Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Info page]

INFORMATIONAL
Internet Engineering Task Force (IETF)                            W. KimRequest for Comments: 8269                                        J. LeeCategory: Informational                                          J. ParkISSN: 2070-1721                                                  D. Kwon                                                                    NSRI                                                                  D. Kim                                                           Kookmin Univ.                                                            October 2017The ARIA Algorithm and Its Use withthe Secure Real-Time Transport Protocol (SRTP)Abstract   This document defines the use of the ARIA block cipher algorithm   within the Secure Real-time Transport Protocol (SRTP).  It details   two modes of operation (CTR and GCM) and the SRTP key derivation   functions for ARIA.  Additionally, this document defines DTLS-SRTP   protection profiles and Multimedia Internet KEYing (MIKEY) parameter   sets for use with ARIA.Status of This Memo   This document is not an Internet Standards Track specification; it is   published for informational purposes.   This document is a product of the Internet Engineering Task Force   (IETF).  It represents the consensus of the IETF community.  It has   received public review and has been approved for publication by the   Internet Engineering Steering Group (IESG).  Not all documents   approved by the IESG are a candidate for any level of Internet   Standard; seeSection 2 of RFC 7841.   Information about the current status of this document, any errata,   and how to provide feedback on it may be obtained athttps://www.rfc-editor.org/info/rfc8269.Kim, et al.                   Informational                     [Page 1]

RFC 8269                 ARIA Algorithm for SRTP            October 2017Copyright Notice   Copyright (c) 2017 IETF Trust and the persons identified as the   document authors.  All rights reserved.   This document is subject toBCP 78 and the IETF Trust's Legal   Provisions Relating to IETF Documents   (https://trustee.ietf.org/license-info) in effect on the date of   publication of this document.  Please review these documents   carefully, as they describe your rights and restrictions with respect   to this document.  Code Components extracted from this document must   include Simplified BSD License text as described in Section 4.e of   the Trust Legal Provisions and are provided without warranty as   described in the Simplified BSD License.Table of Contents1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .31.1.  ARIA  . . . . . . . . . . . . . . . . . . . . . . . . . .31.2.  Terminology . . . . . . . . . . . . . . . . . . . . . . .32.  Cryptographic Transforms  . . . . . . . . . . . . . . . . . .32.1.  ARIA-CTR  . . . . . . . . . . . . . . . . . . . . . . . .32.2.  ARIA-GCM  . . . . . . . . . . . . . . . . . . . . . . . .43.  Key Derivation Functions  . . . . . . . . . . . . . . . . . .44.  Protection Profiles . . . . . . . . . . . . . . . . . . . . .45.  Security Considerations . . . . . . . . . . . . . . . . . . .76.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .86.1.  DTLS-SRTP . . . . . . . . . . . . . . . . . . . . . . . .86.2.  MIKEY . . . . . . . . . . . . . . . . . . . . . . . . . .87.  References  . . . . . . . . . . . . . . . . . . . . . . . . .97.1.  Normative References  . . . . . . . . . . . . . . . . . .97.2.  Informative References  . . . . . . . . . . . . . . . . .11Appendix A.  Test Vectors . . . . . . . . . . . . . . . . . . . .12A.1.  ARIA-CTR Test Vectors . . . . . . . . . . . . . . . . . .12A.1.1.  SRTP_ARIA_128_CTR_HMAC_SHA1_80  . . . . . . . . . . .12A.1.2.  SRTP_ARIA_256_CTR_HMAC_SHA1_80  . . . . . . . . . . .13A.2.  ARIA-GCM Test Vectors . . . . . . . . . . . . . . . . . .14A.2.1.  SRTP_AEAD_ARIA_128_GCM  . . . . . . . . . . . . . . .14A.2.2.  SRTP_AEAD_ARIA_256_GCM  . . . . . . . . . . . . . . .15A.3.  Key Derivation Test Vectors . . . . . . . . . . . . . . .15A.3.1.  ARIA_128_CTR_PRF  . . . . . . . . . . . . . . . . . .15A.3.2.  ARIA_256_CTR_PRF  . . . . . . . . . . . . . . . . . .17   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .19Kim, et al.                   Informational                     [Page 2]

RFC 8269                 ARIA Algorithm for SRTP            October 20171.  Introduction   This document defines the use of the ARIA block cipher algorithm   [RFC5794] in the Secure Real-time Transport Protocol (SRTP) [RFC3711]   for providing confidentiality for Real-time Transport Protocol (RTP)   [RFC3550] traffic and for RTP Control Protocol (RTCP) [RFC3550]   traffic.1.1.  ARIA   ARIA is a general-purpose block cipher algorithm developed by Korean   cryptographers in 2003.  It is an iterated block cipher with 128-,   192-, and 256-bit keys and encrypts 128-bit blocks in 12, 14, and 16   rounds, depending on the key size.  It is secure and suitable for   most software and hardware implementations on 32-bit and 8-bit   processors.  It was established as a Korean standard block cipher   algorithm in 2004 [ARIAKS] and has been widely used in Korea,   especially for government-to-public services.  It was included in   Public-Key Cryptography Standards (PKCS) #11 in 2007 [ARIAPKCS].  The   algorithm specification and object identifiers are described in   [RFC5794].1.2.  Terminology   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and   "OPTIONAL" in this document are to be interpreted as described inBCP14 [RFC2119] [RFC8174] when, and only when, they appear in all   capitals, as shown here.2.  Cryptographic Transforms   Block ciphers ARIA and AES share common characteristics including   mode, key size, and block size.  ARIA does not have any restrictions   for modes of operation that are used with this block cipher.  We   define two modes of running ARIA within SRTP: (1) ARIA in Counter   Mode (ARIA-CTR) and (2) ARIA in Galois/Counter Mode (ARIA-GCM).2.1.  ARIA-CTRSection 4.1.1 of [RFC3711] defines AES-128 counter mode encryption,   which it refers to as "AES_CM".Section 2 of [RFC6188] defines   "AES_256_CM" in SRTP.  ARIA counter modes are defined in the same   manner except that each invocation of AES is replaced by that of ARIA   [RFC5794] and are denoted by ARIA_128_CTR and ARIA_256_CTR,   respectively, according to the key lengths.  The plaintext inputs to   the block cipher are formed as in AES-CTR (AES_CM, AES_256_CM) and   the block cipher outputs are processed as in AES-CTR.  Note that,Kim, et al.                   Informational                     [Page 3]

RFC 8269                 ARIA Algorithm for SRTP            October 2017   ARIA-CTR MUST be used only in conjunction with an authentication   transform.Section 3.2 of [RFC6904] defines AES-CTR for SRTP header extension   keystream generation.  When ARIA-CTR is used, the header extension   keystream SHALL be generated in the same manner except that each   invocation of AES is replaced by that of ARIA [RFC5794].2.2.  ARIA-GCM   Galois/Counter Mode [GCM] [RFC5116] is an Authenticated Encryption   with Associated Data (AEAD) block cipher mode.  A detailed   description of ARIA-GCM is defined similarly as AES-GCM found in   [RFC5116] and [RFC5282].   [RFC7714] describes the use of AES-GCM with SRTP.  The use of ARIA-   GCM with SRTP is defined the same as AES-GCM except that each   invocation of AES is replaced by ARIA [RFC5794].  When encryption of   header extensions [RFC6904] is in use, a separate keystream to   encrypt selected RTP header extension elements MUST be generated in   the same manner defined in [RFC7714] except that AES-CTR is replaced   by ARIA-CTR.3.  Key Derivation FunctionsSection 4.3.3 of [RFC3711] defines the AES-128 counter mode key   derivation function, which it refers to as "AES-CM PRF".Section 3   of [RFC6188] defines the AES-256 counter mode key derivation   function, which it refers to as "AES_256_CM_PRF".  The ARIA-CTR   Pseudorandom Function (PRF) is defined in a same manner except that   each invocation of AES is replaced by that of ARIA.  According to the   key lengths of the underlying encryption algorithm, ARIA-CTR PRFs are   denoted by "ARIA_128_CTR_PRF" and "ARIA_256_CTR_PRF".  The usage   requirements of [RFC6188] and [RFC7714] regarding the AES-CM PRF   apply to the ARIA-CTR PRF as well.4.  Protection Profiles   This section defines SRTP protection profiles that use the ARIA   transforms and key derivation functions defined in this document.   The following list indicates the SRTP transform parameters for each   protection profile.  Those are described for use with DTLS-SRTP   [RFC5764].   The parameters cipher_key_length, cipher_salt_length,   auth_key_length, and auth_tag_length express the number of bits in   the values to which they refer.  The maximum_lifetime parameter   indicates the maximum number of packets that can be protected withKim, et al.                   Informational                     [Page 4]

RFC 8269                 ARIA Algorithm for SRTP            October 2017   each single set of keys when the parameter profile is in use.  All of   these parameters apply to both RTP and RTCP, unless the RTCP   parameters are separately specified.   SRTP_ARIA_128_CTR_HMAC_SHA1_80           cipher:                   ARIA_128_CTR           cipher_key_length:        128 bits           cipher_salt_length:       112 bits           key derivation function:  ARIA_128_CTR_PRF           auth_function:            HMAC-SHA1           auth_key_length:          160 bits           auth_tag_length:          80 bits           maximum_lifetime:         at most 2^31 SRTCP packets and                                     at most 2^48 SRTP packets   SRTP_ARIA_128_CTR_HMAC_SHA1_32           cipher:                   ARIA_128_CTR           cipher_key_length:        128 bits           cipher_salt_length:       112 bits           key derivation function:  ARIA_128_CTR_PRF           auth_function:            HMAC-SHA1           auth_key_length:          160 bits           SRTP auth_tag_length:     32 bits           SRTCP auth_tag_length:    80 bits           maximum_lifetime:         at most 2^31 SRTCP packets and                                     at most 2^48 SRTP packets   SRTP_ARIA_256_CTR_HMAC_SHA1_80           cipher:                   ARIA_256_CTR           cipher_key_length:        256 bits           cipher_salt_length:       112 bits           key derivation function:  ARIA_256_CTR_PRF           auth_function:            HMAC-SHA1           auth_key_length:          160 bits           auth_tag_length:          80 bits           maximum_lifetime:         at most 2^31 SRTCP packets and                                     at most 2^48 SRTP packetsKim, et al.                   Informational                     [Page 5]

RFC 8269                 ARIA Algorithm for SRTP            October 2017   SRTP_ARIA_256_CTR_HMAC_SHA1_32           cipher:                   ARIA_256_CTR           cipher_key_length:        256 bits           cipher_salt_length:       112 bits           key derivation function:  ARIA_256_CTR_PRF           auth_function:            HMAC-SHA1           auth_key_length:          160 bits           SRTP auth_tag_length:     32 bits           SRTCP auth_tag_length:    80 bits           maximum_lifetime:         at most 2^31 SRTCP packets and                                     at most 2^48 SRTP packets   SRTP_AEAD_ARIA_128_GCM           cipher:                   ARIA_128_GCM           cipher_key_length:        128 bits           cipher_salt_length:       96 bits           aead_auth_tag_length:     128 bits           auth_function:            NULL           auth_key_length:          N/A           auth_tag_length:          N/A           key derivation function:  ARIA_128_CTR_PRF           maximum_lifetime:         at most 2^31 SRTCP packets and                                     at most 2^48 SRTP packets   SRTP_AEAD_ARIA_256_GCM           cipher:                   ARIA_256_GCM           cipher_key_length:        256 bits           cipher_salt_length:       96 bits           aead_auth_tag_length:     128 bits           auth_function:            NULL           auth_key_length:          N/A           auth_tag_length:          N/A           key derivation function:  ARIA_256_CTR_PRF           maximum_lifetime:         at most 2^31 SRTCP packets and                                     at most 2^48 SRTP packets   The ARIA-CTR protection profiles use the same authentication   transform that is mandatory to implement in SRTP: HMAC-SHA1 with a   160-bit key.   Note that SRTP protection profiles that use AEAD algorithms do not   specify an auth_function, auth_key_length, or auth_tag_length, since   they do not use a separate auth_function, auth_key, or auth_tag.  The   term aead_auth_tag_length is used to emphasize that this refers to   the authentication tag provided by the AEAD algorithm and that this   tag is not located in the authentication tag field provided by SRTP/   SRTCP.Kim, et al.                   Informational                     [Page 6]

RFC 8269                 ARIA Algorithm for SRTP            October 2017   The PRFs for ARIA protection profiles are defined by ARIA-CTR PRF of   the equal key length with the encryption algorithm (seeSection 2).   SRTP_ARIA_128_CTR_HMAC and SRTP_AEAD_ARIA_128_GCM MUST use the   ARIA_128_CTR_PRF key derivation function.  And SRTP_ARIA_256_CTR_HMAC   and SRTP_AEAD_ARIA_256_GCM MUST use the ARIA_256_CTR_PRF key   derivation function.   MIKEY specifies the SRTP protection profile definition separately   from the key length (which is specified by the session encryption key   length) and the authentication tag length.  The DTLS-SRTP [RFC5764]   protection profiles are mapped to MIKEY parameter sets as shown   below.                              +--------------------------------------+                              | Encryption | Encryption | Auth.      |                              | Algorithm  | Key Length | Tag Length |                              +======================================+    SRTP_ARIA_128_CTR_HMAC_80 |  ARIA-CTR  | 16 octets  | 10 octets  |    SRTP_ARIA_128_CTR_HMAC_32 |  ARIA-CTR  | 16 octets  |  4 octets  |    SRTP_ARIA_256_CTR_HMAC_80 |  ARIA-CTR  | 32 octets  | 10 octets  |    SRTP_ARIA_256_CTR_HMAC_32 |  ARIA-CTR  | 32 octets  |  4 octets  |                              +======================================+       Figure 1: Mapping MIKEY Parameters to ARIA-CTR with the HMAC                                 Algorithm                              +--------------------------------------+                              | Encryption | Encryption | AEAD Auth. |                              | Algorithm  | Key Length | Tag Length |                              +======================================+       SRTP_AEAD_ARIA_128_GCM |  ARIA-GCM  | 16 octets  | 16 octets  |       SRTP_AEAD_ARIA_256_GCM |  ARIA-GCM  | 32 octets  | 16 octets  |                              +======================================+       Figure 2: Mapping MIKEY Parameters to the ARIA-GCM Algorithm5.  Security Considerations   At the time of publication of this document, no security problem has   been found on ARIA.  Previous security analysis results are   summarized in [ATY].   The security considerations in [GCM], [RFC3711], [RFC5116],   [RFC6188], [RFC6904], and [RFC7714] apply to this document as well.   This document includes crypto suites with authentication tags of a   length less than 80 bits.  These suites MAY be used for certain   application contexts where longer authentication tags may be   undesirable, for example, those mentioned in[RFC3711], Section 7.5.Kim, et al.                   Informational                     [Page 7]

RFC 8269                 ARIA Algorithm for SRTP            October 2017   Otherwise, short authentication tags SHOULD NOT be used, since they   may reduce authentication strength.  See[RFC3711], Section 9.5 for a   discussion of risks related to weak authentication in SRTP.   At the time of publication of this document, SRTP recommends HMAC-   SHA1 as the default and mandatory-to-implement MAC algorithm.  All   currently registered SRTP crypto suites except the GCM-based ones use   HMAC-SHA1 as their HMAC algorithm to provide message authentication.   Due to security concerns with SHA-1 [RFC6194], the IETF is gradually   moving away from SHA-1 and towards stronger hash algorithms such as   SHA-2 or SHA-3 families.  For SRTP, however, SHA-1 is only used in   the calculation of an HMAC, and no security issue is known for this   usage at the time of this publication.6.  IANA Considerations6.1.  DTLS-SRTP   DTLS-SRTP [RFC5764] defines a DTLS-SRTP "SRTP protection profile".   In order to allow the use of the algorithms defined in this document   in DTLS-SRTP, IANA has added the following protection profiles below   to the "DTLS-SRTP Protection Profiles" registry (see   <http://www.iana.org/assignments/srtp-protection/>) created by   [RFC5764]:      SRTP_ARIA_128_CTR_HMAC_SHA1_80 = {0x00, 0x0B}      SRTP_ARIA_128_CTR_HMAC_SHA1_32 = {0x00, 0x0C}      SRTP_ARIA_256_CTR_HMAC_SHA1_80 = {0x00, 0x0D}      SRTP_ARIA_256_CTR_HMAC_SHA1_32 = {0x00, 0x0E}      SRTP_AEAD_ARIA_128_GCM = {0x00, 0x0F}      SRTP_AEAD_ARIA_256_GCM = {0x00, 0x10}6.2.  MIKEY   [RFC3830] and [RFC5748] define encryption algorithms and PRFs for the   SRTP policy in MIKEY.  In order to allow the use of the algorithms   defined in this document in MIKEY, IANA has updated the "Multimedia   Internet KEYing (MIKEY) Payload Name Spaces" registry (see   <http://www.iana.org/assignments/mikey-payloads/>.)Kim, et al.                   Informational                     [Page 8]

RFC 8269                 ARIA Algorithm for SRTP            October 2017   IANA has registered the following two encryption algorithms in the   "Encryption algorithm (Value 0)" subregistry within the "MIKEY   Security Protocol Parameters" registry:                         +---------------+-------+                         | SRTP encr alg | Value |                         +---------------+-------+                         |    ARIA-CTR   |   7   |                         |    ARIA-GCM   |   8   |                         +---------------+-------+   The default session encryption key length is 16 octets.   IANA has registered the following PRF in the "SRTP Pseudo Random   Function (Value 5)" subregistry within the "MIKEY Security Protocol   Parameters" registry:                           +----------+-------+                           | SRTP PRF | Value |                           +----------+-------+                           | ARIA-CTR |   2   |                           +----------+-------+7.  References7.1.  Normative References   [GCM]      Dworkin, M., "Recommendation for Block Cipher Modes of              Operation: Galois/Counter Mode (GCM) and GMAC", NIST              Special publication 800-38D, DOI 10.6028/NIST.SP.800-38D,              November 2007.   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate              Requirement Levels",BCP 14,RFC 2119,              DOI 10.17487/RFC2119, March 1997,              <https://www.rfc-editor.org/info/rfc2119>.   [RFC3550]  Schulzrinne, H., Casner, S., Frederick, R., and V.              Jacobson, "RTP: A Transport Protocol for Real-Time              Applications", STD 64,RFC 3550, DOI 10.17487/RFC3550,              July 2003, <https://www.rfc-editor.org/info/rfc3550>.   [RFC3711]  Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.              Norrman, "The Secure Real-time Transport Protocol (SRTP)",RFC 3711, DOI 10.17487/RFC3711, March 2004,              <https://www.rfc-editor.org/info/rfc3711>.Kim, et al.                   Informational                     [Page 9]

RFC 8269                 ARIA Algorithm for SRTP            October 2017   [RFC3830]  Arkko, J., Carrara, E., Lindholm, F., Naslund, M., and K.              Norrman, "MIKEY: Multimedia Internet KEYing",RFC 3830,              DOI 10.17487/RFC3830, August 2004,              <https://www.rfc-editor.org/info/rfc3830>.   [RFC5116]  McGrew, D., "An Interface and Algorithms for Authenticated              Encryption",RFC 5116, DOI 10.17487/RFC5116, January 2008,              <https://www.rfc-editor.org/info/rfc5116>.   [RFC5282]  Black, D. and D. McGrew, "Using Authenticated Encryption              Algorithms with the Encrypted Payload of the Internet Key              Exchange version 2 (IKEv2) Protocol",RFC 5282,              DOI 10.17487/RFC5282, August 2008,              <https://www.rfc-editor.org/info/rfc5282>.   [RFC5764]  McGrew, D. and E. Rescorla, "Datagram Transport Layer              Security (DTLS) Extension to Establish Keys for the Secure              Real-time Transport Protocol (SRTP)",RFC 5764,              DOI 10.17487/RFC5764, May 2010,              <https://www.rfc-editor.org/info/rfc5764>.   [RFC5794]  Lee, J., Lee, J., Kim, J., Kwon, D., and C. Kim, "A              Description of the ARIA Encryption Algorithm",RFC 5794,              DOI 10.17487/RFC5794, March 2010,              <https://www.rfc-editor.org/info/rfc5794>.   [RFC6188]  McGrew, D., "The Use of AES-192 and AES-256 in Secure              RTP",RFC 6188, DOI 10.17487/RFC6188, March 2011,              <https://www.rfc-editor.org/info/rfc6188>.   [RFC6904]  Lennox, J., "Encryption of Header Extensions in the Secure              Real-time Transport Protocol (SRTP)",RFC 6904,              DOI 10.17487/RFC6904, April 2013,              <https://www.rfc-editor.org/info/rfc6904>.   [RFC7714]  McGrew, D. and K. Igoe, "AES-GCM Authenticated Encryption              in the Secure Real-time Transport Protocol (SRTP)",RFC 7714, DOI 10.17487/RFC7714, December 2015,              <https://www.rfc-editor.org/info/rfc7714>.   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase inRFC2119 Key Words",BCP 14,RFC 8174, DOI 10.17487/RFC8174,              May 2017, <https://www.rfc-editor.org/info/rfc8174>.Kim, et al.                   Informational                    [Page 10]

RFC 8269                 ARIA Algorithm for SRTP            October 20177.2.  Informative References   [ARIAKS]   Korean Agency for Technology and Standards, "128 bit block              encryption algorithm ARIA - Part 1: General (in Korean)",              KS X 1213-1:2014, December 2014.   [ARIAPKCS]              RSA Laboratories, "Additional PKCS #11 Mechanisms",              PKCS #11 v2.20, Amendment 3, Revision 1, January 2007.   [ATY]      Abdelkhalek, A., Tolba, M., and A. Youssef, "Improved              Linear Cryptanalysis of Round-Reduced ARIA", Information              Security - ISC 2016, Lecture Notes in Computer Science              (LNCS), Vol. 9866, pp. 18-34,              DOI 10.1007/978-3-319-45871-7_2, September 2016.   [RFC5748]  Yoon, S., Jeong, J., Kim, H., Jeong, H., and Y. Won, "IANA              Registry Update for Support of the SEED Cipher Algorithm              in Multimedia Internet KEYing (MIKEY)",RFC 5748,              DOI 10.17487/RFC5748, August 2010,              <https://www.rfc-editor.org/info/rfc5748>.   [RFC6194]  Polk, T., Chen, L., Turner, S., and P. Hoffman, "Security              Considerations for the SHA-0 and SHA-1 Message-Digest              Algorithms",RFC 6194, DOI 10.17487/RFC6194, March 2011,              <https://www.rfc-editor.org/info/rfc6194>.Kim, et al.                   Informational                    [Page 11]

RFC 8269                 ARIA Algorithm for SRTP            October 2017Appendix A.  Test Vectors   All values are in hexadecimal and represented by the network order   (called big endian).A.1.  ARIA-CTR Test Vectors   Common values are organized as follows:      Rollover Counter:          00000000      Sequence Number:           315e      SSRC:                      20e8f5eb      Authentication Key:        f93563311b354748c978913795530631                                 16452309      Session Salt:              cd3a7c42c671e0067a2a2639b43a      Initialization Vector:     cd3a7c42e69915ed7a2a263985640000      RTP Header:                8008315ebf2e6fe020e8f5eb      RTP Payload:               f57af5fd4ae19562976ec57a5a7ad55a                                 5af5c5e5c5fdf5c55ad57a4a7272d572                                 62e9729566ed66e97ac54a4a5a7ad5e1                                 5ae5fdd5fd5ac5d56ae56ad5c572d54a                                 e54ac55a956afd6aed5a4ac562957a95                                 16991691d572fd14e97ae962ed7a9f4a                                 955af572e162f57a956666e17ae1f54a                                 95f566d54a66e16e4afd6a9f7ae1c5c5                                 5ae5d56afde916c5e94a6ec56695e14a                                 fde1148416e94ad57ac5146ed59d1cc5      Note:      SSRC = Synchronization SourceA.1.1.  SRTP_ARIA_128_CTR_HMAC_SHA1_80      Session Key:               0c5ffd37a11edc42c325287fc0604f2e      Encrypted RTP Payload:     1bf753f412e6f35058cc398dc851aae3                                 a6ccdcb463fbed9cfb3de2fb76fdffa9                                 e481f5efb64c92487f59dabbc7cc72da                                 092485f3fbad87888820b86037311fa4                                 4330e18a59a1e1338ba2c21458493a57                                 463475c54691f91cec785429119e0dfc                                 d9048f90e07fecd50b528e8c62ee6e71                                 445de5d7f659405135aff3604c2ca4ff                                 4aaca40809cb9eee42cc4ad232307570                                 81ca289f2851d3315e9568b501fdce6dKim, et al.                   Informational                    [Page 12]

RFC 8269                 ARIA Algorithm for SRTP            October 2017      Authenticated Portion || Rollover Counter:                                 8008315ebf2e6fe020e8f5eb1bf753f4                                 12e6f35058cc398dc851aae3a6ccdcb4                                 63fbed9cfb3de2fb76fdffa9e481f5ef                                 b64c92487f59dabbc7cc72da092485f3                                 fbad87888820b86037311fa44330e18a                                 59a1e1338ba2c21458493a57463475c5                                 4691f91cec785429119e0dfcd9048f90                                 e07fecd50b528e8c62ee6e71445de5d7                                 f659405135aff3604c2ca4ff4aaca408                                 09cb9eee42cc4ad23230757081ca289f                                 2851d3315e9568b501fdce6d00000000      Authentication Tag:        f9de4e729054672b0e35A.1.2.  SRTP_ARIA_256_CTR_HMAC_SHA1_80      Session Key:               0c5ffd37a11edc42c325287fc0604f2e                                 3e8cd5671a00fe3216aa5eb105783b54      Encrypted RTP Payload:     c424c59fd5696305e5b13d8e8ca76566                                 17ccd7471088af9debf07b55c750f804                                 a5ac2b737be48140958a9b420524112a                                 e72e4da5bca59d2b1019ddd7dbdc30b4                                 3d5f046152ced40947d62d2c93e7b8e5                                 0f02db2b6b61b010e4c1566884de1fa9                                 702cdf8157e8aedfe3dd77c76bb50c25                                 ae4d624615c15acfdeeb5f79482aaa01                                 d3e4c05eb601eca2bd10518e9d46b021                                 16359232e9eac0fabd05235dd09e6dea      Authenticated Portion || Rollover Counter:                                 8008315ebf2e6fe020e8f5ebc424c59f                                 d5696305e5b13d8e8ca7656617ccd747                                 1088af9debf07b55c750f804a5ac2b73                                 7be48140958a9b420524112ae72e4da5                                 bca59d2b1019ddd7dbdc30b43d5f0461                                 52ced40947d62d2c93e7b8e50f02db2b                                 6b61b010e4c1566884de1fa9702cdf81                                 57e8aedfe3dd77c76bb50c25ae4d6246                                 15c15acfdeeb5f79482aaa01d3e4c05e                                 b601eca2bd10518e9d46b02116359232                                 e9eac0fabd05235dd09e6dea00000000      Authentication Tag:        192f515fab04bbb4e62cKim, et al.                   Informational                    [Page 13]

RFC 8269                 ARIA Algorithm for SRTP            October 2017A.2.  ARIA-GCM Test Vectors   Common values are organized as follows:      Rollover Counter:          00000000      Sequence Number:           315e      SSRC:                      20e8f5eb      Encryption Salt:           000000000000000000000000      Initialization Vector:     000020e8f5eb00000000315e      RTP Payload:               f57af5fd4ae19562976ec57a5a7ad55a                                 5af5c5e5c5fdf5c55ad57a4a7272d572                                 62e9729566ed66e97ac54a4a5a7ad5e1                                 5ae5fdd5fd5ac5d56ae56ad5c572d54a                                 e54ac55a956afd6aed5a4ac562957a95                                 16991691d572fd14e97ae962ed7a9f4a                                 955af572e162f57a956666e17ae1f54a                                 95f566d54a66e16e4afd6a9f7ae1c5c5                                 5ae5d56afde916c5e94a6ec56695e14a                                 fde1148416e94ad57ac5146ed59d1cc5      Associated Data:           8008315ebf2e6fe020e8f5eb   The encrypted RTP payload is longer than the RTP payload by exactly   the GCM authentication tag length (16 octets).A.2.1.  SRTP_AEAD_ARIA_128_GCM      Key:                       e91e5e75da65554a48181f3846349562      Encrypted RTP Payload:     4d8a9a0675550c704b17d8c9ddc81a5c                                 d6f7da34f2fe1b3db7cb3dfb9697102e                                 a0f3c1fc2dbc873d44bceeae8e444297                                 4ba21ff6789d3272613fb9631a7cf3f1                                 4bacbeb421633a90ffbe58c2fa6bdca5                                 34f10d0de0502ce1d531b6336e588782                                 78531e5c22bc6c85bbd784d78d9e680a                                 a19031aaf89101d669d7a3965c1f7e16                                 229d7463e0535f4e253f5d18187d40b8                                 ae0f564bd970b5e7e2adfb211e89a953                                 5abace3f37f5a736f4be984bbffbedc1Kim, et al.                   Informational                    [Page 14]

RFC 8269                 ARIA Algorithm for SRTP            October 2017A.2.2.  SRTP_AEAD_ARIA_256_GCM      Key:                       0c5ffd37a11edc42c325287fc0604f2e                                 3e8cd5671a00fe3216aa5eb105783b54      Encrypted RTP Payload:     6f9e4bcbc8c85fc0128fb1e4a0a20cb9                                 932ff74581f54fc013dd054b19f99371                                 425b352d97d3f337b90b63d1b082adee                                 ea9d2d7391897d591b985e55fb50cb53                                 50cf7d38dc27dda127c078a149c8eb98                                 083d66363a46e3726af217d3a00275ad                                 5bf772c7610ea4c23006878f0ee69a83                                 97703169a419303f40b72e4573714d19                                 e2697df61e7c7252e5abc6bade876ac4                                 961bfac4d5e867afca351a48aed52822                                 e210d6ced2cf430ff841472915e7ef48A.3.  Key Derivation Test Vectors   This section provides test vectors for the default key derivation   function that uses ARIA in Counter Mode.  In the following, we walk   through the initial key derivation for the ARIA Counter Mode cipher   that requires a session encryption key of 16/24/32 octets according   to the session encryption key length, a 14-octet session salt, and an   authentication function that requires a 94-octet session   authentication key.  These values are called the cipher key, the   cipher salt, and the auth key in the following.  The test vectors are   generated in the same way with the test vectors of key derivation   functions in [RFC3711] and [RFC6188] but with each invocation of AES   replaced with an invocation of ARIA.A.3.1.  ARIA_128_CTR_PRF   The inputs to the key derivation function are the 16-octet master key   and the 14-octet master salt:     master key:  e1f97a0d3e018be0d64fa32c06de4139     master salt: 0ec675ad498afeebb6960b3aabe6     index DIV kdr:                 000000000000     label:                       00     master salt:   0ec675ad498afeebb6960b3aabe6     -----------------------------------------------     xor:           0ec675ad498afeebb6960b3aabe6     (x, PRF input)     x*2^16:        0ec675ad498afeebb6960b3aabe60000 (ARIA-CTR input)     cipher key:    dbd85a3c4d9219b3e81f7d942e299de4 (ARIA-CTR output)Kim, et al.                   Informational                    [Page 15]

RFC 8269                 ARIA Algorithm for SRTP            October 2017   ARIA-CTR protection profile requires a 14-octet cipher salt while   ARIA-GCM protection profile requires a 12-octet cipher salt.     index DIV kdr:                 000000000000     label:                       02     master salt:   0ec675ad498afeebb6960b3aabe6     ----------------------------------------------     xor:           0ec675ad498afee9b6960b3aabe6     (x, PRF input)     x*2^16:        0ec675ad498afee9b6960b3aabe60000 (ARIA-CTR input)                    9700657f5f34161830d7d85f5dc8be7f (ARIA-CTR output)     cipher salt:   9700657f5f34161830d7d85f5dc8     (ARIA-CTR profile)                    9700657f5f34161830d7d85f         (ARIA-GCM profile)     index DIV kdr:                 000000000000     label:                       01     master salt:   0ec675ad498afeebb6960b3aabe6     -----------------------------------------------     xor:           0ec675ad498afeeab6960b3aabe6     (x, PRF input)     x*2^16:        0ec675ad498afeeab6960b3aabe60000 (ARIA-CTR input)   Below, the auth key is shown on the left, while the corresponding   ARIA input blocks are shown on the right.     auth key                          ARIA input blocks     d021877bd3eaf92d581ed70ddc050e03  0ec675ad498afeeab6960b3aabe60000     f11257032676f2a29f57b21abd3a1423  0ec675ad498afeeab6960b3aabe60001     769749bdc5dd9ca5b43ca6b6c1f3a7de  0ec675ad498afeeab6960b3aabe60002     4047904bcf811f601cc03eaa5d7af6db  0ec675ad498afeeab6960b3aabe60003     9f88efa2e51ca832fc2a15b126fa7be2  0ec675ad498afeeab6960b3aabe60004     469af896acb1852c31d822c45799      0ec675ad498afeeab6960b3aabe60005Kim, et al.                   Informational                    [Page 16]

RFC 8269                 ARIA Algorithm for SRTP            October 2017A.3.2.  ARIA_256_CTR_PRF   The inputs to the key derivation function are the 32-octet master key   and the 14-octet master salt:     master key:  0c5ffd37a11edc42c325287fc0604f2e                  3e8cd5671a00fe3216aa5eb105783b54     master salt: 0ec675ad498afeebb6960b3aabe6     index DIV kdr:               000000000000     label:                     00     master salt: 0ec675ad498afeebb6960b3aabe6     -----------------------------------------------     xor:         0ec675ad498afeebb6960b3aabe6     (x, PRF input)     x*2^16:      0ec675ad498afeebb6960b3aabe60000 (ARIA-CTR input)     cipher key:  0649a09d93755fe9c2b2efba1cce930a (ARIA-CTR 1st output)                  f2e76ce8b77e4b175950321aa94b0cf4 (ARIA-CTR 2nd output)   ARIA-CTR protection profile requires a 14-octet cipher salt while   ARIA-GCM protection profile requires a 12-octet cipher salt.     index DIV kdr:                000000000000     label:                      02     master salt:  0ec675ad498afeebb6960b3aabe6     ----------------------------------------------     xor:          0ec675ad498afee9b6960b3aabe6     (x, PRF input)     x*2^16:       0ec675ad498afee9b6960b3aabe60000 (ARIA-CTR input)                   194abaa8553a8eba8a413a340fc80a3d (ARIA-CTR output)     cipher salt:  194abaa8553a8eba8a413a340fc8     (ARIA-CTR profile)                   194abaa8553a8eba8a413a34         (ARIA-GCM profile)     index DIV kdr:                000000000000     label:                      01     master salt:  0ec675ad498afeebb6960b3aabe6     -----------------------------------------------     xor:          0ec675ad498afeeab6960b3aabe6     (x, PRF input)     x*2^16:       0ec675ad498afeeab6960b3aabe60000 (ARIA-CTR input)Kim, et al.                   Informational                    [Page 17]

RFC 8269                 ARIA Algorithm for SRTP            October 2017   Below, the auth key is shown on the left, while the corresponding   ARIA input blocks are shown on the right.     auth key                           ARIA input blocks     e58d42915873b71899234807334658f2   0ec675ad498afeeab6960b3aabe60000     0bc460181d06e02b7a9e60f02ff10bfc   0ec675ad498afeeab6960b3aabe60001     9ade3795cf78f3e0f2556d9d913470c4   0ec675ad498afeeab6960b3aabe60002     e82e45d254bfb8e2933851a3930ffe7d   0ec675ad498afeeab6960b3aabe60003     fca751c03ec1e77e35e28dac4f17d1a5   0ec675ad498afeeab6960b3aabe60004     80bdac028766d3b1e8f5a41faa3c       0ec675ad498afeeab6960b3aabe60005Kim, et al.                   Informational                    [Page 18]

RFC 8269                 ARIA Algorithm for SRTP            October 2017Authors' Addresses   Woo-Hwan Kim   National Security Research Institute   P.O. Box 1, Yuseong   Daejeon  34188   Korea   Email: whkim5@nsr.re.kr   Jungkeun Lee   National Security Research Institute   P.O. Box 1, Yuseong   Daejeon  34188   Korea   Email: jklee@nsr.re.kr   Je-Hong Park   National Security Research Institute   P.O. Box 1, Yuseong   Daejeon  34188   Korea   Email: jhpark@nsr.re.kr   Daesung Kwon   National Security Research Institute   P.O. Box 1, Yuseong   Daejeon  34188   Korea   Email: ds_kwon@nsr.re.kr   Dong-Chan Kim   Kookmin University   77 Jeongneung-ro, Seongbuk-gu   Seoul  02707   Korea   Email: dckim@kookmin.ac.krKim, et al.                   Informational                    [Page 19]

[8]ページ先頭

©2009-2026 Movatter.jp