Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Info page]

PROPOSED STANDARD
Internet Engineering Task Force (IETF)                D. Ceccarelli, Ed.Request for Comments: 7138                                      EricssonCategory: Standards Track                                       F. ZhangISSN: 2070-1721                                      Huawei Technologies                                                              S. Belotti                                                          Alcatel-Lucent                                                                  R. Rao                                                    Infinera Corporation                                                                J. Drake                                                                 Juniper                                                              March 2014Traffic Engineering Extensions to OSPFfor GMPLS Control of Evolving G.709 Optical Transport NetworksAbstract   This document describes Open Shortest Path First - Traffic   Engineering (OSPF-TE) routing protocol extensions to support GMPLS   control of Optical Transport Networks (OTNs) specified in ITU-T   Recommendation G.709 as published in 2012.  It extends mechanisms   defined inRFC 4203.Status of This Memo   This is an Internet Standards Track document.   This document is a product of the Internet Engineering Task Force   (IETF).  It represents the consensus of the IETF community.  It has   received public review and has been approved for publication by the   Internet Engineering Steering Group (IESG).  Further information on   Internet Standards is available inSection 2 of RFC 5741.   Information about the current status of this document, any errata,   and how to provide feedback on it may be obtained athttp://www.rfc-editor.org/info/rfc7138.Ceccarelli, et al.           Standards Track                    [Page 1]

RFC 7138           OSPF-TE Extensions for OTN Support         March 2014Copyright Notice   Copyright (c) 2014 IETF Trust and the persons identified as the   document authors.  All rights reserved.   This document is subject toBCP 78 and the IETF Trust's Legal   Provisions Relating to IETF Documents   (http://trustee.ietf.org/license-info) in effect on the date of   publication of this document.  Please review these documents   carefully, as they describe your rights and restrictions with respect   to this document.  Code Components extracted from this document must   include Simplified BSD License text as described in Section 4.e of   the Trust Legal Provisions and are provided without warranty as   described in the Simplified BSD License.Ceccarelli, et al.           Standards Track                    [Page 2]

RFC 7138           OSPF-TE Extensions for OTN Support         March 2014Table of Contents1. Introduction ....................................................41.1. Terminology ................................................42. OSPF-TE Extensions ..............................................43. TE-Link Representation ..........................................64. ISCD Format Extensions ..........................................64.1. Switching Capability Specific Information ..................8           4.1.1. Switching Capability Specific Information                  for Fixed Containers ................................9           4.1.2. Switching Capability Specific Information                  for Variable Containers ............................10           4.1.3. Switching Capability Specific Information --                  Field Values and Explanation .......................105. Examples .......................................................135.1. MAX LSP Bandwidth Fields in the ISCD ......................135.2. Example of T, S, and TS Granularity Utilization ...........175.2.1. Example of Different TS Granularities ..............185.3. Example of ODUflex Advertisement ..........................205.4. Example of Single-Stage Muxing ............................225.5. Example of Multi-Stage Muxing -- Unbundled Link ...........235.6. Example of Multi-Stage Muxing -- Bundled Links ............25      5.7. Example of Component Links with Non-Homogeneous           Hierarchies ...............................................276. OSPFv2 Scalability .............................................297. Compatibility ..................................................308. Security Considerations ........................................309. IANA Considerations ............................................319.1. Switching Types ...........................................319.2. New Sub-TLVs ..............................................3110. Contributors ..................................................3211. Acknowledgements ..............................................3312. References ....................................................3312.1. Normative References .....................................3312.2. Informative References ...................................34Ceccarelli, et al.           Standards Track                    [Page 3]

RFC 7138           OSPF-TE Extensions for OTN Support         March 20141.  Introduction   G.709 ("Interfaces for the Optical Transport Network (OTN)")   [G.709-2012] includes new fixed and flexible ODU (Optical channel   Data Unit) containers, includes two types of tributary slots (i.e.,   1.25 Gbps and 2.5 Gbps), and supports various multiplexing   relationships (e.g., ODUj multiplexed into ODUk (j<k)), two different   tributary slots for ODUk (K=1, 2, 3), and the ODUflex service type.   In order to advertise this information in routing, this document   provides encoding specific to OTN technology for use in GMPLS OSPF-TE   as defined in [RFC4203].   For a short overview of OTN evolution and implications of OTN   requirements on GMPLS routing, please refer to [RFC7062].  The   information model and an evaluation against the current solution are   provided in [RFC7096].  The reader is supposed to be familiar with   both of these documents.   Routing information for Optical Channel (OCh) layer (i.e.,   wavelength) is beyond the scope of this document.  Please refer to   [RFC6163] and [RFC6566] for further information.1.1.  Terminology   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this   document are to be interpreted as described in [RFC2119].2.  OSPF-TE Extensions   In terms of GMPLS-based OTN networks, each Optical channel Transport   Unit-k (OTUk) can be viewed as a component link, and each component   link can carry one or more types of ODUj (j<k).   Each TE-Link State Advertisement (LSA) can carry a top-level link TLV   with several nested sub-TLVs to describe different attributes of a   TE-Link.  Two top-level TLVs are defined in [RFC3630]: (1) The Router   Address TLV (referred to as the Node TLV) and (2) the TE-Link TLV.   One or more sub-TLVs can be nested into the two top-level TLVs.  The   sub-TLV set for the two top-level TLVs are also defined in [RFC3630]   and [RFC4203].   As discussed in [RFC7062] and [RFC7096], OSPF-TE must be extended to   be able to advertise the termination and Switching Capabilities of   each different ODUj and ODUk/OTUk (Optical Transport Unit) and the   advertisement of related multiplexing capabilities.  These   capabilities are carried in the Switching Capability specific   information field of the Interface Switching Capability DescriptorCeccarelli, et al.           Standards Track                    [Page 4]

RFC 7138           OSPF-TE Extensions for OTN Support         March 2014   (ISCD) using formats defined in this document.  As discussed in   [RFC7062], the use of a technology-specific Switching Capability   specific information field necessitates the definition of a new   Switching Capability value and associated new Switching Capability.   In the following, we will use ODUj to indicate a service type that is   multiplexed into a higher-order (HO) ODU, ODUk to indicate a higher-   order ODU including an ODUj, and ODUk/OTUk to indicate the layer   mapped into the OTUk.  Moreover, ODUj(S) and ODUk(S) are used to   indicate the ODUj and ODUk supporting Switching Capability only, and   the ODUj->ODUk format is used to indicate the ODUj-into-ODUk   multiplexing capability.   This notation can be repeated as needed depending on the number of   multiplexing levels.  In the following, the term "multiplexing tree"   is used to identify a multiplexing hierarchy where the root is always   a server ODUk/OTUk and any other supported multiplexed container is   represented with increasing granularity until reaching the leaf of   the tree.  The tree can be structured with more than one branch if   the server ODUk/OTUk supports more than one hierarchy.   For example, if a multiplexing hierarchy like the following one is   considered:             ODU2 ODU0    ODUflex ODU0                \ /            \ /                 |              |               ODU3           ODU2                  \            /                   \          /                    \        /                     \      /                       ODU4   the ODU4 is the root of the muxing tree; ODU3 and ODU2 are containers   directly multiplexed into the server; and ODU2 and ODU0 are the   leaves of the ODU3 branch, while ODUflex and ODU0 are the leaves of   the ODU2 one.  This means that it is possible to have the following   multiplexing capabilities:       ODU2->ODU3->ODU4       ODU0->ODU3->ODU4       ODUflex->ODU2->ODU4       ODU0->ODU2->ODU4Ceccarelli, et al.           Standards Track                    [Page 5]

RFC 7138           OSPF-TE Extensions for OTN Support         March 20143.  TE-Link Representation   G.709 ODUk/OTUk links are represented as TE-Links in GMPLS Traffic   Engineering Topology for supporting ODUj layer switching.  These TE-   Links can be modeled in multiple ways.   OTUk physical link(s) can be modeled as a TE-Link(s).  Figure 1 below   provides an illustration of one-hop OTUk TE-Links.           +-------+               +-------+               +-------+           |  OTN  |               |  OTN  |               |  OTN  |           |Switch |<- OTUk Link ->|Switch |<- OTUk Link ->|Switch |           |   A   |               |   B   |               |   C   |           +-------+               +-------+               +-------+                   |<-- TE-Link -->|       |<-- TE-Link -->|                          Figure 1: OTUk TE-Links   It is possible to create TE-Links that span more than one hop by   creating forwarding adjacencies (FAs) between non-adjacent nodes (see   Figure 2).  As in the one-hop case, multiple-hop TE-Links advertise   the ODU Switching Capability.           +-------+               +-------+               +-------+           |  OTN  |               |  OTN  |               |  OTN  |           |Switch |<- OTUk Link ->|Switch |<- OTUk Link ->|Switch |           |   A   |               |   B   |               |   C   |           +-------+               +-------+               +-------+                                 ODUk Switched                   |<------------- ODUk Link ------------->|                   |<-------------- TE-Link--------------->|                      Figure 2: Multiple-Hop TE-Link4.  ISCD Format Extensions   The ISCD describes the Switching Capability of an interface and is   defined in [RFC4203].  This document defines a new Switching   Capability value for OTN [G.709-2012] as follows:   Value          Type   -----          ----   110            OTN-TDM capableCeccarelli, et al.           Standards Track                    [Page 6]

RFC 7138           OSPF-TE Extensions for OTN Support         March 2014   When supporting the extensions defined in this document, for both   fixed and flexible ODUs, the Switching Capability and Encoding values   MUST be used as follows:   o  Switching Capability = OTN-TDM   o  Encoding Type = G.709 ODUk (Digital Path) as defined in [RFC4328]   The same Switching Type and encoding values must be used for both   fixed and flexible ODUs.  When Switching Capability and Encoding   fields are set to values as stated above, the Interface Switching   Capability Descriptor MUST be interpreted as defined in [RFC4203].   The MAX LSP Bandwidth field is used according to [RFC4203], i.e., 0   <= MAX LSP Bandwidth <= ODUk/OTUk, and intermediate values are those   on the branch of the OTN switching hierarchy supported by the   interface.  For example, in the OTU4 link it could be possible to   have ODU4 as MAX LSP Bandwidth for some priorities, ODU3 for others,   ODU2 for some others, etc.  The bandwidth unit is in bytes/second and   the encoding MUST be in IEEE floating point format.  The discrete   values for various ODUs are shown in the table below (please note   that there are 1000 bits in a kilobit according to normal practices   in telecommunications).   +-------------------+-----------------------------+-----------------+   |     ODU Type      |    ODU nominal bit rate     |Value in Byte/Sec|   |                   |                             |(floating p. val)|   +-------------------+-----------------------------+-----------------+   |       ODU0        |      1,244,160 kbps         |    0x4D1450C0   |   |       ODU1        | 239/238 x 2,488,320 kbps    |    0x4D94F048   |   |       ODU2        | 239/237 x 9,953,280 kbps    |    0x4E959129   |   |       ODU3        | 239/236 x 39,813,120 kbps   |    0x4F963367   |   |       ODU4        | 239/227 x 99,532,800 kbps   |    0x504331E3   |   |       ODU2e       | 239/237 x 10,312,500 kbps   |    0x4E9AF70A   |   |                   |                             |                 |   |  ODUflex for CBR  |    239/238 x client signal  |     MAX LSP     |   |  Client signals   |           bit rate          |    Bandwidth    |   |                   |                             |                 |   | ODUflex for GFP-F |                             |     MAX LSP     |   |  Mapped client    |      Configured bit rate    |    Bandwidth    |   |       signal      |                             |                 |   |                   |                             |                 |   |      ODUflex      |      Configured bit rate    |     MAX LSP     |   |     resizable     |                             |    Bandwidth    |   +-------------------+-----------------------------+-----------------+Ceccarelli, et al.           Standards Track                    [Page 7]

RFC 7138           OSPF-TE Extensions for OTN Support         March 2014   A single ISCD MAY be used for the advertisement of unbundled or   bundled links supporting homogeneous multiplexing hierarchies and the   same TS (tributary slot) granularity.  A different ISCD MUST be used   for each different muxing hierarchy (muxing tree in the following   examples) and different TS granularity supported within the TE-Link.   When a received LSA includes a sub-TLV not formatted accordingly to   the precise specifications in this document, the problem SHOULD be   logged and the wrongly formatted sub-TLV MUST NOT be used for path   computation.4.1.  Switching Capability Specific Information   The technology-specific part of the OTN-TDM ISCD may include a   variable number of sub-TLVs called Bandwidth sub-TLVs.  Each sub-TLV   is encoded with the sub-TLV header as defined in[RFC3630],   Section 2.3.2.  The muxing hierarchy tree MUST be encoded as an   order-independent list.  Two types of Bandwidth sub-TLVs are defined   (TBA by IANA).  Note that type values are defined in this document   and not in [RFC3630].   o  Type 1 - Unreserved Bandwidth for fixed containers   o  Type 2 - Unreserved/MAX LSP Bandwidth for flexible containers   The Switching Capability specific information (SCSI) MUST include one   Type 1 sub-TLV for each fixed container and one Type 2 sub-TLV for   each variable container.  Each container type is identified by a   Signal Type.  Signal Type values are defined in [RFC7139].   With respect to ODUflex, three different Signal Types are allowed:   o  20 - ODUflex(CBR) (i.e., 1.25*N Gbps)   o  21 - ODUflex(GFP-F), resizable (i.e., 1.25*N Gbps)   o  22 - ODUflex(GFP-F), non-resizable (i.e., 1.25*N Gbps)   where CBR stands for Constant Bit Rate, and GFP-F stands for Generic   Framing Procedure - Framed.   Each MUST always be advertised in separate Type 2 sub-TLVs as each   uses different adaptation functions [G.805].  In the case that both   GFP-F resizable and non-resizable (i.e., 21 and 22) are supported,   only Signal Type 21 SHALL be advertised as this type also implies   support for Type 22 adaptation.Ceccarelli, et al.           Standards Track                    [Page 8]

RFC 7138           OSPF-TE Extensions for OTN Support         March 20144.1.1.  Switching Capability Specific Information for Fixed Containers   The format of the Bandwidth sub-TLV for fixed containers is depicted   in the following figure:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Type = 1 (Unres-fix)   |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |  Signal Type  | Num of stages |T|S| TSG | Res |    Priority   |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |    Stage#1    |      ...      |   Stage#N     |    Padding    |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |  Unreserved ODUj at Prio 0    |             .....             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |  Unreserved ODUj at Prio 7    |     Unreserved Padding        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                   Figure 3: Bandwidth Sub-TLV -- Type 1   The values of the fields shown in Figure 3 are explained inSection 4.1.3.Ceccarelli, et al.           Standards Track                    [Page 9]

RFC 7138           OSPF-TE Extensions for OTN Support         March 20144.1.2.  Switching Capability Specific Information for Variable        Containers   The format of the Bandwidth sub-TLV for variable containers is   depicted in the following figure:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |    Type = 2 (Unres/MAX-var)   |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |  Signal Type  | Num of stages |T|S| TSG | Res |    Priority   |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |    Stage#1    |      ...      |   Stage#N     |    Padding    |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                Unreserved Bandwidth at priority 0             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                              ...                              |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                Unreserved Bandwidth at priority 7             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                 MAX LSP Bandwidth at priority 0               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                              ...                              |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                 MAX LSP Bandwidth at priority 7               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                   Figure 4: Bandwidth Sub-TLV -- Type 2   The values of the fields shown in figure 4 are explained inSection 4.1.3.4.1.3.  Switching Capability Specific Information -- Field Values and        Explanation   The fields in the Bandwidth sub-TLV MUST be filled as follows:   o  Signal Type (8 bits): Indicates the ODU type being advertised.      Values are defined in [RFC7139].   o  Num of stages (8 bits): This field indicates the number of      multiplexing stages used to transport the indicated Signal Type.      It MUST be set to the number of stages represented in the sub-TLV.Ceccarelli, et al.           Standards Track                   [Page 10]

RFC 7138           OSPF-TE Extensions for OTN Support         March 2014   o  Flags (8 bits):      *  T Flag (bit 17): Indicates whether the advertised bandwidth can         be terminated.  When the Signal Type can be terminated T MUST         be set, while when the Signal Type cannot be terminated T MUST         be cleared.      *  S Flag (bit 18): Indicates whether the advertised bandwidth can         be switched.  When the Signal Type can be switched, S MUST be         set; when the Signal Type cannot be switched, S MUST be         cleared.      *  The value 0 in both the T bit and S bit MUST NOT be used.   o  TSG (3 bits): Tributary Slot Granularity.  Used for the      advertisement of the supported tributary slot granularity.  The      following values MUST be used:      *  0 - Ignored      *  1 - 1.25 Gbps / 2.5 Gbps      *  2 - 2.5 Gbps only      *  3 - 1.25 Gbps only      *  4-7 - Reserved      A value of 1 MUST be used on interfaces that are configured to      support the fallback procedures defined in [G.798].  A value of 2      MUST be used on interfaces that only support 2.5 Gbps tributary      slots, such as [RFC4328] interfaces.  A value of 3 MUST be used on      interfaces that are configured to only support 1.25 Gbps tributary      slots.  A value of 0 MUST be used for non-multiplexed Signal Types      (i.e., a non-OTN client).   o  Res (3 bits): Reserved bits.  MUST be set to 0 and ignored on      receipt.   o  Priority (8 bits): A bitmap used to indicate which priorities are      being advertised.  The bitmap is in ascending order, with the      leftmost bit representing priority level 0 (i.e., the highest) and      the rightmost bit representing priority level 7 (i.e., the      lowest).  A bit MUST be set (1) corresponding to each priority      represented in the sub-TLV and MUST NOT be set (0) when the      corresponding priority is not represented.  At least one priority      level MUST be advertised that, unless overridden by local policy,      SHALL be at priority level 0.Ceccarelli, et al.           Standards Track                   [Page 11]

RFC 7138           OSPF-TE Extensions for OTN Support         March 2014   o  Stage (8 bits): Each Stage field indicates a Signal Type in the      multiplexing hierarchy used to transport the signal indicated in      the Signal Type field.  The number of Stage fields included in a      sub-TLV MUST equal the value of the Num of stages field.  The      Stage fields MUST be ordered to match the data plane in ascending      order (from the lowest order ODU to the highest order ODU).  The      values of the Stage field are the same as those defined for the      Signal Type field.  When the Num of stages field carries a 0, then      the Stage and Padding fields MUST be omitted.      *  Example: For the ODU1->ODU2->OD3 hierarchy, the Signal Type         field is set to ODU1 and two Stage fields are present, the         first indicating ODU2 and the second ODU3 (server layer).   o  Padding (variable): The Padding field is used to ensure the 32-bit      alignment of stage fields.  The length of the Padding field is      always a multiple of 8 bits (1 byte).  Its length can be      calculated, in bytes, as: 4 - ( "value of Num of stages field" %      4).  The Padding field MUST be set to a zero (0) value on      transmission and MUST be ignored on receipt.   o  Unreserved ODUj (16 bits): This field indicates the Unreserved      Bandwidth at a particular priority level.  This field MUST be set      to the number of ODUs at the indicated the Signal Type for a      particular priority level.  One field MUST be present for each bit      set in the Priority field, and the fields are ordered to match the      Priority field.  Fields MUST NOT be present for priority levels      that are not indicated in the Priority field.   o  Unreserved Padding (16 bits): The Padding field is used to ensure      the 32-bit alignment of the Unreserved ODUj fields.  When present,      the Unreserved Padding field is 16 bits (2 bytes) long.  When the      number of priorities is odd, the Unreserved Padding field MUST be      included.  When the number of priorities is even, the Unreserved      Padding MUST be omitted.   o  Unreserved Bandwidth (32 bits): This field indicates the      Unreserved Bandwidth at a particular priority level.  This field      MUST be set to the bandwidth, in bytes/second in IEEE floating      point format, available at the indicated Signal Type for a      particular priority level.  One field MUST be present for each bit      set in the Priority field, and the fields are ordered to match the      Priority field.  Fields MUST NOT be present for priority levels      that are not indicated in the Priority field.Ceccarelli, et al.           Standards Track                   [Page 12]

RFC 7138           OSPF-TE Extensions for OTN Support         March 2014   o  Maximum LSP Bandwidth (32 bits): This field indicates the maximum      bandwidth that can be allocated for a single LSP at a particular      priority level.  This field MUST be set to the maximum bandwidth,      in bytes/second in IEEE floating point format, available to a      single LSP at the indicated Signal Type for a particular priority      level.  One field MUST be present for each bit set in the Priority      field, and the fields are ordered to match the Priority field.      Fields MUST NOT be present for priority levels that are not      indicated in the Priority field.  The advertisement of the MAX LSP      Bandwidth MUST take into account HO OPUk bit rate tolerance and be      calculated according to the following formula:      *  Max LSP BW = (# available TSs) * (ODTUk.ts nominal bit rate) *         (1-HO OPUk bit rate tolerance)5.  Examples   The examples in the following pages are not normative and are not   intended to imply or mandate any specific implementation.5.1.  MAX LSP Bandwidth Fields in the ISCD   This example shows how the MAX LSP Bandwidth fields of the ISCD are   filled according to the evolving of the TE-Link bandwidth occupancy.   In this example, an OTU4 link is considered, with supported   priorities 0,2,4,7 and muxing hierarchy ODU1->ODU2->ODU3->ODU4.Ceccarelli, et al.           Standards Track                   [Page 13]

RFC 7138           OSPF-TE Extensions for OTN Support         March 2014   At time T0, with the link completely free, the advertisement would   be:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | SwCap=OTN_TDM | Encoding = 12 |    Reserved (all zeros)       |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |             MAX LSP Bandwidth at priority 0 = 100 Gbps        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |             MAX LSP Bandwidth at priority 1 = 0               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |             MAX LSP Bandwidth at priority 2 = 100 Gbps        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |             MAX LSP Bandwidth at priority 3 = 0               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |             MAX LSP Bandwidth at priority 4 = 100 Gbps        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |             MAX LSP Bandwidth at priority 5 = 0               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |             MAX LSP Bandwidth at priority 6 = 0               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |             MAX LSP Bandwidth at priority 7 = 100 Gbps        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |             Switching Capability Specific Information         |   |                        (variable length)                      |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+           Figure 5: MAX LSP Bandwidth Fields in the ISCD at T0Ceccarelli, et al.           Standards Track                   [Page 14]

RFC 7138           OSPF-TE Extensions for OTN Support         March 2014   At time T1, an ODU3 at priority 2 is set up, so for priority 0, the   MAX LSP Bandwidth is still equal to the ODU4 bandwidth, while for   priorities from 2 to 7 (excluding the non-supported ones), the MAX   LSP Bandwidth is equal to ODU3, as no more ODU4s are available and   the next supported ODUj in the hierarchy is ODU3.  The advertisement   is updated as follows:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | SwCap=OTN_TDM | Encoding = 12 |    Reserved (all zeros)       |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |             MAX LSP Bandwidth at priority 0 = 100 Gbps        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |             MAX LSP Bandwidth at priority 1 = 0               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |             MAX LSP Bandwidth at priority 2 = 40 Gbps         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |             MAX LSP Bandwidth at priority 3 = 0               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |             MAX LSP Bandwidth at priority 4 = 40 Gbps         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |             MAX LSP Bandwidth at priority 5 = 0               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |             MAX LSP Bandwidth at priority 6 = 0               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |             MAX LSP Bandwidth at priority 7 = 40 Gbps         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |             Switching Capability Specific Information         |   |                        (variable length)                      |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+           Figure 6: MAX LSP Bandwidth Fields in the ISCD at T1Ceccarelli, et al.           Standards Track                   [Page 15]

RFC 7138           OSPF-TE Extensions for OTN Support         March 2014   At time T2, an ODU2 at priority 4 is set up.  The first ODU3 has not   been available since T1 as it was kept by the ODU3 LSP, while the   second is no longer available and just 3 ODU2s are left in it.  ODU2   is now the MAX LSP Bandwidth for priorities higher than 4.  The   advertisement is updated as follows:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | SwCap=OTN_TDM | Encoding = 12 |    Reserved (all zeros)       |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |             MAX LSP Bandwidth at priority 0 = 100 Gbps        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |             MAX LSP Bandwidth at priority 1 = 0               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |             MAX LSP Bandwidth at priority 2 = 40 Gbps         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |             MAX LSP Bandwidth at priority 3 = 0               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |             MAX LSP Bandwidth at priority 4 = 10 Gbps         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |             MAX LSP Bandwidth at priority 5 = 0               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |             MAX LSP Bandwidth at priority 6 = 0               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |             MAX LSP Bandwidth at priority 7 = 10 Gbps         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |             Switching Capability Specific Information         |   |                        (variable length)                      |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+           Figure 7: MAX LSP Bandwidth Fields in the ISCD at T2Ceccarelli, et al.           Standards Track                   [Page 16]

RFC 7138           OSPF-TE Extensions for OTN Support         March 20145.2.  Example of T, S, and TS Granularity Utilization   In this example, an interface with tributary slot type 1.25 Gbps and   fallback procedure enabled is considered (TS granularity=1).  It   supports the simple ODU1->ODU2->ODU3 hierarchy and priorities 0 and   3.  Suppose that in this interface, the ODU3 Signal Type can be both   switched or terminated, the ODU2 can only be terminated, and the ODU1   can only be switched.  Please note that since the ODU1 is not being   advertised to support ODU0, the value of its TSG field is "ignored"   (TS granularity=0).  For the advertisement of the capabilities of   such an interface, a single ISCD is used.  Its format is as follows:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Type = 1 (Unres-fix)   |           Length = 12         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |Sig type=ODU1  |  #stages= 2   |0|1|  0  |0 0 0|1|0|0|1|0|0|0|0|   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | Stage#1=ODU2  | Stage#2=ODU3  |       Padding (all zeros)     |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |     Unres ODU1 at Prio 0      |     Unres ODU1 at Prio 3      |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Type = 1 (Unres-fix)   |           Length = 12         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |Sig type=ODU2  |  #stages= 1   |1|0|  1  |0 0 0|1|0|0|1|0|0|0|0|   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | Stage#1=ODU3  |        Padding (all zeros)                    |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |     Unres ODU2 at Prio 0      |     Unres ODU2 at Prio 3      |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Type = 1 (Unres-fix)   |           Length = 8          |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |Sig type=ODU3  |  #stages= 0   |1|1|  1  |0 0 0|1|0|0|1|0|0|0|0|   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |     Unres ODU3 at Prio 0      |     Unres ODU3 at Prio 3      |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+              Figure 8: T, S, and TS Granularity UtilizationCeccarelli, et al.           Standards Track                   [Page 17]

RFC 7138           OSPF-TE Extensions for OTN Support         March 20145.2.1.  Example of Different TS Granularities   In this example, two interfaces with homogeneous hierarchies but   different tributary slot types are considered.  The first one   supports an [RFC4328] interface (TS granularity=2) while the second   one supports a G.709-2012 interface with fallback procedure disabled   (TS granularity=3).  Both support the ODU1->ODU2->ODU3 hierarchy and   priorities 0 and 3.  Suppose that in this interface, the ODU3 Signal   Type can be both switched or terminated, the ODU2 can only be   terminated, and the ODU1 can only be switched.  For the advertisement   of the capabilities of such interfaces, two different ISCDs are used.   The format of their SCSIs is as follows:   SCSI of ISCD 1 -- TS granularity=2    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Type = 1 (Unres-fix)   |           Length = 12         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |Sig type=ODU1  |  #stages= 2   |0|1|  0  |0 0 0|1|0|0|1|0|0|0|0|   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | Stage#1=ODU2  | Stage#2=ODU3  |       Padding (all zeros)     |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |     Unres ODU1 at Prio 0      |     Unres ODU1 at Prio 3      |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Type = 1 (Unres-fix)   |           Length = 12         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |Sig type=ODU2  |  #stages= 1   |1|0|  1  |0 0 0|1|0|0|1|0|0|0|0|   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | Stage#1=ODU3  |        Padding (all zeros)                    |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |     Unres ODU2 at Prio 0      |     Unres ODU2 at Prio 3      |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Type = 1 (Unres-fix)   |           Length = 8          |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |Sig type=ODU3  |  #stages= 0   |1|1|  2  |0 0 0|1|0|0|1|0|0|0|0|   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |     Unres ODU3 at Prio 0      |     Unres ODU3 at Prio 3      |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+       Figure 9: Utilization of Different TS Granularities -- ISCD 1Ceccarelli, et al.           Standards Track                   [Page 18]

RFC 7138           OSPF-TE Extensions for OTN Support         March 2014   SCSI of ISCD 2 -- TS granularity=3    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Type = 1 (Unres-fix)   |           Length = 12         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |Sig type=ODU1  |  #stages= 2   |0|1|  0  |0 0 0|1|0|0|1|0|0|0|0|   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | Stage#1=ODU2  | Stage#2=ODU3  |       Padding (all zeros)     |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |     Unres ODU1 at Prio 0      |     Unres ODU1 at Prio 3      |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Type = 1 (Unres-fix)   |           Length = 12         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |Sig type=ODU2  |  #stages= 1   |1|0|  1  |0 0 0|1|0|0|1|0|0|0|0|   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | Stage#1=ODU3  |        Padding (all zeros)                    |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |     Unres ODU2 at Prio 0      |     Unres ODU2 at Prio 3      |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Type = 1 (Unres-fix)   |           Length = 8          |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |Sig type=ODU3  |  #stages= 0   |1|1|  3  |0 0 0|1|0|0|1|0|0|0|0|   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |     Unres ODU3 at Prio 0      |     Unres ODU3 at Prio 3      |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      Figure 10: Utilization of Different TS Granularities -- ISCD 2   Hierarchies with the same muxing tree but with different exported TS   granularity MUST be considered as non-homogenous hierarchies.  This   is the case in which an H-LSP and the client LSP are terminated on   the same egress node.  What can happen is that a loose Explicit Route   Object (ERO) is used at the hop where the signaled LSP is nested into   the Hierarchical-LSP (H-LSP) (penultimate hop of the LSP).   In the following figure, node C receives a loose ERO from A; the ERO   goes towards node E, and node C must choose between the ODU2 H-LSP on   if1 or the one on if2.  In this case, the H-LSP on if1 exports a   TS=1.25 Gbps, and the H-LSP on if2 exports a TS=2.5 Gbps; because the   service LSP being signaled needs a 1.25 Gbps tributary slot, only the   H-LSP on if1 can be used to reach node E.  For further details,   please seeSection 3.2 of [RFC7096].Ceccarelli, et al.           Standards Track                   [Page 19]

RFC 7138           OSPF-TE Extensions for OTN Support         March 2014                          ODU0-LSP         ..........................................................+         |                                                         |         |                                     ODU2-H-LSP          |         |                         +-------------------------------+         |                         |                               |      +--+--+      +-----+      +-----+ if1     +-----+         +-----+      |     | OTU3 |     | OTU3 |     |---------|     |---------|     |      |  A  +------+  B  +------+  C  | if2     |  D  |         |  E  |      |     |      |     |      |     |---------|     |---------|     |      +-----+      +-----+      +-----+         +-----+         +-----+            ... Service LSP            --- H-LSP          Figure 11: Example of Service LSP and H-LSP Terminating                             on the Same Node5.3.  Example of ODUflex Advertisement   In this example, the advertisement of an ODUflex->ODU3 hierarchy is   shown.  In the case of ODUflex advertisement, the MAX LSP Bandwidth   needs to be advertised, and in some cases, information about the   Unreserved Bandwidth could also be useful.  The amount of Unreserved   Bandwidth does not give a clear indication of how many ODUflex LSPs   can be set up either at the MAX LSP Bandwidth or at different rates,   as it gives no information about the spatial allocation of the free   TSs.   An indication of the amount of Unreserved Bandwidth could be useful   during the path computation process, as shown in the following   example.  Suppose there are two TE-Links (A and B) with MAX LSP   Bandwidth equal to 10 Gbps each.  In the case where 50 Gbps of   Unreserved Bandwidth are available on Link A, 10 Gbps on Link B, and   3 ODUflex LSPs of 10 Gbps each have to be restored, for sure only one   can be restored along Link B, and it is probable, but not certain,   that two of them can be restored along Link A.  The T, S, and TSG   fields are not relevant to this example (filled with Xs).   In the case of ODUflex advertisement, the Type 2 Bandwidth sub-TLV is   used.Ceccarelli, et al.           Standards Track                   [Page 20]

RFC 7138           OSPF-TE Extensions for OTN Support         March 2014    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |    Type = 2 (Unres/MAX-var)   |           Length  = 72        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |S. type=ODUflex|  #stages= 1   |X|X|X X X|0 0 0| Priority(8)   |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |  Stage#1=ODU3 |          Padding (all zeros)                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |               Unreserved Bandwidth at priority 0              |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |               Unreserved Bandwidth at priority 1              |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |               Unreserved Bandwidth at priority 2              |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |               Unreserved Bandwidth at priority 3              |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |               Unreserved Bandwidth at priority 4              |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |               Unreserved Bandwidth at priority 5              |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |               Unreserved Bandwidth at priority 6              |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |               Unreserved Bandwidth at priority 7              |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                 MAX LSP  Bandwidth at priority 0              |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                 MAX LSP  Bandwidth at priority 1              |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                 MAX LSP  Bandwidth at priority 2              |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                 MAX LSP  Bandwidth at priority 3              |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                 MAX LSP  Bandwidth at priority 4              |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                 MAX LSP  Bandwidth at priority 5              |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                 MAX LSP  Bandwidth at priority 6              |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                 MAX LSP  Bandwidth at priority 7              |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                     Figure 12: ODUflex AdvertisementCeccarelli, et al.           Standards Track                   [Page 21]

RFC 7138           OSPF-TE Extensions for OTN Support         March 20145.4.  Example of Single-Stage Muxing   Suppose there is 1 OTU4 component link supporting single-stage muxing   of ODU1, ODU2, ODU3, and ODUflex, the supported hierarchy can be   summarized in a tree as in the following figure.  For the sake of   simplicity, we also assume that only priorities 0 and 3 are   supported.  The T, S, and TSG fields are not relevant to this example   (filled with Xs).          ODU1 ODU2  ODU3 ODUflex             \   \    /   /              \   \  /   /               \   \/   /                  ODU4   The related SCSIs are as follows:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Type = 1 (Unres-fix)   |           Length = 8          |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |Sig type=ODU4  |  #stages= 0   |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |   Unres ODU4 at Prio 0 =1     |    Unres ODU4 at Prio 3 =1    |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Type = 1 (Unres-fix)   |           Length = 12         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |Sig type=ODU1  |  #stages= 1   |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | Stage#1=ODU4  |            Padding (all zeros)                |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |   Unres ODU1 at Prio 0 =40    |    Unres ODU1 at Prio 3 =40   |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Type = 1 (Unres-fix)   |           Length = 12         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |Sig type=ODU2  |  #stages= 1   |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | Stage#1=ODU4  |            Padding (all zeros)                |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |   Unres ODU2 at Prio 0 =10    |    Unres ODU2 at Prio 3 =10   |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Type = 1 (Unres-fix)   |           Length = 12         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |Sig type=ODU3  |  #stages= 1   |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | Stage#1=ODU4  |            Padding (all zeros)                |Ceccarelli, et al.           Standards Track                   [Page 22]

RFC 7138           OSPF-TE Extensions for OTN Support         March 2014   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |   Unres ODU3 at Prio 0 =2     |    Unres ODU3 at Prio 3 =2    |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |    Type = 2 (Unres/MAX-var)   |           Length = 24         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |S. type=ODUflex|  #stages= 1   |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |  Stage#1=ODU4 |            Padding (all zeros)                |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |            Unreserved Bandwidth at priority 0 =100 Gbps       |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |            Unreserved Bandwidth at priority 3 =100 Gbps       |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |              MAX LSP Bandwidth at priority 0 =100 Gbps        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |              MAX LSP Bandwidth at priority 3 =100 Gbps        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                      Figure 13: Single-Stage Muxing5.5.  Example of Multi-Stage Muxing -- Unbundled Link   Suppose there is 1 OTU4 component link with muxing capabilities as   shown in the following figure:          ODU2 ODU0    ODUflex ODU0             \ /            \ /              |              |            ODU3           ODU2               \            /                \          /                 \        /                  \      /                    ODU4   Considering only supported priorities 0 and 3, the advertisement is   composed by the following Bandwidth sub-TLVs (T and S fields are not   relevant to this example and filled with Xs):Ceccarelli, et al.           Standards Track                   [Page 23]

RFC 7138           OSPF-TE Extensions for OTN Support         March 2014    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Type = 1 (Unres-fix)   |           Length = 8          |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |Sig type=ODU4  |  #stages= 0   |X|X|  1  |0 0 0|1|0|0|1|0|0|0|0|   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |   Unres ODU4 at Prio 0 =1     |    Unres ODU4 at Prio 3 =1    |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Type = 1 (Unres-fix)   |           Length = 12         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |Sig type=ODU3  |  #stages= 1   |X|X|  1  |0 0 0|1|0|0|1|0|0|0|0|   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |  Stage#1=ODU4 |         Padding (all zeros)                   |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |   Unres ODU3 at Prio 0 =2     |    Unres ODU3 at Prio 3 =2    |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Type = 1 (Unres-fix)   |           Length = 12         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |Sig type=ODU2  |  #stages= 1   |X|X|  1  |0 0 0|1|0|0|1|0|0|0|0|   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |  Stage#1=ODU4 |         Padding (all zeros)                   |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |   Unres ODU2 at Prio 0 =10    |    Unres ODU2 at Prio 3 =10   |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Type = 1 (Unres-fix)   |           Length = 12         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |Sig type=ODU2  |  #stages= 2   |X|X|  0  |0 0 0|1|0|0|1|0|0|0|0|   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | Stage#1=ODU3  | Stage#2=ODU4  |    Padding (all zeros)        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |   Unres ODU2 at Prio 0 =8     |    Unres ODU2 at Prio 3 =8    |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Type = 1 (Unres-fix)   |           Length = 12         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |Sig type=ODU0  |  #stages= 2   |X|X|  0  |0 0 0|1|0|0|1|0|0|0|0|   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | Stage#1=ODU3  | Stage#2=ODU4  |    Padding (all zeros)        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |   Unres ODU0 at Prio 0 =64    |    Unres ODU0 at Prio 3 =64   |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Type = 1 (Unres-fix)   |           Length = 12         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |Sig type=ODU0  |  #stages= 2   |X|X|  0  |0 0 0|1|0|0|1|0|0|0|0|   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | Stage#1=ODU2  | Stage#2=ODU4  |    Padding (all zeros)        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |   Unres ODU0 at Prio 0 =80    |    Unres ODU0 at Prio 3 =80   |Ceccarelli, et al.           Standards Track                   [Page 24]

RFC 7138           OSPF-TE Extensions for OTN Support         March 2014   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |    Type = 2 (Unres/MAX-var)   |           Length = 24         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |S.type=ODUflex |  #stages= 2   |X|X|  0  |0 0 0|1|0|0|1|0|0|0|0|   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | Stage#1=ODU2  | Stage#2=ODU4  |    Padding (all zeros)        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |            Unreserved Bandwidth at priority 0 =100 Gbps       |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |            Unreserved Bandwidth at priority 3 =100 Gbps       |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |            MAX LSP Bandwidth at priority 0 =10 Gbps           |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |            MAX LSP Bandwidth at priority 3 =10 Gbps           |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+              Figure 14: Multi-Stage Muxing -- Unbundled Link5.6.  Example of Multi-Stage Muxing -- Bundled Links   In this example, 2 OTU4 component links with the same supported TS   granularity and homogeneous muxing hierarchies are considered.  The   following muxing capabilities trees are supported:   Component Link#1      Component Link#2      ODU2 ODU0             ODU2 ODU0         \ /                   \ /          |                     |         ODU3                  ODU3          |                     |         ODU4                  ODU4Ceccarelli, et al.           Standards Track                   [Page 25]

RFC 7138           OSPF-TE Extensions for OTN Support         March 2014   Considering only supported priorities 0 and 3, the advertisement is   as follows (the T, S, and TSG fields are not relevant to this example   and filled with Xs):    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Type = 1 (Unres-fix)   |           Length = 8          |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |Sig type=ODU4  |  #stages= 0   |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |   Unres ODU4 at Prio 0 =2     |    Unres ODU4 at Prio 3 =2    |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Type = 1 (Unres-fix)   |           Length = 12         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |Sig type=ODU3  |  #stages= 1   |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |  Stage#1=ODU4 |          Padding (all zeros)                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |   Unres ODU3 at Prio 0 =4     |    Unres ODU3 at Prio 3 =4    |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Type = 1 (Unres-fix)   |           Length = 12         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |Sig type=ODU2  |  #stages= 2   |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | Stage#1=ODU3  | Stage#2=ODU4  |    Padding (all zeros)        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |   Unres ODU2 at Prio 0 =16    |    Unres ODU2 at Prio 3 =16   |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Type = 1 (Unres-fix)   |           Length = 12         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |Sig type=ODU0  |  #stages= 2   |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | Stage#1=ODU3  | Stage#2=ODU4  |    Padding (all zeros)        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |   Unres ODU0 at Prio 0 =128   |    Unres ODU0 at Prio 3 =128  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+              Figure 15: Multi-Stage Muxing -- Bundled LinksCeccarelli, et al.           Standards Track                   [Page 26]

RFC 7138           OSPF-TE Extensions for OTN Support         March 20145.7.  Example of Component Links with Non-Homogeneous Hierarchies   In this example, 2 OTU4 component links with the same supported TS   granularity and non-homogeneous muxing hierarchies are considered.   The following muxing capabilities trees are supported:   Component Link#1      Component Link#2      ODU2 ODU0             ODU1 ODU0         \ /                   \ /          |                     |         ODU3                  ODU2          |                     |         ODU4                  ODU4Ceccarelli, et al.           Standards Track                   [Page 27]

RFC 7138           OSPF-TE Extensions for OTN Support         March 2014   Considering only supported priorities 0 and 3, the advertisement uses   two different ISCDs, one for each hierarchy (the T, S, and TSG fields   are not relevant to this example and filled with Xs).  In the   following figure, the SCSI of each ISCD is shown:   SCSI of ISCD 1 -- Component Link#1    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Type = 1 (Unres-fix)   |           Length = 8          |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |Sig type=ODU4  |  #stages= 0   |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |   Unres ODU4 at Prio 0 =1     |    Unres ODU4 at Prio 3 =1    |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Type = 1 (Unres-fix)   |           Length = 12         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |Sig type=ODU3  |  #stages= 1   |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |  Stage#1=ODU4 |           Padding (all zeros)                 |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |   Unres ODU3 at Prio 0 =2     |    Unres ODU3 at Prio 3 =2    |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Type = 1 (Unres-fix)   |           Length = 12         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |Sig type=ODU2  |  #stages= 2   |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | Stage#1=ODU3  | Stage#2=ODU4  |    Padding (all zeros)        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |   Unres ODU2 at Prio 0 =8     |    Unres ODU2 at Prio 3 =8    |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Type = 1 (Unres-fix)   |           Length = 12         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |Sig type=ODU0  |  #stages= 2   |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | Stage#1=ODU3  | Stage#2=ODU4  |    Padding (all zeros)        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |   Unres ODU0 at Prio 0 =64    |    Unres ODU0 at Prio 3 =64   |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      Figure 16: Multi-Stage Muxing -- Non-Homogeneous Hierarchies --                                  ISCD 1Ceccarelli, et al.           Standards Track                   [Page 28]

RFC 7138           OSPF-TE Extensions for OTN Support         March 2014   SCSI of ISCD 2 -- Component Link#2    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Type = 1 (Unres-fix)   |           Length = 8          |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |Sig type=ODU4  |  #stages= 0   |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |   Unres ODU4 at Prio 0 =1     |    Unres ODU4 at Prio 3 =1    |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Type = 1 (Unres-fix)   |           Length = 12         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |Sig type=ODU2  |  #stages= 1   |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |  Stage#1=ODU4 |           Padding (all zeros)                 |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |   Unres ODU2 at Prio 0 =10    |    Unres ODU2 at Prio 3 =10   |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Type = 1 (Unres-fix)   |           Length = 12         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |Sig type=ODU1  |  #stages= 2   |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | Stage#1=ODU2  | Stage#2=ODU4  |    Padding (all zeros)        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |   Unres ODU1 at Prio 0 =40    |    Unres ODU1 at Prio 3 =40   |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Type = 1 (Unres-fix)   |           Length = 12         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |Sig type=ODU0  |  #stages= 2   |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | Stage#1=ODU2  | Stage#2=ODU4  |    Padding (all zeros)        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |   Unres ODU0 at Prio 0 =80    |    Unres ODU0 at Prio 3 =80   |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      Figure 17: Multi-Stage Muxing -- Non-Homogeneous Hierarchies --                                  ISCD 26.  OSPFv2 Scalability   This document does not introduce OSPF scalability issues with respect   to existing GMPLS encoding and does not require any modification to   flooding frequency.  Moreover, the design of the encoding has been   carried out taking into account bandwidth optimization, in   particular:Ceccarelli, et al.           Standards Track                   [Page 29]

RFC 7138           OSPF-TE Extensions for OTN Support         March 2014   o  Only unreserved and MAX LSP Bandwidth related to supported      priorities are advertised.   o  For fixed containers, only the number of available containers is      advertised instead of the available bandwidth in order to use only      16 bits per container instead of 32 (as per former GMPLS      encoding).   In order to further reduce the amount of data advertised it is   RECOMMENDED to bundle component links with homogeneous hierarchies as   described in [RFC4201] and illustrated inSection 5.6.7.  Compatibility   All implementations of this document MAY also support advertisement   as defined in [RFC4203].  When nodes support both the advertisement   method in [RFC4203] and the one in this document, implementations   MUST support the configuration of which advertisement method is   followed.  The choice of which is used is based on policy and beyond   the scope of this document.  This enables nodes following each method   to identify similar supporting nodes and compute paths using only the   appropriate nodes.8.  Security Considerations   This document extends [RFC4203].  As with [RFC4203], it specifies the   contents of Opaque LSAs in OSPFv2.  As Opaque LSAs are not used for   Shortest Path First (SPF) computation or normal routing, the   extensions specified here have no direct effect on IP routing.   Tampering with GMPLS TE LSAs may have an effect on the underlying   transport (optical and/or Synchronous Optical Network - Synchronous   Digital Hierarchy (SONET-SDH) network.  [RFC3630] notes that the   security mechanisms described in [RFC2328] apply to Opaque LSAs   carried in OSPFv2.  An analysis of the security of OSPF is provided   in [RFC6863] and applies to the extensions to OSPF as described in   this document.  Any new mechanisms developed to protect the   transmission of information carried in Opaque LSAs will also   automatically protect the extensions defined in this document.   Please refer to [RFC5920] for details on security threats; defensive   techniques; monitoring, detection, and reporting of security attacks;   and requirements.Ceccarelli, et al.           Standards Track                   [Page 30]

RFC 7138           OSPF-TE Extensions for OTN Support         March 20149.  IANA Considerations9.1.  Switching Types   IANA has made the following assignment in the "Switching Types"   section of the "Generalized Multi-Protocol Label Switching (GMPLS)   Signaling Parameters" registry located at   <http://www.iana.org/assignments/gmpls-sig-parameters>:   Value      Name                          Reference   ---------  --------------------------    ----------   110        OTN-TDM capable               [RFC7138]   The same type of modification has been applied to the IANA-GMPLS-TC-   MIB at <https://www.iana.org/assignments/ianagmplstc-mib>, where the   value:   OTN-TDM (110), -- Time-Division-Multiplex OTN-TDM capable   has been added to the IANAGmplsSwitchingTypeTC ::= TEXTUAL-CONVENTION   syntax list.9.2.  New Sub-TLVs   This document defines 2 new sub-TLVs that are carried in Interface   Switching Capability Descriptors [RFC4203] with the Signal Type OTN-   TDM.  Each sub-TLV includes a 16-bit type identifier (the T-field).   The same T-field values are applicable to the new sub-TLV.   IANA has created and will maintain a new sub-registry, the "Types for   sub-TLVs of OTN-TDM SCSI (Switching Capability Specific Information)"   registry under the "Open Shortest Path First (OSPF) Traffic   Engineering TLVs" registry, see   <http://www.iana.org/assignments/ospf-traffic-eng-tlvs>, with the   sub-TLV types as follows:   Value       Sub-TLV                       Reference   ---------   --------------------------    ----------   0           Reserved                      [RFC7138]   1           Unreserved Bandwidth for      [RFC7138]               fixed containers   2           Unreserved/MAX Bandwidth for  [RFC7138]               flexible containers   3-65535     Unassigned   Types are to be assigned via Standards Action as defined in   [RFC5226].Ceccarelli, et al.           Standards Track                   [Page 31]

RFC 7138           OSPF-TE Extensions for OTN Support         March 201410.  Contributors   Diego Caviglia   Ericsson   Via E. Melen, 77   Genova   Italy   EMail: diego.caviglia@ericsson.com   Dan Li   Huawei Technologies   Bantian, Longgang District   Shenzhen 518129   P.R. China   EMail: danli@huawei.com   Pietro Vittorio Grandi   Alcatel-Lucent   Via Trento, 30   Vimercate   Italy   EMail: pietro_vittorio.grandi@alcatel-lucent.com   Khuzema Pithewan   Infinera Corporation   140 Caspian CT.   Sunnyvale, CA   USA   EMail: kpithewan@infinera.com   Xiaobing Zi   Huawei Technologies   EMail: zixiaobing@huawei.com   Francesco Fondelli   Ericsson   EMail: francesco.fondelli@ericsson.com   Marco Corsi   EMail: corsi.marco@gmail.com   Eve Varma   Alcatel-Lucent   EMail: eve.varma@alcatel-lucent.com   Jonathan Sadler   Tellabs   EMail: jonathan.sadler@tellabs.comCeccarelli, et al.           Standards Track                   [Page 32]

RFC 7138           OSPF-TE Extensions for OTN Support         March 2014   Lyndon Ong   Ciena   EMail: lyong@ciena.com   Ashok Kunjidhapatham   EMail: akunjidhapatham@infinera.com   Snigdho Bardalai   EMail: sbardalai@infinera.com   Steve Balls   EMail: Steve.Balls@metaswitch.com   Jonathan Hardwick   EMail: Jonathan.Hardwick@metaswitch.com   Xihua Fu   EMail: fu.xihua@zte.com.cn   Cyril Margaria   EMail: cyril.margaria@nsn.com   Malcolm Betts   EMail: Malcolm.betts@zte.com.cn11.  Acknowledgements   The authors would like to thank Fred Gruman and Lou Berger for their   valuable comments and suggestions.12.  References12.1.  Normative References   [G.709-2012] ITU-T, "Interface for the optical transport network",                Recommendation G.709/Y.1331, February 2012.   [RFC2119]    Bradner, S., "Key words for use in RFCs to Indicate                Requirement Levels",BCP 14,RFC 2119, March 1997.   [RFC3630]    Katz, D., Kompella, K., and D. Yeung, "Traffic                Engineering (TE) Extensions to OSPF Version 2",RFC3630, September 2003.   [RFC4201]    Kompella, K., Rekhter, Y., and L. Berger, "Link Bundling                in MPLS Traffic Engineering (TE)",RFC 4201, October                2005.Ceccarelli, et al.           Standards Track                   [Page 33]

RFC 7138           OSPF-TE Extensions for OTN Support         March 2014   [RFC4203]    Kompella, K. and Y. Rekhter, "OSPF Extensions in Support                of Generalized Multi-Protocol Label Switching (GMPLS)",RFC 4203, October 2005.   [RFC4328]    Papadimitriou, D., "Generalized Multi-Protocol Label                Switching (GMPLS) Signaling Extensions for G.709 Optical                Transport Networks Control",RFC 4328, January 2006.12.2.  Informative References   [G.798]      ITU-T, "Characteristics of optical transport network                hierarchy equipment functional blocks", Recommendation                G.798, December 2012.   [G.805]      ITU-T, "Generic functional architecture of transport                networks", Recommendation G.805, March 2000.   [RFC2328]    Moy, J., "OSPF Version 2", STD 54,RFC 2328, April 1998.   [RFC5226]    Narten, T. and H. Alvestrand, "Guidelines for Writing an                IANA Considerations Section in RFCs",BCP 26,RFC 5226,                May 2008.   [RFC5920]    Fang, L., "Security Framework for MPLS and GMPLS                Networks",RFC 5920, July 2010.   [RFC6163]    Lee, Y., Bernstein, G., and W. Imajuku, "Framework for                GMPLS and Path Computation Element (PCE) Control of                Wavelength Switched Optical Networks (WSONs)",RFC 6163,                April 2011.   [RFC6566]    Lee, Y., Bernstein, G., Li, D., and G. Martinelli, "A                Framework for the Control of Wavelength Switched Optical                Networks (WSONs) with Impairments",RFC 6566, March                2012.   [RFC6863]    Hartman, S. and D. Zhang, "Analysis of OSPF Security                According to the Keying and Authentication for Routing                Protocols (KARP) Design Guide",RFC 6863, March 2013.   [RFC7062]    Zhang, F., Li, D., Li, H., Belotti, S., and D.                Ceccarelli, "Framework for GMPLS and PCE Control of                G.709 Optical Transport Networks",RFC 7062, November                2013.Ceccarelli, et al.           Standards Track                   [Page 34]

RFC 7138           OSPF-TE Extensions for OTN Support         March 2014   [RFC7096]    Belotti, S., Grandi, P., Ceccarelli, D., Ed., Caviglia,                D., and F. Zhang, "Evaluation of Existing GMPLS Encoding                against G.709v3 Optical Transport Networks (OTNs)",RFC7096, January 2014.   [RFC7139]    Zhang, F., Ed., Zhang, G., Belotti, S., Ceccarelli, D.,                and K.  Pithewan, "GMPLS Signaling Extensions for                Control of Evolving G.709 Optical Transport Networks",RFC 7139, March 2014.Ceccarelli, et al.           Standards Track                   [Page 35]

RFC 7138           OSPF-TE Extensions for OTN Support         March 2014Authors' Addresses   Daniele Ceccarelli (editor)   Ericsson   Via E.Melen 77   Genova - Erzelli   Italy   EMail: daniele.ceccarelli@ericsson.com   Fatai Zhang   Huawei Technologies   F3-5-B R&D Center, Huawei Base   Bantian, Longgang District   Shenzhen  518129   P.R. China   Phone: +86-755-28972912   EMail: zhangfatai@huawei.com   Sergio Belotti   Alcatel-Lucent   Via Trento, 30   Vimercate   Italy   EMail: sergio.belotti@alcatel-lucent.com   Rajan Rao   Infinera Corporation   140, Caspian CT.   Sunnyvale, CA-94089   USA   EMail: rrao@infinera.com   John E. Drake   Juniper   EMail: jdrake@juniper.netCeccarelli, et al.           Standards Track                   [Page 36]

[8]ページ先頭

©2009-2025 Movatter.jp