Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Info page]

PROPOSED STANDARD
Internet Engineering Task Force (IETF)                 G. Bernstein, Ed.Request for Comments: 7579                             Grotto NetworkingCategory: Standards Track                                    Y. Lee, Ed.ISSN: 2070-1721                                                    D. Li                                                                  Huawei                                                              W. Imajuku                                                                     NTT                                                                  J. Han                                                                  Huawei                                                               June 2015General Network Element Constraint Encodingfor GMPLS-Controlled NetworksAbstract   Generalized Multiprotocol Label Switching (GMPLS) can be used to   control a wide variety of technologies.  In some of these   technologies, network elements and links may impose additional   routing constraints such as asymmetric switch connectivity, non-local   label assignment, and label range limitations on links.   This document provides efficient, protocol-agnostic encodings for   general information elements representing connectivity and label   constraints as well as label availability.  It is intended that   protocol-specific documents will reference this memo to describe how   information is carried for specific uses.Status of This Memo   This is an Internet Standards Track document.   This document is a product of the Internet Engineering Task Force   (IETF).  It represents the consensus of the IETF community.  It has   received public review and has been approved for publication by the   Internet Engineering Steering Group (IESG).  Further information on   Internet Standards is available inSection 2 of RFC 5741.   Information about the current status of this document, any errata,   and how to provide feedback on it may be obtained athttp://www.rfc-editor.org/info/rfc7579.Bernstein, et al.            Standards Track                    [Page 1]

RFC 7579       General Network Element Constraint Encoding     June 2015Copyright Notice   Copyright (c) 2015 IETF Trust and the persons identified as the   document authors.  All rights reserved.   This document is subject toBCP 78 and the IETF Trust's Legal   Provisions Relating to IETF Documents   (http://trustee.ietf.org/license-info) in effect on the date of   publication of this document.  Please review these documents   carefully, as they describe your rights and restrictions with respect   to this document.  Code Components extracted from this document must   include Simplified BSD License text as described in Section 4.e of   the Trust Legal Provisions and are provided without warranty as   described in the Simplified BSD License.Table of Contents1. Introduction ....................................................31.1. Node Switching Asymmetry Constraints .......................31.2. Non-local Label Assignment Constraints .....................41.3. Conventions Used in This Document ..........................42. Encoding ........................................................42.1. Connectivity Matrix Field ..................................52.2. Port Label Restrictions Field ..............................62.2.1. SIMPLE_LABEL ........................................82.2.2. CHANNEL_COUNT .......................................82.2.3. LABEL_RANGE .........................................92.2.4. SIMPLE_LABEL & CHANNEL_COUNT ........................92.2.5. LINK_LABEL_EXCLUSIVITY .............................102.3. Link Set Field ............................................102.4. Available Labels Field ....................................122.5. Shared Backup Labels Field ................................132.6. Label Set Field ...........................................143. Security Considerations ........................................164. IANA Considerations ............................................175. References .....................................................175.1. Normative References ......................................175.2. Informative References ....................................18Appendix A. Encoding Examples .....................................19A.1. Link Set Field ............................................19A.2. Label Set Field ...........................................19A.3. Connectivity Matrix .......................................20A.4. Connectivity Matrix with Bidirectional Symmetry ...........24A.5. Priority Flags in Available/Shared Backup Labels ..........26   Contributors ......................................................27   Authors' Addresses ................................................28Bernstein, et al.            Standards Track                    [Page 2]

RFC 7579       General Network Element Constraint Encoding     June 20151.  Introduction   Some data-plane technologies that wish to make use of a GMPLS control   plane contain additional constraints on switching capability and   label assignment.  In addition, some of these technologies must   perform non-local label assignment based on the nature of the   technology, e.g., wavelength continuity constraint in Wavelength   Switched Optical Networks (WSONs) [RFC6163].  Such constraints can   lead to the requirement for link-by-link label availability in path   computation and label assignment.   This document provides efficient encodings of information needed by   the routing and label assignment process in technologies such as WSON   and are potentially applicable to a wider range of technologies.   Such encodings can be used to extend GMPLS signaling and routing   protocols.  In addition, these encodings could be used by other   mechanisms to convey this same information to a path computation   element (PCE).1.1.  Node Switching Asymmetry Constraints   For some network elements, the ability of a signal or packet on a   particular input port to reach a particular output port may be   limited.  Additionally, in some network elements (e.g., a simple   multiplexer), the connectivity between some input and output ports   may be fixed.  To take into account such constraints during path   computation, we model this aspect of a network element via a   connectivity matrix.   The connectivity matrix (ConnectivityMatrix) represents either the   potential connectivity matrix for asymmetric switches or fixed   connectivity for an asymmetric device such as a multiplexer.  Note   that this matrix does not represent any particular internal blocking   behavior but indicates which input ports and labels (e.g.,   wavelengths) could possibly be connected to a particular output port   and label pair.  Representing internal state-dependent blocking for a   node is beyond the scope of this document and, due to its highly   implementation-dependent nature, would most likely not be subject to   standardization in the future.  The connectivity matrix is a   conceptual M*m by N*n matrix where M represents the number of input   ports (each with m labels) and N the number of output ports (each   with n labels).Bernstein, et al.            Standards Track                    [Page 3]

RFC 7579       General Network Element Constraint Encoding     June 20151.2.  Non-local Label Assignment Constraints   If the nature of the equipment involved in a network results in a   requirement for non-local label assignment, we can have constraints   based on limits imposed by the ports themselves and those that are   implied by the current label usage.  Note that constraints such as   these only become important when label assignment has a non-local   character.  For example, in MPLS, an LSR may have a limited range of   labels available for use on an output port and a set of labels   already in use on that port; these are therefore unavailable for use.   This information, however, does not need to be shared unless there is   some limitation on the LSR's label swapping ability.  For example, if   a Time Division Multiplexer (TDM) node lacks the ability to perform   time-slot interchange or a WSON lacks the ability to perform   wavelength conversion, then the label assignment process is not local   to a single node.  In this case, it may be advantageous to share the   label assignment constraint information for use in path computation.   Port label restrictions (PortLabelRestriction) model the label   restrictions that the network element (node) and link may impose on a   port.  These restrictions tell us what labels may or may not be used   on a link and are intended to be relatively static.  More dynamic   information is contained in the information on available labels.   Port label restrictions are specified relative to the port in general   or to a specific connectivity matrix for increased modeling   flexibility.  [Switch] gives an example where both switch and fixed   connectivity matrices are used and both types of constraints occur on   the same port.1.3.  Conventions Used in This Document   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this   document are to be interpreted as described inRFC 2119 [RFC2119].2.  Encoding   This section provides encodings for the information elements defined   in [RFC7446] that have applicability to WSON.  The encodings are   designed to be suitable for use in the GMPLS routing protocols OSPF   [RFC4203] and IS-IS [RFC5307] and in the PCE Communication Protocol   (PCEP) [RFC5440].  Note that the information distributed in [RFC4203]   and [RFC5307] is arranged via the nesting of sub-TLVs within TLVs;   this document defines elements to be used within such constructs.   Specific constructs of sub-TLVs and the nesting of sub-TLVs of the   information element defined by this document will be defined in the   respective protocol enhancement documents.Bernstein, et al.            Standards Track                    [Page 4]

RFC 7579       General Network Element Constraint Encoding     June 20152.1.  Connectivity Matrix Field   The Connectivity Matrix Field represents how input ports are   connected to output ports for network elements.  The switch and fixed   connectivity matrices can be compactly represented in terms of a   minimal list of input and output port set pairs that have mutual   connectivity.  As described in [Switch], such a minimal list   representation leads naturally to a graph representation for path   computation purposes; this representation involves the fewest   additional nodes and links.   The Connectivity Matrix Field is uniquely identified only by the   advertising node.  There may be more than one Connectivity Matrix   Field associated with a node as a node can partition the switch   matrix into several sub-matrices.  This partitioning is primarily to   limit the size of any individual information element used to   represent the matrix and to enable incremental updates.  When the   matrix is partitioned into sub-matrices, each sub-matrix will be   mutually exclusive to one another in representing which ports/labels   are associated with each sub-matrix.  This implies that two matrices   will not have the same {src port, src label, dst port, dst label}.   Each sub-matrix is identified via a different Matrix ID that MUST   represent a unique combination of {src port, src label, dst port, dst   label}.   A TLV encoding of this list of link set pairs is:       0                   1                   2                   3       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      | Conn  |   MatrixID    |            Reserved                   |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |                         Link Set A #1                         |      :                               :                               :      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |                         Link Set B #1                         :      :                               :                               :      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |                 Additional Link Set Pairs as Needed           |      :                     to Specify Connectivity                   :      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+Bernstein, et al.            Standards Track                    [Page 5]

RFC 7579       General Network Element Constraint Encoding     June 2015   Where:   Connectivity (Conn) (4 bits) is the device type.      0 - the device is fixed      1 - the device is switched (e.g., Reconfigurable Optical Add/Drop          Multiplexer / Optical Cross-Connect (ROADM/OXC))   MatrixID represents the ID of the connectivity matrix and is an 8-bit   integer.  The value of 0xFF is reserved for use with port label   constraints and should not be used to identify a connectivity matrix.   Link Set A #1 and Link Set B #1 together represent a pair of link   sets.  SeeSection 2.3 for a detailed description of the Link Set   Field.  There are two permitted combinations for the Link Set Field   parameter "dir" for link set A and B pairs:   o  Link Set A dir=input, Link Set B dir=output      In this case, the meaning of the pair of link sets A and B is that      any signal that inputs a link in set A can be potentially switched      out of an output link in set B.   o  Link Set A dir=bidirectional, Link Set B dir=bidirectional      In this case, the meaning of the pair of link sets A and B is that      any signal that inputs on the links in set A can potentially      output on a link in set B and any input signal on the links in set      B can potentially output on a link in set A.  If link set A is an      input and link set B is an output for a signal, then it implies      that link set A is an output and link set B is an input for that      signal.   SeeAppendix A for both types of encodings as applied to a ROADM   example.2.2.  Port Label Restrictions Field   The Port Label Restrictions Field tells us what labels may or may not   be used on a link.   The port label restrictions can be encoded as follows.  More than one   of these fields may be needed to fully specify a complex port   constraint.  When more than one of these fields is present, the   resulting restriction is the union of the restrictions expressed inBernstein, et al.            Standards Track                    [Page 6]

RFC 7579       General Network Element Constraint Encoding     June 2015   each field.  The use of the reserved value of 0xFF for the MatrixID   indicates that a restriction applies to the port and not to a   specific connectivity matrix.      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |   MatrixID    |    RstType    | Switching Cap |     Encoding  |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |     Additional Restriction Parameters per Restriction Type    |     :                                                               :     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   Where:   MatrixID: either is the value in the corresponding Connectivity   Matrix Field or takes the value 0xFF to indicate the restriction   applies to the port regardless of any connectivity matrix.   RstType (Restriction Type) can take the following values and   meanings:      0: SIMPLE_LABEL (Simple label selective restriction).  SeeSection 2.2.1 for details.      1: CHANNEL_COUNT (Channel count restriction).  SeeSection 2.2.2         for details.      2: LABEL_RANGE (Label range device with a movable center label and         width).  SeeSection 2.2.3 for details.      3: SIMPLE_LABEL & CHANNEL_COUNT (Combination of SIMPLE_LABEL and         CHANNEL_COUNT restriction.  The accompanying label set and         channel count indicate labels permitted on the port and the         maximum number of channels that can be simultaneously used on         the port).  SeeSection 2.2.4 for details.      4: LINK_LABEL_EXCLUSIVITY (A label may be used at most once         amongst a set of specified ports).  SeeSection 2.2.5 for         details.   Switching Cap (Switching Capability) is defined in [RFC4203], and LSP   Encoding Type is defined in [RFC3471].  The combination of these   fields defines the type of labels used in specifying the port label   restrictions as well as the interface type to which these   restrictions apply.Bernstein, et al.            Standards Track                    [Page 7]

RFC 7579       General Network Element Constraint Encoding     June 2015   The Additional Restriction Parameters per RestrictionType field is an   optional field that describes additional restriction parameters for   each RestrictionType pertaining to specific protocols.2.2.1.  SIMPLE_LABEL   In the case of SIMPLE_LABEL, the format is:      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     | MatrixID      | RstType = 0   | Switching Cap |   Encoding    |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                           Label Set Field                     |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   In this case, the accompanying label set indicates the labels   permitted on the port/matrix.   SeeSection 2.6 for the definition of label set.2.2.2.  CHANNEL_COUNT   In the case of CHANNEL_COUNT, the format is:      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     | MatrixID      | RstType = 1   |Switching Cap  |   Encoding    |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                        MaxNumChannels                         |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   In this case, the accompanying MaxNumChannels indicates the maximum   number of channels (labels) that can be simultaneously used on the   port/matrix.   MaxNumChannels is a 32-bit integer.Bernstein, et al.            Standards Track                    [Page 8]

RFC 7579       General Network Element Constraint Encoding     June 20152.2.3.  LABEL_RANGE   In the case of LABEL_RANGE, the format is:      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     | MatrixID      | RstType = 2   | Switching Cap |  Encoding     |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                          MaxLabelRange                        |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                        Label Set Field                        |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   This is a generalization of the waveband device.  The MaxLabelRange   indicates the maximum width of the waveband in terms of the channels   spacing given in the Label Set Field.  The corresponding label set is   used to indicate the overall tuning range.   MaxLabelRange is a 32-bit integer.   SeeSection 2.6.2 for an explanation of label range.2.2.4.  SIMPLE_LABEL & CHANNEL_COUNT   In the case of SIMPLE_LABEL & CHANNEL_COUNT, the format is:      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     | MatrixID      | RstType = 3   | Switching Cap |   Encoding    |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                        MaxNumChannels                         |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                        Label Set Field                        |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   In this case, the accompanying label set and MaxNumChannels indicate   labels permitted on the port and the maximum number of labels that   can be simultaneously used on the port.   SeeSection 2.6 for the definition of label set.Bernstein, et al.            Standards Track                    [Page 9]

RFC 7579       General Network Element Constraint Encoding     June 20152.2.5.  LINK_LABEL_EXCLUSIVITY   In the case of Link Label Exclusivity, the format is:      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     | MatrixID      | RstType = 4   | Switching Cap |   Encoding    |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                        Link Set Field                         |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   In this case, the accompanying link set indicates that a label may be   used at most once among the ports in the Link Set Field.   SeeSection 2.3 for the definition of link set.2.3.  Link Set Field   We will frequently need to describe properties of groups of links.   To do so efficiently, we can make use of a link set concept similar   to the label set concept of [RFC3471].  The Link Set Field is used in   the <ConnectivityMatrix>, which is defined inSection 2.1.  The   information carried in a link set is defined as follows:       0                   1                   2                   3       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |    Action     |Dir|  Format   |         Length                |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |                       Link Identifier 1                       |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      :                               :                               :      :                               :                               :      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |                       Link Identifier N                       |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   Action: 8 bits      0 - Inclusive List          Indicates that one or more link identifiers are included in          the link set.  Each identifies a separate link that is part of          the set.Bernstein, et al.            Standards Track                   [Page 10]

RFC 7579       General Network Element Constraint Encoding     June 2015      1 - Inclusive Range          Indicates that the link set defines a range of links.  It          contains two link identifiers.  The first identifier indicates          the start of the range.  The second identifier indicates the          end of the range.  All links with numeric values between the          bounds are considered to be part of the set.  A value of zero          in either position indicates that there is no bound on the          corresponding portion of the range.  Note that the Action          field can be set to 0x01 (Inclusive Range) only when the          identifier for unnumbered link is used.   Dir: Directionality of the link set (2 bits)      0 - bidirectional      1 - input      2 - output      In optical networks, we think in terms of unidirectional and      bidirectional links.  For example, label restrictions or      connectivity may be different for an input port than for its      "companion" output port, if one exists.  Note that "interfaces"      such as those discussed in the Interfaces MIB [RFC2863] are      assumed to be bidirectional.  This also applies to the links      advertised in various link state routing protocols.   Format: The format of the link identifier (6 bits)      0 - Link Local Identifier          Indicates that the links in the link set are identified by          link local identifiers.  All link local identifiers are          supplied in the context of the advertising node.      1 - Local Interface IPv4 Address          Indicates that the links in the link set are identified by          Local Interface IPv4 Address.      2 - Local Interface IPv6 Address          Indicates that the links in the link set are identified by          Local Interface IPv6 Address.      Others - Reserved for future useBernstein, et al.            Standards Track                   [Page 11]

RFC 7579       General Network Element Constraint Encoding     June 2015      Note that all link identifiers in the same list must be of the      same type.   Length: 16 bits      This field indicates the total length in bytes of the Link Set      Field.   Link Identifier: length is dependent on the link format      The link identifier represents the port that is being described      either for connectivity or for label restrictions.  This can be      the link local identifier of GMPLS routing [RFC4202], GMPLS OSPF      routing [RFC4203], and IS-IS GMPLS routing [RFC5307].  The use of      the link local identifier format can result in more compact      encodings when the assignments are done in a reasonable fashion.2.4.  Available Labels Field   The Available Labels Field consists of priority flags and a single   variable-length Label Set Field as follows:      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |     PRI       |              Reserved                         |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                     Label Set Field                           |     :                                                               :     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   Where:   PRI (Priority Flags, 8 bits): A bitmap used to indicate which   priorities are being advertised.  The bitmap is in ascending order,   with the leftmost bit representing priority level 0 (i.e., the   highest) and the rightmost bit representing priority level 7 (i.e.,   the lowest).  A bit MUST be set (1) corresponding to each priority   represented in the sub-TLV and MUST NOT be set (0) when the   corresponding priority is not represented.  If a label is available   at priority M, it MUST be advertised available at each priority N <   M.  At least one priority level MUST be advertised.   The PRI field indicates the availability of the labels for use in   Label Switched Path (LSP) setup and preemption as described in   [RFC3209].Bernstein, et al.            Standards Track                   [Page 12]

RFC 7579       General Network Element Constraint Encoding     June 2015   When a label is advertised as available for priorities 0, 1, ... M,   it may be used by any LSP of priority N <= M.  When a label is in use   by an LSP of priority M, it may be used by an LSP of priority N < M   if LSP preemption is supported.   When a label was initially advertised as available for priorities 0,   1, ... M and once a label is used for an LSP at a priority, say N   (N<=M), then this label is advertised as available for 0, ... N-1.   Note that the Label Set Field is defined inSection 2.6.  SeeAppendix A.5 for illustrative examples.2.5.  Shared Backup Labels Field   The Shared Backup Labels Field consists of priority flags and a   single variable-length Label Set Field as follows:      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |     PRI         |            Reserved                         |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                     Label Set Field                           |     :                                                               :     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   Where:   PRI (Priority Flags, 8 bits): A bitmap used to indicate which   priorities are being advertised.  The bitmap is in ascending order,   with the leftmost bit representing priority level 0 (i.e., the   highest) and the rightmost bit representing priority level 7 (i.e.,   the lowest).  A bit MUST be set (1) corresponding to each priority   represented in the sub-TLV and MUST NOT be set (0) when the   corresponding priority is not represented.  If a label is available   at priority M, it MUST be advertised available at each priority N <   M.  At least one priority level MUST be advertised.   The same LSP setup and preemption rules specified inSection 2.4   apply here.   Note that Label Set Field is defined inSection 2.6.  SeeAppendix A.5 for illustrative examples.Bernstein, et al.            Standards Track                   [Page 13]

RFC 7579       General Network Element Constraint Encoding     June 20152.6.  Label Set Field   The Label Set Field is used within the Available Labels Field or the   Shared Backup Labels Field, defined in Sections2.4 and2.5,   respectively. It is also used within SIMPLE_LABEL, LABEL_RANGE, or   SIMPLE_LABEL & CHANNEL_COUNT, defined in Sections2.2.1,2.2.3, and   2.2.4, respectively.   The general format for a label set is given below.  This format uses   the Action concept from [RFC3471] with an additional Action to define   a "bitmap" type of label set.  Labels are variable in length.   Action-specific fields are defined in Sections2.6.1,2.6.2, and   2.6.3.      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     | Action|    Num Labels = N       |           Length            |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                          Base Label                           |     |                             . . .                             |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                      (Action-specific fields)                 |     |                              . . . .                          |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   Action:      0 - Inclusive List      1 - Exclusive List      2 - Inclusive Range      3 - Exclusive Range      4 - Bitmap Set   Num Labels is generally the number of labels.  It has a specific   meaning depending on the Action value.  See Sections2.6.1,2.6.2,   and 2.6.3 for details.  Num Labels is a 12-bit integer.   Length is the length in bytes of the entire Label Set Field.Bernstein, et al.            Standards Track                   [Page 14]

RFC 7579       General Network Element Constraint Encoding     June 20152.6.1.  Inclusive/Exclusive Label Lists   For inclusive/exclusive lists (Action = 0 or 1), the wavelength set   format is:      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |0 or 1 | Num Labels = 2        |          Length               |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                         Label #1                              |     |                            . . .                              |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     :                                                               :     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                         Label #N                              |     |                            . . .                              |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   Label #1 is the first label to be included/excluded, and Label #N is   the last label to be included/excluded.  Num Labels MUST match   with N.2.6.2.  Inclusive/Exclusive Label Ranges   For inclusive/exclusive ranges (Action = 2 or 3), the label set   format is:      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |2 or 3 | Num Labels          |               Length            |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                    Start Label                                |     |                       . . .                                   |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                     End Label                                 |     |                       . . .                                   |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   Note that Start Label is the first label in the range to be   included/excluded, and End Label is the last label in the same range.   Num Labels MUST be two.Bernstein, et al.            Standards Track                   [Page 15]

RFC 7579       General Network Element Constraint Encoding     June 20152.6.3.  Bitmap Label Set   For bitmap sets (Action = 4), the label set format is:      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |  4    |   Num Labels          |             Length            |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                         Base Label                            |     |                            . . .                              |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |    Bitmap Word #1 (Lowest numerical labels)                   |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     :                                                               :     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |    Bitmap Word #N (Highest numerical labels)                  |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   In this case, Num Labels tells us the number of labels represented by   the bitmap.  Each bit in the bitmap represents a particular label   with a value of 1/0 indicating whether or not the label is in the   set.  Bit position zero represents the lowest label and corresponds   to the base label, while each succeeding bit position represents the   next label logically above the previous.   The size of the bitmap is Num Labels bits, but the bitmap is padded   out to a full multiple of 32 bits so that the field is a multiple of   four bytes.  Bits that do not represent labels SHOULD be set to zero   and MUST be ignored.3.  Security Considerations   This document defines protocol-independent encodings for WSON   information and does not introduce any security issues.   However, other documents that make use of these encodings within   protocol extensions need to consider the issues and risks associated   with inspection, interception, modification, or spoofing of any of   this information.  It is expected that any such documents will   describe the necessary security measures to provide adequate   protection.  A general discussion on security in GMPLS networks can   be found in [RFC5920].Bernstein, et al.            Standards Track                   [Page 16]

RFC 7579       General Network Element Constraint Encoding     June 20154.  IANA Considerations   This document provides general protocol-independent information   encodings.  There is no IANA allocation request for the information   elements defined in this document.  IANA allocation requests will be   addressed in protocol-specific documents based on the encodings   defined here.5.  References5.1.  Normative References   [G.694.1]  ITU-T, "Spectral grids for WDM applications: DWDM              frequency grid", ITU-T Recommendation G.694.1, February              2012.   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate              Requirement Levels",BCP 14,RFC 2119,              DOI 10.17487/RFC2119, March 1997,              <http://www.rfc-editor.org/info/rfc2119>.   [RFC2863]  McCloghrie, K. and F. Kastenholz, "The Interfaces Group              MIB",RFC 2863, DOI 10.17487/RFC2863, June 2000,              <http://www.rfc-editor.org/info/rfc2863>.   [RFC3209]  Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,              and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP              Tunnels",RFC 3209, DOI 10.17487/RFC3209, December 2001,              <http://www.rfc-editor.org/info/rfc3209>.   [RFC3471]  Berger, L., Ed., "Generalized Multi-Protocol Label              Switching (GMPLS) Signaling Functional Description",RFC 3471, DOI 10.17487/RFC3471, January 2003,              <http://www.rfc-editor.org/info/rfc3471>.   [RFC4202]  Kompella, K., Ed., and Y. Rekhter, Ed., "Routing              Extensions in Support of Generalized Multi-Protocol Label              Switching (GMPLS)",RFC 4202, DOI 10.17487/RFC4202,              October 2005, <http://www.rfc-editor.org/info/rfc4202>.   [RFC4203]  Kompella, K., Ed., and Y. Rekhter, Ed., "OSPF Extensions              in Support of Generalized Multi-Protocol Label Switching              (GMPLS)",RFC 4203, DOI 10.17487/RFC4203, October 2005,              <http://www.rfc-editor.org/info/rfc4203>.Bernstein, et al.            Standards Track                   [Page 17]

RFC 7579       General Network Element Constraint Encoding     June 2015   [RFC5307]  Kompella, K., Ed., and Y. Rekhter, Ed., "IS-IS Extensions              in Support of Generalized Multi-Protocol Label Switching              (GMPLS)",RFC 5307, DOI 10.17487/RFC5307, October 2008,              <http://www.rfc-editor.org/info/rfc5307>.   [RFC6205]  Otani, T., Ed., and D. Li, Ed., "Generalized Labels for              Lambda-Switch-Capable (LSC) Label Switching Routers",RFC 6205, DOI 10.17487/RFC6205, March 2011,              <http://www.rfc-editor.org/info/rfc6205>.5.2.  Informative References   [RFC5440]  Vasseur, JP., Ed., and JL. Le Roux, Ed., "Path Computation              Element (PCE) Communication Protocol (PCEP)",RFC 5440,              DOI 10.17487/RFC5440, March 2009,              <http://www.rfc-editor.org/info/rfc5440>.   [RFC5920]  Fang, L., Ed., "Security Framework for MPLS and GMPLS              Networks",RFC 5920, DOI 10.17487/RFC5920, July 2010,              <http://www.rfc-editor.org/info/rfc5920>.   [RFC6163]  Lee, Y., Ed., Bernstein, G., Ed., and W. Imajuku,              "Framework for GMPLS and Path Computation Element (PCE)              Control of Wavelength Switched Optical Networks (WSONs)",RFC 6163, DOI 10.17487/RFC6163, April 2011,              <http://www.rfc-editor.org/info/rfc6163>.   [RFC7446]  Lee, Y., Ed., Bernstein, G., Ed., Li, D., and W. Imajuku,              "Routing and Wavelength Assignment Information Model for              Wavelength Switched Optical Networks",RFC 7446,              DOI 10.17487/RFC7446, February 2015,              <http://www.rfc-editor.org/info/rfc7446>.   [Switch]   Bernstein, G., Lee, Y., Gavler, A., and J. Martensson,              "Modeling WDM Wavelength Switching Systems for Use in              GMPLS and Automated Path Computation", Journal of Optical              Communications and Networking, Volume 1, Issue 1,              pp. 187-195, June 2009.Bernstein, et al.            Standards Track                   [Page 18]

RFC 7579       General Network Element Constraint Encoding     June 2015Appendix A.  Encoding Examples   This appendix contains examples of the general encoding extensions   applied to some simple ROADM network elements and links.A.1.  Link Set Field   Suppose that we wish to describe a set of input ports that have link   local identifiers numbered 3 through 42.  In the Link Set Field, we   set Action = 1 to denote an inclusive range, Dir = 1 to denote input   links, and Format = 0 to denote link local identifiers.  Thus, we   have:     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |  Action=1     |0 1|0 0 0 0 0 0|             Length = 12       |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                     Link Local Identifier = #3                |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                     Link Local Identifier = #42               |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+A.2.  Label Set Field   In this example, we use a 40-channel C-Band Dense Wavelength Division   Multiplexing (DWDM) system with 100 GHz spacing with lowest frequency   192.0 THz (1561.4 nm) and highest frequency 195.9 THz (1530.3 nm).   These frequencies correspond to n = -11 and n = 28, respectively.   Now suppose the following channels are available:   Frequency (THz)       n Value      bitmap position   --------------------------------------------------      192.0             -11                  0      192.5              -6                  5      193.1               0                 11      193.9               8                 19      194.0               9                 20      195.2              21                 32      195.8              27                 38Bernstein, et al.            Standards Track                   [Page 19]

RFC 7579       General Network Element Constraint Encoding     June 2015   Using the label format defined in [RFC6205], with the Grid value set   to indicate an ITU-T A/2 [G.694.1] DWDM grid and C.S. set to indicate   100 GHz, this lambda bitmap set would then be encoded as follows:      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |  4    | Num Labels = 40       |    Length = 16 bytes          |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |Grid |  C.S. |      Reserved   | n  for lowest frequency = -11 |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0|     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |1 0 0 0 0 0 1 0|   Not used in 40 Channel system (all zeros)   |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   To encode this same set as an inclusive list, we would have:      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |  0    | Num Labels = 7        |    Length = 32 bytes          |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |Grid |  C.S. |      Reserved   | n  for lowest frequency = -11 |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |Grid |  C.S. |      Reserved   | n  for lowest frequency = -6  |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |Grid |  C.S. |      Reserved   | n  for lowest frequency = -0  |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |Grid |  C.S. |      Reserved   | n  for lowest frequency = 8   |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |Grid |  C.S. |      Reserved   | n  for lowest frequency = 9   |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |Grid |  C.S. |      Reserved   | n  for lowest frequency = 21  |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |Grid |  C.S. |      Reserved   | n  for lowest frequency = 27  |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+A.3.  Connectivity Matrix   Suppose we have a typical 2-degree 40-channel ROADM.  In addition to   its two line side ports, it has 80 add and 80 drop ports.  The figure   below illustrates how a typical 2-degree ROADM system that works with   bidirectional fiber pairs is a highly asymmetrical system composed of   two unidirectional ROADM subsystems.Bernstein, et al.            Standards Track                   [Page 20]

RFC 7579       General Network Element Constraint Encoding     June 2015                         (Tributary) Ports #3-#42                     Input added to    Output dropped from                     West Line Output    East Line Input                           vvvvv          ^^^^^                          | |||.|        | |||.|                    +-----| |||.|--------| |||.|------+                    |    +----------------------+     |                    |    |                      |     |        Output      |    | Unidirectional ROADM |     |    Input   -----------------+    |                      |     +--------------   <=====================|                      |===================<   -----------------+    +----------------------+     +--------------                    |                                 |        Port #1     |                                 |   Port #2   (West Line Side) |                                 |(East Line Side)   -----------------+    +----------------------+     +--------------   >=====================|                      |===================>   -----------------+    | Unidirectional ROADM |     +--------------          Input     |    |                      |     |    Output                    |    |              _       |     |                    |    +----------------------+     |                    +-----| |||.|--------| |||.|------+                          | |||.|        | |||.|                           vvvvv          ^^^^^                     (Tributary) Ports #43-#82                Output dropped from    Input added to                West Line Input      East Line Output   Referring to the figure above, we see that the Input direction of   ports #3-#42 (add ports) can only connect to the output on port #1   while the Input side of port #2 (line side) can only connect to the   output on ports #3-#42 (drop) and to the output on port #1 (pass   through).  Similarly, the input direction of ports #43-#82 can only   connect to the output on port #2 (line) while the input direction of   port #1 can only connect to the output on ports #43-#82 (drop) or   port #2 (pass through).  We can now represent this potential   connectivity matrix as follows.  This representation uses only 29   32-bit words.Bernstein, et al.            Standards Track                   [Page 21]

RFC 7579       General Network Element Constraint Encoding     June 2015     0                   1                   2                   3     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |    Conn = 1   |    MatrixID   |      Reserved                 |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                          Note: adds to line    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |  Action=1     |0 1|0 0 0 0 0 0|          Length = 12          |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |                     Link Local Identifier = #3                |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |                     Link Local Identifier = #42               |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |  Action=0     |1 0|0 0 0 0 0 0|          Length = 8           |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |                     Link Local Identifier = #1                |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                       Note: line to drops    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |  Action=0     |0 1|0 0 0 0 0 0|          Length = 8           |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |                     Link Local Identifier = #2                |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |  Action=1     |1 0|0 0 0 0 0 0|          Length = 12          |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |                     Link Local Identifier = #3                |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |                     Link Local Identifier = #42               |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                       Note: line to line    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |  Action=0     |0 1|0 0 0 0 0 0|          Length = 8           |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |                     Link Local Identifier = #2                |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |  Action=0     |1 0|0 0 0 0 0 0|          Length = 8           |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |                     Link Local Identifier = #1                |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                                Note: adds to line    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |  Action=1     |0 1|0 0 0 0 0 0|          Length = 12          |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |                     Link Local Identifier = #43               |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |                     Link Local Identifier = #82               |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |  Action=0     |1 0|0 0 0 0 0 0|          Length = 8           |Bernstein, et al.            Standards Track                   [Page 22]

RFC 7579       General Network Element Constraint Encoding     June 2015    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |                     Link Local Identifier = #2                |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                       Note: line to drops    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |  Action=0     |0 1|0 0 0 0 0 0||          Length = 8          |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |                     Link Local Identifier = #1                |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |  Action=1     |1 0|0 0 0 0 0 0|          Length = 12          |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |                     Link Local Identifier = #43               |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |                     Link Local Identifier = #82               |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                       Note: line to line    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |  Action=0     |0 1|0 0 0 0 0 0|          Length = 8           |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |                     Link Local Identifier = #1                |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |  Action=0     |1 0|0 0 0 0 0 0|          Length = 8           |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |                     Link Local Identifier = #2                |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+Bernstein, et al.            Standards Track                   [Page 23]

RFC 7579       General Network Element Constraint Encoding     June 2015A.4.  Connectivity Matrix with Bidirectional Symmetry   If one has the ability to renumber the ports of the previous example   as shown in the next figure, then we can take advantage of the   bidirectional symmetry and use bidirectional encoding of the   connectivity matrix.  Note that we set dir=bidirectional in the Link   Set Fields.                                (Tributary)                     Ports #3-42         Ports #43-82                     West Line Output    East Line Input                           vvvvv          ^^^^^                          | |||.|        | |||.|                    +-----| |||.|--------| |||.|------+                    |    +----------------------+     |                    |    |                      |     |        Output      |    | Unidirectional ROADM |     |    Input   -----------------+    |                      |     +--------------   <=====================|                      |===================<   -----------------+    +----------------------+     +--------------                    |                                 |        Port #1     |                                 |   Port #2   (West Line Side) |                                 |(East Line Side)   -----------------+    +----------------------+     +--------------   >=====================|                      |===================>   -----------------+    | Unidirectional ROADM |     +--------------        Input     |    |                      |     |    Output                    |    |              _       |     |                    |    +----------------------+     |                    +-----| |||.|--------| |||.|------+                          | |||.|        | |||.|                           vvvvv          ^^^^^                     Ports #3-#42            Ports #43-82                Output dropped from    Input added to                West Line Input      East Line OutputBernstein, et al.            Standards Track                   [Page 24]

RFC 7579       General Network Element Constraint Encoding     June 2015     0                   1                   2                   3     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |    Conn = 1   |    MatrixID   |      Reserved                 |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                   Note: Add/Drop #3-42 to Line side #1    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |  Action=1     |0 0|0 0 0 0 0 0|          Length = 12          |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |                     Link Local Identifier = #3                |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |                     Link Local Identifier = #42               |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |  Action=0     |0 0|0 0 0 0 0 0|          Length = 8           |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |                     Link Local Identifier = #1                |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                       Note: line #2 to add/drops #43-82    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |  Action=0     |0 0|0 0 0 0 0 0|          Length = 8           |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |                     Link Local Identifier = #2                |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |  Action=1     |0 0|0 0 0 0 0 0|          Length = 12          |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |                     Link Local Identifier = #43               |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |                     Link Local Identifier = #82               |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                       Note: line to line    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |  Action=0     |0 0|0 0 0 0 0 0|          Length = 8           |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |                     Link Local Identifier = #1                |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |  Action=0     |0 0|0 0 0 0 0 0|          Length = 8           |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |                     Link Local Identifier = #2                |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+Bernstein, et al.            Standards Track                   [Page 25]

RFC 7579       General Network Element Constraint Encoding     June 2015A.5.  Priority Flags in Available/Shared Backup Labels   If one wants to make a set of labels (indicated by Label Set Field   #1) available only for the highest priority level (Priority Level 0)   while allowing a set of labels (indicated by Label Set Field #2) to   be available to all priority levels, the following encoding will   express such need.      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |1 0 0 0 0 0 0 0|              Reserved                         |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                     Label Set Field #1                        |     :                                                               :     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |1 1 1 1 1 1 1 1|              Reserved                         |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                     Label Set Field #2                        |     :                                                               :     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+Bernstein, et al.            Standards Track                   [Page 26]

RFC 7579       General Network Element Constraint Encoding     June 2015Contributors   Diego Caviglia   Ericsson   Via A. Negrone 1/A 16153   Genoa   Italy   Phone: +39 010 600 3736   EMail: diego.caviglia@ericsson.com   Anders Gavler   Acreo AB   Electrum 236   SE - 164 40 Kista   Sweden   EMail: Anders.Gavler@acreo.se   Jonas Martensson   Acreo AB   Electrum 236   SE - 164 40 Kista   Sweden   EMail: Jonas.Martensson@acreo.se   Itaru Nishioka   NEC Corp.   1753 Simonumabe   Nakahara-ku, Kawasaki, Kanagawa 211-8666   Japan   Phone: +81 44 396 3287   EMail: i-nishioka@cb.jp.nec.com   Rao Rajan   Infinera   EMail: rrao@infinera.com   Giovanni Martinelli   Cisco   EMail: giomarti@cisco.com   Remi Theillaud   Marben   EMail: remi.theillaud@marben-products.comBernstein, et al.            Standards Track                   [Page 27]

RFC 7579       General Network Element Constraint Encoding     June 2015Authors' Addresses   Greg M. Bernstein (editor)   Grotto Networking   Fremont, California   United States   Phone: (510) 573-2237   EMail: gregb@grotto-networking.com   Young Lee (editor)   Huawei Technologies   1700 Alma Drive, Suite 100   Plano, TX 75075   United States   Phone: (972) 509-5599 (x2240)   EMail: ylee@huawei.com   Dan Li   Huawei Technologies Co., Ltd.   F3-5-B R&D Center, Huawei Base,   Bantian, Longgang District   Shenzhen 518129   China   Phone: +86-755-28973237   EMail: danli@huawei.com   Wataru Imajuku   NTT Network Innovation Labs   1-1 Hikari-no-oka, Yokosuka, Kanagawa   Japan   Phone: +81-(46) 859-4315   EMail: imajuku.wataru@lab.ntt.co.jp   Jianrui Han   Huawei Technologies Co., Ltd.   F3-5-B R&D Center, Huawei Base,   Bantian, Longgang District   Shenzhen 518129   China   Phone: +86-755-28972916   EMail: hanjianrui@huawei.comBernstein, et al.            Standards Track                   [Page 28]

[8]ページ先頭

©2009-2025 Movatter.jp