  +--ro rx-drop-pkts?   yang:counter64    +--ro iptfs-inner-pkt-stats {iptfs-stats}?    |  +--ro tx-pkts?              yang:counter64    |  +--ro tx-octets?            yang:counter64    |  +--ro rx-pkts?              yang:counter64    |  +--ro rx-octets?            yang:counter64    |  +--ro rx-incomplete-pkts?   yang:counter64    +--ro iptfs-outer-pkt-stats {iptfs-stats}?       +--ro tx-all-pad-pkts?       yang:counter64       +--ro tx-all-pad-octets?     yang:counter64       +--ro tx-extra-pad-pkts?     yang:counter64       +--ro tx-extra-pad-octets?   yang:counter64       +--ro rx-all-pad-pkts?       yang:counter64       +--ro rx-all-pad-octets?     yang:counter64       +--ro rx-extra-pad-pkts?     yang:counter64       +--ro rx-extra-pad-octets?   yang:counter64       +--ro rx-errored-pkts?       yang:counter64       +--ro rx-missed-pkts?        yang:counter64  augment /nsfikels:ipsec-ikeless/nsfikels:sad/nsfikels:sad-entry:    +--ro ipsec-stats {ipsec-stats}?    |  +--ro tx-pkts?        yang:counter64    |  +--ro tx-octets?      yang:counter64    |  +--ro tx-drop-pkts?   yang:counter64    |  +--ro rx-pkts?        yang:counter64    |  +--ro rx-octets?      yang:counter64    |  +--ro rx-drop-pkts?   yang:counter64    +--ro iptfs-inner-pkt-stats {iptfs-stats}?    |  +--ro tx-pkts?              yang:counter64    |  +--ro tx-octets?            yang:counter64    |  +--ro rx-pkts?              yang:counter64    |  +--ro rx-octets?            yang:counter64    |  +--ro rx-incomplete-pkts?   yang:counter64    +--ro iptfs-outer-pkt-stats {iptfs-stats}?       +--ro tx-all-pad-pkts?       yang:counter64       +--ro tx-all-pad-octets?     yang:counter64       +--ro tx-extra-pad-pkts?     yang:counter64       +--ro tx-extra-pad-octets?   yang:counter64       +--ro rx-all-pad-pkts?       yang:counter64       +--ro rx-all-pad-octets?     yang:counter64       +--ro rx-extra-pad-pkts?     yang:counter64       +--ro rx-extra-pad-octets?   yang:counter64       +--ro rx-errored-pkts?       yang:counter64       +--ro rx-missed-pkts?        yang:counter64

3.2.YANG Module

The following is the YANG module for managing the IP-TFS extensions.The model contains references to[RFC9347] and[RFC5348].

<CODE BEGINS> file "ietf-ipsec-iptfs@2023-01-31.yang"module ietf-ipsec-iptfs {  yang-version 1.1;  namespace "urn:ietf:params:xml:ns:yang:ietf-ipsec-iptfs";  prefix iptfs;  import ietf-i2nsf-ike {    prefix nsfike;    reference      "RFC 9061: A YANG Data Model for IPsec Flow Protection Based on       Software-Defined Networking (SDN), Section 5.2";  }  import ietf-i2nsf-ikeless {    prefix nsfikels;    reference      "RFC 9061: A YANG Data Model for IPsec Flow Protection Based on       Software-Defined Networking (SDN), Section 5.3";  }  import ietf-yang-types {    prefix yang;    reference      "RFC 6991: Common YANG Data Types";  }  organization    "IETF IPSECME Working Group (IPSECME)";  contact    "WG Web:  <https://datatracker.ietf.org/wg/ipsecme/>     WG List: <mailto:ipsecme@ietf.org>     Author: Don Fedyk             <mailto:dfedyk@labn.net>     Author: Christian Hopps             <mailto:chopps@chopps.org>";  description    "This module defines the configuration and operational state for     managing the IP Traffic Flow Security functionality (RFC 9348).     Copyright (c) 2023 IETF Trust and the persons identified as     authors of the code.  All rights reserved.     Redistribution and use in source and binary forms, with or     without modification, is permitted pursuant to, and subject     to the license terms contained in, the Revised BSD License     set forth in Section 4.c of the IETF Trust's Legal Provisions     Relating to IETF Documents     (https://trustee.ietf.org/license-info).     This version of this YANG module is part of RFC 9348; see     the RFC itself for full legal notices.";  revision 2023-01-31 {    description      "Initial revision";    reference      "RFC 9348: A YANG Data Model for IP Traffic Flow Security";  }  feature ipsec-stats {    description      "This feature indicates the device supports       per-SA IPsec statistics.";  }  feature iptfs-stats {    description      "This feature indicates the device supports       per-SA IP Traffic Flow Security statistics.";  }  /*--------------------*/  /*   groupings        */  /*--------------------*/  grouping ipsec-tx-stat-grouping {    description      "IPsec outbound statistics";    leaf tx-pkts {      type yang:counter64;      config false;      description        "Outbound Packet count";    }    leaf tx-octets {      type yang:counter64;      config false;      description        "Outbound Packet bytes";    }    leaf tx-drop-pkts {      type yang:counter64;      config false;      description        "Outbound dropped packets count";    }  }  grouping ipsec-rx-stat-grouping {    description      "IPsec inbound statistics";    leaf rx-pkts {      type yang:counter64;      config false;      description        "Inbound Packet count";    }    leaf rx-octets {      type yang:counter64;      config false;      description        "Inbound Packet bytes";    }    leaf rx-drop-pkts {      type yang:counter64;      config false;      description        "Inbound dropped packets count";    }  }  grouping iptfs-inner-tx-stat-grouping {    description      "IP-TFS outbound inner packet statistics";    leaf tx-pkts {      type yang:counter64;      config false;      description        "Total number of IP-TFS inner packets sent.  This         count is whole packets only.  A fragmented packet         counts as one packet.";      reference        "RFC 9347: Aggregation and Fragmentation Mode for         Encapsulating Security Payload (ESP) and Its Use for         IP Traffic Flow Security (IP-TFS)";    }    leaf tx-octets {      type yang:counter64;      config false;      description        "Total number of IP-TFS inner octets sent.  This is         inner packet octets only. It does not count padding.";      reference        "RFC 9347: Aggregation and Fragmentation Mode for         Encapsulating Security Payload (ESP) and Its Use for         IP Traffic Flow Security (IP-TFS)";    }  }  grouping iptfs-outer-tx-stat-grouping {    description      "IP-TFS outbound inner packet statistics";    leaf tx-all-pad-pkts {      type yang:counter64;      config false;      description        "Total number of transmitted IP-TFS packets that         were all padding with no inner packet data.";      reference        "RFC 9347: Aggregation and Fragmentation Mode for         Encapsulating Security Payload (ESP) and Its Use for         IP Traffic Flow Security (IP-TFS), Section 2.2.3";    }    leaf tx-all-pad-octets {      type yang:counter64;      config false;      description        "Total number transmitted octets of padding added to         IP-TFS packets with no inner packet data.";      reference        "RFC 9347: Aggregation and Fragmentation Mode for         Encapsulating Security Payload (ESP) and Its Use for         IP Traffic Flow Security (IP-TFS), Section 2.2.3";    }    leaf tx-extra-pad-pkts {      type yang:counter64;      config false;      description        "Total number of transmitted outer IP-TFS packets         that included some padding.";      reference        "RFC 9347: Aggregation and Fragmentation Mode for         Encapsulating Security Payload (ESP) and Its Use for         IP Traffic Flow Security (IP-TFS), Section 2.2.3.1";    }    leaf tx-extra-pad-octets {      type yang:counter64;      config false;      description        "Total number of transmitted octets of padding added         to outer IP-TFS packets with data.";      reference        "RFC 9347: Aggregation and Fragmentation Mode for         Encapsulating Security Payload (ESP) and Its Use for         IP Traffic Flow Security (IP-TFS), Section 2.2.3.1";    }  }  grouping iptfs-inner-rx-stat-grouping {    description      "IP-TFS inner packet inbound statistics";    leaf rx-pkts {      type yang:counter64;      config false;      description        "Total number of IP-TFS inner packets received.";      reference        "RFC 9347: Aggregation and Fragmentation Mode for         Encapsulating Security Payload (ESP) and Its Use for         IP Traffic Flow Security (IP-TFS), Section 2.2";    }    leaf rx-octets {      type yang:counter64;      config false;      description        "Total number of IP-TFS inner octets received.  It does         not include padding or overhead.";      reference        "RFC 9347: Aggregation and Fragmentation Mode for         Encapsulating Security Payload (ESP) and Its Use for         IP Traffic Flow Security (IP-TFS), Section 2.2";    }    leaf rx-incomplete-pkts {      type yang:counter64;      config false;      description        "Total number of IP-TFS inner packets that were         incomplete.  Usually this is due to fragments that are         not received.  Also, this may be due to misordering or         errors in received outer packets.";      reference        "RFC 9347: Aggregation and Fragmentation Mode for         Encapsulating Security Payload (ESP) and Its Use for         IP Traffic Flow Security (IP-TFS)";    }  }  grouping iptfs-outer-rx-stat-grouping {    description      "IP-TFS outer packet inbound statistics";    leaf rx-all-pad-pkts {      type yang:counter64;      config false;      description        "Total number of received IP-TFS packets that were         all padding with no inner packet data.";      reference        "RFC 9347: Aggregation and Fragmentation Mode for         Encapsulating Security Payload (ESP) and Its Use for         IP Traffic Flow Security (IP-TFS), Section 2.2.3";    }    leaf rx-all-pad-octets {      type yang:counter64;      config false;      description        "Total number of received octets of padding added to         IP-TFS packets with no inner packet data.";      reference        "RFC 9347: Aggregation and Fragmentation Mode for         Encapsulating Security Payload (ESP) and Its Use for         IP Traffic Flow Security (IP-TFS), Section 2.2.3";    }    leaf rx-extra-pad-pkts {      type yang:counter64;      config false;      description        "Total number of received outer IP-TFS packets that         included some padding.";      reference        "RFC 9347: Aggregation and Fragmentation Mode for         Encapsulating Security Payload (ESP) and Its Use for         IP Traffic Flow Security (IP-TFS), Section 2.2.3.1";    }    leaf rx-extra-pad-octets {      type yang:counter64;      config false;      description        "Total number of received octets of padding added to         outer IP-TFS packets with data.";      reference        "RFC 9347: Aggregation and Fragmentation Mode for         Encapsulating Security Payload (ESP) and Its Use for         IP Traffic Flow Security (IP-TFS), Section 2.2.3.1";    }    leaf rx-errored-pkts {      type yang:counter64;      config false;      description        "Total number of IP-TFS outer packets dropped due to         errors.";      reference        "RFC 9347: Aggregation and Fragmentation Mode for         Encapsulating Security Payload (ESP) and Its Use for         IP Traffic Flow Security (IP-TFS)";    }    leaf rx-missed-pkts {      type yang:counter64;      config false;      description        "Total number of IP-TFS outer packets missing,         indicated by a missing sequence number.";      reference        "RFC 9347: Aggregation and Fragmentation Mode for         Encapsulating Security Payload (ESP) and Its Use for         IP Traffic Flow Security (IP-TFS)";    }  }  grouping iptfs-config {    description      "This is the grouping for IP-TFS configuration.";    container traffic-flow-security {      description        "Configure the IPsec TFS in the Security         Association Database (SAD).";      leaf congestion-control {        type boolean;        default "true";        description          "When set to true, the default, this enables the           congestion control on-the-wire exchange of data that is           required by congestion control algorithms, as defined by           RFC 5348.  When set to false, IP-TFS sends fixed-size           packets over an IP-TFS tunnel at a constant rate.";        reference          "RFC 9347: Aggregation and Fragmentation Mode for           Encapsulating Security Payload (ESP) and Its Use for           IP Traffic Flow Security (IP-TFS), Section 2.4.2;           RFC 5348: TCP Friendly Rate Control (TFRC): Protocol           Specification";      }      container packet-size {        description          "Packet size is either auto-discovered or manually           configured.";        leaf use-path-mtu-discovery {          type boolean;          default "true";          description            "Utilize path MTU discovery to determine maximum             IP-TFS packet size.  If the packet size is explicitly             configured, then it will only be adjusted downward if             use-path-mtu-discovery is set.";          reference            "RFC 9347: Aggregation and Fragmentation Mode for             Encapsulating Security Payload (ESP) and Its Use for             IP Traffic Flow Security (IP-TFS), Section 4.2";        }        leaf outer-packet-size {          type uint16;          units "bytes";          description            "On transmission, the size of the outer encapsulating             tunnel packet (i.e., the IP packet containing             Encapsulating Security Payload (ESP)).";          reference            "RFC 9347: Aggregation and Fragmentation Mode for             Encapsulating Security Payload (ESP) and Its Use for             IP Traffic Flow Security (IP-TFS), Section 4.2";        }      }      choice tunnel-rate {        description          "The TFS bit rate may be specified at layer 2 wire           rate or layer 3 packet rate.";        leaf l2-fixed-rate {          type yang:gauge64;          units "bits/second";          description            "On transmission, target bandwidth/bit rate in             bits/second for IP-TFS tunnel.  This fixed rate is the             nominal timing for the fixed-size packet.  If             congestion control is enabled, the rate may be             adjusted down (or up if unset).";          reference            "RFC 9347: Aggregation and Fragmentation Mode for             Encapsulating Security Payload (ESP) and Its Use for             IP Traffic Flow Security (IP-TFS), Section 4.1";        }        leaf l3-fixed-rate {          type yang:gauge64;          units "bits/second";          description            "On transmission, target bandwidth/bit rate in             bits/second for IP-TFS tunnel.  This fixed rate is the             nominal timing for the fixed-size packet.  If             congestion control is enabled, the rate may be             adjusted down (or up if unset).";          reference            "RFC 9347: Aggregation and Fragmentation Mode for             Encapsulating Security Payload (ESP) and Its Use for             IP Traffic Flow Security (IP-TFS), Section 4.1";        }      }      leaf dont-fragment {        type boolean;        default "false";        description          "On transmission, disable packet fragmentation across           consecutive IP-TFS tunnel packets; inner packets larger           than what can be transmitted in outer packets will be           dropped.";        reference          "RFC 9347: Aggregation and Fragmentation Mode for           Encapsulating Security Payload (ESP) and Its Use for           IP Traffic Flow Security (IP-TFS), Section 2.2.4 and           6.1.4";      }      leaf max-aggregation-time {        type decimal64 {          fraction-digits 6;        }        units "milliseconds";        description          "On transmission, maximum aggregation time is the           maximum length of time a received inner packet can be           held prior to transmission in the IP-TFS tunnel.  Inner           packets that would be held longer than this time, based           on the current tunnel configuration, will be dropped           rather than be queued for transmission.  Maximum           aggregation time is configurable in milliseconds or           fractional milliseconds down to 1 nanosecond.";      }      leaf window-size {        type uint16 {          range "0..65535";        }        description          "On reception, the maximum number of out-of-order           packets that will be reordered by an IP-TFS receiver           while performing the reordering operation.  The value 0           disables any reordering.";        reference          "RFC 9347: Aggregation and Fragmentation Mode for           Encapsulating Security Payload (ESP) and Its Use for           IP Traffic Flow Security (IP-TFS), Section 2.2.3";      }      leaf send-immediately {        type boolean;        default "false";        description          "On reception, send inner packets as soon as possible; do           not wait for lost or misordered outer packets.           Selecting this option reduces the inner (user) packet           delay but can amplify out-of-order delivery of the           inner packet stream in the presence of packet           aggregation and any reordering.";        reference          "RFC 9347: Aggregation and Fragmentation Mode for           Encapsulating Security Payload (ESP) and Its Use for           IP Traffic Flow Security (IP-TFS), Section 2.5";      }      leaf lost-packet-timer-interval {        type decimal64 {          fraction-digits 6;        }        units "milliseconds";        description          "On reception, this interval defines the length of time           an IP-TFS receiver will wait for a missing packet before           considering it lost.  If not using send-immediately,           then each lost packet will delay inner (user) packets           until this timer expires.  Setting this value too low           can impact reordering and reassembly.  The value is           configurable in milliseconds or fractional milliseconds           down to 1 nanosecond.";        reference          "RFC 9347: Aggregation and Fragmentation Mode for           Encapsulating Security Payload (ESP) and Its Use for           IP Traffic Flow Security (IP-TFS), Section 2.2.3";      }    }  }  /*   * IP-TFS ike configuration   */  augment "/nsfike:ipsec-ike/nsfike:conn-entry/nsfike:spd/"        + "nsfike:spd-entry/"        + "nsfike:ipsec-policy-config/"        + "nsfike:processing-info/"        + "nsfike:ipsec-sa-cfg" {    description      "IP-TFS configuration for this policy.";    uses iptfs-config;  }  augment "/nsfike:ipsec-ike/nsfike:conn-entry/"        + "nsfike:child-sa-info" {    description      "IP-TFS configured on this SA.";    uses iptfs-config {      refine "traffic-flow-security" {        config false;      }    }  }  /*   * IP-TFS ikeless configuration   */  augment "/nsfikels:ipsec-ikeless/nsfikels:spd/"        + "nsfikels:spd-entry/"        + "nsfikels:ipsec-policy-config/"        + "nsfikels:processing-info/"        + "nsfikels:ipsec-sa-cfg" {    description      "IP-TFS configuration for this policy.";    uses iptfs-config;  }  augment "/nsfikels:ipsec-ikeless/nsfikels:sad/"        + "nsfikels:sad-entry" {    description      "IP-TFS configured on this SA.";    uses iptfs-config {      refine "traffic-flow-security" {        config false;      }    }  }  /*   * packet counters   */  augment "/nsfike:ipsec-ike/nsfike:conn-entry/"        + "nsfike:child-sa-info" {    description      "Per-SA counters";    container ipsec-stats {      if-feature "ipsec-stats";      config false;      description        "IPsec per-SA packet counters.         tx = outbound, rx = inbound";      uses ipsec-tx-stat-grouping;      uses ipsec-rx-stat-grouping;    }    container iptfs-inner-pkt-stats {      if-feature "iptfs-stats";      config false;      description        "IP-TFS per-SA inner packet counters.         tx = outbound, rx = inbound";      uses iptfs-inner-tx-stat-grouping;      uses iptfs-inner-rx-stat-grouping;    }    container iptfs-outer-pkt-stats {      if-feature "iptfs-stats";      config false;      description        "IP-TFS per-SA outer packets counters.         tx = outbound, rx = inbound";      uses iptfs-outer-tx-stat-grouping;      uses iptfs-outer-rx-stat-grouping;    }  }  /*   * packet counters   */  augment "/nsfikels:ipsec-ikeless/nsfikels:sad/"        + "nsfikels:sad-entry" {    description      "Per-SA counters";    container ipsec-stats {      if-feature "ipsec-stats";      config false;      description        "IPsec per-SA packet counters.         tx = outbound, rx = inbound";      uses ipsec-tx-stat-grouping;      uses ipsec-rx-stat-grouping;    }    container iptfs-inner-pkt-stats {      if-feature "iptfs-stats";      config false;      description        "IP-TFS per-SA inner packet counters.         tx = outbound, rx = inbound";      uses iptfs-inner-tx-stat-grouping;      uses iptfs-inner-rx-stat-grouping;    }    container iptfs-outer-pkt-stats {      if-feature "iptfs-stats";      config false;      description        "IP-TFS per-SA outer packets counters.         tx = outbound, rx = inbound";      uses iptfs-outer-tx-stat-grouping;      uses iptfs-outer-rx-stat-grouping;    }  }}<CODE ENDS>

4.IANA Considerations

4.1.Updates to the IETF XML Registry

Per this document, IANA has registered a URI in the "IETF XML Registry"[RFC3688] as follows.

URI:
urn:ietf:params:xml:ns:yang:ietf-ipsec-iptfs
Registrant Contact:
The IESG.
XML:
N/A; the requested URI is an XML namespace.

4.2.Updates to the YANG Module Names Registry

Per this document, IANA has registered one YANG module in the "YANG Module Names"registry[RFC6020] as follows.

Name:
ietf-ipsec-iptfs
Namespace:
urn:ietf:params:xml:ns:yang:ietf-ipsec-iptfs
Prefix:
iptfs
Reference:
RFC 9348

5.Security Considerations

The YANG module specified in this document defines a schema for datathat is designed to be accessed via network management protocols suchas NETCONF[RFC6241] or RESTCONF[RFC8040]. The lowest NETCONF layer isthe secure transport layer, and the mandatory-to-implement securetransport is Secure Shell (SSH)[RFC6242]. The lowest RESTCONF layer isHTTPS, and the mandatory-to-implement secure transport is TLS[RFC8446].

The Network Configuration Access Control Model (NACM)[RFC8341]provides the means to restrict access for particular NETCONF orRESTCONF users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content.

There are a number of data nodes defined in this YANG module that are writable/creatable/deletable (i.e., config true, which is the default). These data nodes may be considered sensitive or vulnerable in some network environments. Write operations (e.g., edit-config) to these data nodes without proper protection can have a negative effect on network operations. These are the subtrees and data nodes and their sensitivity/vulnerability:

../traffic-flow-security:
Enabling IP-TFS is controlled by setting the entriesunder traffic-flow-security in IKE or IKE-less models. IP-TFSis set either to be congestion sensitive or a fixed rate by settingparameters in this subtree.

Some of the readable data nodes in this YANG module may be considered sensitive or vulnerable in some network environments. It is thus important to control read access (e.g., via get, get-config, or notification) to these data nodes. These are the subtrees and data nodes and their sensitivity/vulnerability:

../iptfs-inner-pkt-stats and ../iptfs-outer-pkt-stats:
Access to IP-TFS statistics can provide informationthat IP-TFS obscures, such as the true activity of the flowsusing IP-TFS.

6.References

6.1.Normative References

[RFC4301]
Kent, S. andK. Seo,"Security Architecture for the Internet Protocol",RFC 4301,DOI 10.17487/RFC4301,,<https://www.rfc-editor.org/info/rfc4301>.
[RFC6020]
Bjorklund, M., Ed.,"YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)",RFC 6020,DOI 10.17487/RFC6020,,<https://www.rfc-editor.org/info/rfc6020>.
[RFC6241]
Enns, R., Ed.,Bjorklund, M., Ed.,Schoenwaelder, J., Ed., andA. Bierman, Ed.,"Network Configuration Protocol (NETCONF)",RFC 6241,DOI 10.17487/RFC6241,,<https://www.rfc-editor.org/info/rfc6241>.
[RFC6242]
Wasserman, M.,"Using the NETCONF Protocol over Secure Shell (SSH)",RFC 6242,DOI 10.17487/RFC6242,,<https://www.rfc-editor.org/info/rfc6242>.
[RFC6991]
Schoenwaelder, J., Ed.,"Common YANG Data Types",RFC 6991,DOI 10.17487/RFC6991,,<https://www.rfc-editor.org/info/rfc6991>.
[RFC7950]
Bjorklund, M., Ed.,"The YANG 1.1 Data Modeling Language",RFC 7950,DOI 10.17487/RFC7950,,<https://www.rfc-editor.org/info/rfc7950>.
[RFC8040]
Bierman, A.,Bjorklund, M., andK. Watsen,"RESTCONF Protocol",RFC 8040,DOI 10.17487/RFC8040,,<https://www.rfc-editor.org/info/rfc8040>.
[RFC8341]
Bierman, A. andM. Bjorklund,"Network Configuration Access Control Model",STD 91,RFC 8341,DOI 10.17487/RFC8341,,<https://www.rfc-editor.org/info/rfc8341>.
[RFC8342]
Bjorklund, M.,Schoenwaelder, J.,Shafer, P.,Watsen, K., andR. Wilton,"Network Management Datastore Architecture (NMDA)",RFC 8342,DOI 10.17487/RFC8342,,<https://www.rfc-editor.org/info/rfc8342>.
[RFC8446]
Rescorla, E.,"The Transport Layer Security (TLS) Protocol Version 1.3",RFC 8446,DOI 10.17487/RFC8446,,<https://www.rfc-editor.org/info/rfc8446>.
[RFC9061]
Marin-Lopez, R.,Lopez-Millan, G., andF. Pereniguez-Garcia,"A YANG Data Model for IPsec Flow Protection Based on Software-Defined Networking (SDN)",RFC 9061,DOI 10.17487/RFC9061,,<https://www.rfc-editor.org/info/rfc9061>.
[RFC9347]
Hopps, C.,"Aggregation and Fragmentation Mode for Encapsulating Security Payload (ESP) and Its Use for IP Traffic Flow Security (IP-TFS)",RFC 9347,DOI 10.17487/RFC9347,,<https://www.rfc-editor.org/info/rfc9347>.

6.2.Informative References

[RFC3688]
Mealling, M.,"The IETF XML Registry",BCP 81,RFC 3688,DOI 10.17487/RFC3688,,<https://www.rfc-editor.org/info/rfc3688>.
[RFC5348]
Floyd, S.,Handley, M.,Padhye, J., andJ. Widmer,"TCP Friendly Rate Control (TFRC): Protocol Specification",RFC 5348,DOI 10.17487/RFC5348,,<https://www.rfc-editor.org/info/rfc5348>.
[RFC8340]
Bjorklund, M. andL. Berger, Ed.,"YANG Tree Diagrams",BCP 215,RFC 8340,DOI 10.17487/RFC8340,,<https://www.rfc-editor.org/info/rfc8340>.

Appendix A.Examples

The following examples show configuration and operational data for the IKE-less and IKE cases using XML and JSON. Also, the operational statistics for the IKE-less case is illustrated.

A.1.Example XML Configuration

This example illustrates configuration for IP-TFS in the IKE-less case. Note that, since this augments the IPsec IKE-less schema, only a minimal IKE-less configuration to satisfy the schema has been populated.

<i:ipsec-ikeless  xmlns:i="urn:ietf:params:xml:ns:yang:ietf-i2nsf-ikeless"  xmlns:tfs="urn:ietf:params:xml:ns:yang:ietf-ipsec-iptfs">  <i:spd>    <i:spd-entry>      <i:name>protect-policy-1</i:name>      <i:direction>outbound</i:direction>      <i:ipsec-policy-config>        <i:traffic-selector>          <i:local-prefix>192.0.2.0/16</i:local-prefix>          <i:remote-prefix>198.51.100.0/16</i:remote-prefix>        </i:traffic-selector>        <i:processing-info>          <i:action>protect</i:action>          <i:ipsec-sa-cfg>            <tfs:traffic-flow-security>             <tfs:congestion-control>true</tfs:congestion-control>              <tfs:packet-size>                <tfs:use-path-mtu-discovery                   >true</tfs:use-path-mtu-discovery>              </tfs:packet-size>              <tfs:l2-fixed-rate>1000000000</tfs:l2-fixed-rate>              <tfs:max-aggregation-time                 >0.1</tfs:max-aggregation-time>              <tfs:window-size>5</tfs:window-size>              <tfs:send-immediately>false</tfs:send-immediately>              <tfs:lost-packet-timer-interval                 >0.2</tfs:lost-packet-timer-interval>            </tfs:traffic-flow-security>          </i:ipsec-sa-cfg>        </i:processing-info>      </i:ipsec-policy-config>    </i:spd-entry>  </i:spd></i:ipsec-ikeless>
Figure 1:Example IP-TFS XML Configuration

A.2.Example XML Operational Data

This example illustrates operational data for IP-TFS in the IKE-less case. Note that, since this augments the IPsec IKE-less schema only, a minimal IKE-less configuration to satisfy the schema has been populated.

<i:ipsec-ikeless  xmlns:i="urn:ietf:params:xml:ns:yang:ietf-i2nsf-ikeless"  xmlns:tfs="urn:ietf:params:xml:ns:yang:ietf-ipsec-iptfs">  <i:sad>    <i:sad-entry>      <i:name>sad-1</i:name>      <i:ipsec-sa-config>        <i:spi>1</i:spi>        <i:traffic-selector>          <i:local-prefix>2001:db8:1::/48</i:local-prefix>          <i:remote-prefix>2001:db8:2::/48</i:remote-prefix>        </i:traffic-selector>      </i:ipsec-sa-config>      <tfs:traffic-flow-security>        <tfs:congestion-control>true</tfs:congestion-control>        <tfs:packet-size>          <tfs:use-path-mtu-discovery            >true</tfs:use-path-mtu-discovery>        </tfs:packet-size>        <tfs:l2-fixed-rate>1000000000</tfs:l2-fixed-rate>        <tfs:max-aggregation-time>0.100</tfs:max-aggregation-time>        <tfs:window-size>0</tfs:window-size>        <tfs:send-immediately>true</tfs:send-immediately>        <tfs:lost-packet-timer-interval          >0.200</tfs:lost-packet-timer-interval>      </tfs:traffic-flow-security>    </i:sad-entry>  </i:sad></i:ipsec-ikeless>
Figure 2:Example IP-TFS XML Operational Data

A.3.Example JSON Configuration

This example illustrates configuration data for IP-TFS in the IKE case. Note that, since this augments the IPsec IKE schema, only a minimal IKE configuration to satisfy the schema has been populated.

{  "ietf-i2nsf-ike:ipsec-ike": {    "ietf-i2nsf-ike:conn-entry": [      {        "name": "my-peer-connection",        "ike-sa-encr-alg": [          {            "id": 1,            "algorithm-type": 12,            "key-length": 128          }          ],          "local": {            "local-pad-entry-name": "local-1"          },          "remote": {            "remote-pad-entry-name": "remote-1"          },          "ietf-i2nsf-ike:spd": {          "spd-entry": [            {              "name": "protect-policy-1",              "ipsec-policy-config": {                "traffic-selector": {                  "local-prefix": "192.0.2.0/16",                  "remote-prefix": "198.51.100.0/16"                },                "processing-info": {                  "action": "protect",                  "ipsec-sa-cfg": {                    "ietf-ipsec-iptfs:traffic-flow-security": {                      "congestion-control": true,                      "l2-fixed-rate": "1000000000",                      "packet-size": {                        "use-path-mtu-discovery": true                      },                      "max-aggregation-time": "0.1",                      "window-size": 1,                      "send-immediately": false,                      "lost-packet-timer-interval": "0.2"                    }                  }                }              }            }          ]        }      }    ]  }}
Figure 3:Example IP-TFS JSON Configuration

A.4.Example JSON Operational Data

This example illustrates operational data for IP-TFS in the IKE case. Note that, since this augments the IPsec IKE tree, only a minimal IKE configuration to satisfy the schema has been populated.

{  "ietf-i2nsf-ike:ipsec-ike": {    "ietf-i2nsf-ike:conn-entry": [      {        "name": "my-peer-connection",        "ike-sa-encr-alg": [        {          "id": 1,          "algorithm-type": 12,          "key-length": 128        }        ],        "local": {          "local-pad-entry-name": "local-1"        },        "remote": {          "remote-pad-entry-name": "remote-1"        },        "ietf-i2nsf-ike:child-sa-info": {          "ietf-ipsec-iptfs:traffic-flow-security": {            "congestion-control": true,            "l2-fixed-rate": "1000000000",            "packet-size": {              "use-path-mtu-discovery": true            },            "max-aggregation-time": "0.1",            "window-size": 5,            "send-immediately": false,            "lost-packet-timer-interval": "0.2"          }        }      }    ]  }}
Figure 4:Example IP-TFS JSON Operational Data

A.5.Example JSON Operational Statistics

This example shows the JSON formatted statistics for IP-TFS.Note a unidirectional IP-TFS transmit side is illustrated, with arbitrary numbers for transmit.

{  "ietf-i2nsf-ikeless:ipsec-ikeless": {    "sad": {      "sad-entry": [        {          "name": "sad-1",          "ipsec-sa-config": {            "spi": 1,            "traffic-selector": {              "local-prefix": "192.0.2.1/16",              "remote-prefix": "198.51.100.0/16"            }          },          "ietf-ipsec-iptfs:traffic-flow-security": {            "window-size": 5,            "send-immediately": false,            "lost-packet-timer-interval": "0.2"          },          "ietf-ipsec-iptfs:ipsec-stats": {            "tx-pkts": "300",            "tx-octets": "80000",            "tx-drop-pkts": "2",            "rx-pkts": "0",            "rx-octets": "0",            "rx-drop-pkts": "0"          },          "ietf-ipsec-iptfs:iptfs-inner-pkt-stats": {            "tx-pkts": "250",            "tx-octets": "75000",            "rx-pkts": "0",            "rx-octets": "0",            "rx-incomplete-pkts": "0"          },          "ietf-ipsec-iptfs:iptfs-outer-pkt-stats": {            "tx-all-pad-pkts": "40",            "tx-all-pad-octets": "40000",            "tx-extra-pad-pkts": "200",            "tx-extra-pad-octets": "30000",            "rx-all-pad-pkts": "0",            "rx-all-pad-octets": "0",            "rx-extra-pad-pkts": "0",            "rx-extra-pad-octets": "0",            "rx-errored-pkts": "0",            "rx-missed-pkts": "0"          },          "ipsec-sa-state": {            "sa-lifetime-current": {              "time": 80000,              "bytes": "400606",              "packets": 1000,              "idle": 5            }          }        }      ]    }  }}
Figure 5:Example IP-TFS JSON Statistics

Acknowledgements

The authors would like to thankEric Kinzie,Jürgen Schönwälder,Lou Berger, andTero Kivinenfor their feedback and review on the YANG module.

Authors' Addresses

Don Fedyk
LabN Consulting, L.L.C.
Email:dfedyk@labn.net
Christian Hopps
LabN Consulting, L.L.C.
Email:chopps@chopps.org

[8]ページ先頭

©2009-2026 Movatter.jp