Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|PDF|HTML] [Tracker] [IPR] [Errata] [Info page]

Obsoleted by:7761 PROPOSED STANDARD
Updated by:5059,5796,6226Errata Exist
Network Working Group                                          B. FennerRequest for Comments: 4601                          AT&T Labs - ResearchObsoletes:2362                                               M. HandleyCategory: Standards Track                                            UCL                                                             H. Holbrook                                                                 Arastra                                                             I. Kouvelas                                                                   Cisco                                                             August 2006Protocol Independent Multicast - Sparse Mode (PIM-SM):Protocol Specification (Revised)Status of This Memo   This document specifies an Internet standards track protocol for the   Internet community, and requests discussion and suggestions for   improvements.  Please refer to the current edition of the "Internet   Official Protocol Standards" (STD 1) for the standardization state   and status of this protocol.  Distribution of this memo is unlimited.Copyright Notice   Copyright (C) The Internet Society (2006).Abstract   This document specifies Protocol Independent Multicast - Sparse Mode   (PIM-SM).  PIM-SM is a multicast routing protocol that can use the   underlying unicast routing information base or a separate multicast-   capable routing information base.  It builds unidirectional shared   trees rooted at a Rendezvous Point (RP) per group, and optionally   creates shortest-path trees per source.   This document obsoletesRFC 2362, an Experimental version of PIM-SM.Fenner, et al.              Standards Track                     [Page 1]

RFC 4601                  PIM-SM Specification               August 2006Table of Contents1. Introduction ....................................................52. Terminology .....................................................52.1. Definitions ................................................52.2. Pseudocode Notation ........................................73. PIM-SM Protocol Overview ........................................73.1. Phase One: RP Tree .........................................83.2. Phase Two: Register-Stop ...................................83.3. Phase Three: Shortest-Path Tree ............................93.4. Source-Specific Joins .....................................103.5. Source-Specific Prunes ....................................113.6. Multi-Access Transit LANs .................................113.7. RP Discovery ..............................................124. Protocol Specification .........................................124.1. PIM Protocol State ........................................134.1.1. General Purpose State ..............................144.1.2. (*,*,RP) State .....................................154.1.3. (*,G) State ........................................164.1.4. (S,G) State ........................................174.1.5. (S,G,rpt) State ....................................204.1.6. State Summarization Macros .........................214.2. Data Packet Forwarding Rules ..............................264.2.1. Last-Hop Switchover to the SPT .....................284.2.2. Setting and Clearing the (S,G) SPTbit ..............294.3. Designated Routers (DR) and Hello Messages ................304.3.1. Sending Hello Messages .............................304.3.2. DR Election ........................................324.3.3. Reducing Prune Propagation Delay on LANs ...........344.3.4. Maintaining Secondary Address Lists ................374.4. PIM Register Messages .....................................384.4.1. Sending Register Messages from the DR ..............384.4.2. Receiving Register Messages at the RP ..............434.5. PIM Join/Prune Messages ...................................454.5.1. Receiving (*,*,RP) Join/Prune Messages .............454.5.2. Receiving (*,G) Join/Prune Messages ................494.5.3. Receiving (S,G) Join/Prune Messages ................534.5.4. Receiving (S,G,rpt) Join/Prune Messages ............564.5.5. Sending (*,*,RP) Join/Prune Messages ...............624.5.6. Sending (*,G) Join/Prune Messages ..................664.5.7. Sending (S,G) Join/Prune Messages ..................714.5.8. (S,G,rpt) Periodic Messages ........................764.5.9. State Machine for (S,G,rpt) Triggered Messages .....774.5.10. Background: (*,*,RP) and (S,G,rpt) Interaction ....824.6. PIM Assert Messages .......................................834.6.1. (S,G) Assert Message State Machine .................834.6.2. (*,G) Assert Message State Machine .................914.6.3. Assert Metrics .....................................98Fenner, et al.              Standards Track                     [Page 2]

RFC 4601                  PIM-SM Specification               August 20064.6.4. AssertCancel Messages ..............................994.6.5. Assert State Macros ...............................1004.7. PIM Bootstrap and RP Discovery ...........................1034.7.1. Group-to-RP Mapping ...............................1044.7.2. Hash Function .....................................1054.8. Source-Specific Multicast ................................106           4.8.1. Protocol Modifications for SSM Destination                  Addresses .........................................1064.8.2. PIM-SSM-Only Routers ..............................1074.9. PIM Packet Formats .......................................1084.9.1. Encoded Source and Group Address Formats ..........1104.9.2. Hello Message Format ..............................1134.9.3. Register Message Format ...........................1164.9.4. Register-Stop Message Format ......................1194.9.5. Join/Prune Message Format .........................1194.9.5.1. Group Set Source List Rules ..............1224.9.5.2. Group Set Fragmentation ..................1264.9.6. Assert Message Format .............................1264.10. PIM Timers ..............................................1284.11. Timer Values ............................................1295. IANA Considerations ...........................................1355.1. PIM Address Family .......................................1355.2. PIM Hello Options ........................................1366. Security Considerations .......................................1366.1. Attacks Based on Forged Messages .........................1366.1.1. Forged Link-Local Messages ........................1366.1.2. Forged Unicast Messages ...........................1376.2. Non-Cryptographic Authentication Mechanisms ..............1376.3. Authentication Using IPsec ...............................1386.3.1. Protecting Link-Local Multicast Messages ..........1386.3.2. Protecting Unicast Messages .......................1396.3.2.1. Register Messages ........................1396.3.2.2. Register-Stop Messages ...................1396.4. Denial-of-Service Attacks ................................1407. Acknowledgements ..............................................1408. Normative References ..........................................1419. Informative References ........................................141Appendix A. PIM Multicast Border Router Behavior .................143A.1. Sources External to the PIM-SM Domain ....................143A.2.  Sources Internal to the PIM-SM Domain ...................144Appendix B. Index ................................................146Fenner, et al.              Standards Track                     [Page 3]

RFC 4601                  PIM-SM Specification               August 2006List of Figures   Figure 1. Per-(S,G) register state machine at a DR ................38   Figure 2. Downstream per-interface (*,*,RP) state machine .........46   Figure 3. Downstream per-interface (*,G) state machine ............50   Figure 4. Downstream per-interface (S,G) state machine ............53   Figure 5. Downstream per-interface (S,G,rpt) state machine ........57   Figure 6. Upstream (*,*,RP) state machine .........................62   Figure 7. Upstream (*,G) state machine ............................67   Figure 8. Upstream (S,G) state machine ............................71   Figure 9. Upstream (S,G,rpt) state machine for triggered             messages ................................................77   Figure 10. Per-interface (S,G) Assert State machine ...............84   Figure 11. Per-interface (*,G) Assert State machine ...............92Fenner, et al.              Standards Track                     [Page 4]

RFC 4601                  PIM-SM Specification               August 20061.  Introduction   This document specifies a protocol for efficiently routing multicast   groups that may span wide-area (and inter-domain) internets.  This   protocol is called Protocol Independent Multicast - Sparse Mode   (PIM-SM) because, although it may use the underlying unicast routing   to provide reverse-path information for multicast tree building, it   is not dependent on any particular unicast routing protocol.   PIM-SM version 2 was originally specified inRFC 2117 and was revised   inRFC 2362, both Experimental RFCs.  This document is intended to   obsoleteRFC 2362, to correct a number of deficiencies that have been   identified with the way PIM-SM was previously specified, and to bring   PIM-SM onto the IETF Standards Track.  As far as possible, this   document specifies the same protocol asRFC 2362 and only diverges   from the behavior intended byRFC 2362 when the previously specified   behavior was clearly incorrect.  Routers implemented according to the   specification in this document will be able to interoperate   successfully with routers implemented according toRFC 2362.2.  Terminology   In this document, the key words "MUST", "MUST NOT", "REQUIRED",   "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",   and "OPTIONAL" are to be interpreted as described inRFC 2119 [1] and   indicate requirement levels for compliant PIM-SM implementations.2.1.  Definitions   The following terms have special significance for PIM-SM:   Rendezvous Point (RP):         An RP is a router that has been configured to be used as the         root of the non-source-specific distribution tree for a         multicast group.  Join messages from receivers for a group are         sent towards the RP, and data from senders is sent to the RP so         that receivers can discover who the senders are and start to         receive traffic destined for the group.   Designated Router (DR):         A shared-media LAN like Ethernet may have multiple PIM-SM         routers connected to it.  A single one of these routers, the         DR, will act on behalf of directly connected hosts with respect         to the PIM-SM protocol.  A single DR is elected per interface         (LAN or otherwise) using a simple election process.Fenner, et al.              Standards Track                     [Page 5]

RFC 4601                  PIM-SM Specification               August 2006   MRIB  Multicast Routing Information Base.  This is the multicast         topology table, which is typically derived from the unicast         routing table, or routing protocols such as Multiprotocol BGP         (MBGP) that carry multicast-specific topology information.  In         PIM-SM, the MRIB is used to decide where to send Join/Prune         messages.  A secondary function of the MRIB is to provide         routing metrics for destination addresses; these metrics are         used when sending and processing Assert messages.   RPF Neighbor         RPF stands for "Reverse Path Forwarding".  The RPF Neighbor of         a router with respect to an address is the neighbor that the         MRIB indicates should be used to forward packets to that         address.  In the case of a PIM-SM multicast group, the RPF         neighbor is the router that a Join message for that group would         be directed to, in the absence of modifying Assert state.   TIB   Tree Information Base.  This is the collection of state at a         PIM router that has been created by receiving PIM Join/Prune         messages, PIM Assert messages, and Internet Group Management         Protocol (IGMP) or Multicast Listener Discovery (MLD)         information from local hosts.  It essentially stores the state         of all multicast distribution trees at that router.   MFIB  Multicast Forwarding Information Base.  The TIB holds all the         state that is necessary to forward multicast packets at a         router.  However, although this specification defines         forwarding in terms of the TIB, to actually forward packets         using the TIB is very inefficient.  Instead, a real router         implementation will normally build an efficient MFIB from the         TIB state to perform forwarding.  How this is done is         implementation-specific and is not discussed in this document.   Upstream         Towards the root of the tree.  The root of tree may be either         the source or the RP, depending on the context.   Downstream         Away from the root of the tree.   GenID Generation Identifier, used to detect reboots.   PMBR  PIM Multicast Border Router, joining a PIM domain with another         multicast domain.Fenner, et al.              Standards Track                     [Page 6]

RFC 4601                  PIM-SM Specification               August 20062.2.  Pseudocode Notation   We use set notation in several places in this specification.   A (+) B is the union of two sets, A and B.   A (-) B is the elements of set A that are not in set B.   NULL    is the empty set or list.   In addition, we use C-like syntax:   =       denotes assignment of a variable.   ==      denotes a comparison for equality.   !=      denotes a comparison for inequality.   Braces { and } are used for grouping.3.  PIM-SM Protocol Overview   This section provides an overview of PIM-SM behavior.  It is intended   as an introduction to how PIM-SM works, and it is NOT definitive.   For the definitive specification, seeSection 4.   PIM relies on an underlying topology-gathering protocol to populate a   routing table with routes.  This routing table is called the   Multicast Routing Information Base (MRIB).  The routes in this table   may be taken directly from the unicast routing table, or they may be   different and provided by a separate routing protocol such as MBGP   [10].  Regardless of how it is created, the primary role of the MRIB   in the PIM protocol is to provide the next-hop router along a   multicast-capable path to each destination subnet.  The MRIB is used   to determine the next-hop neighbor to which any PIM Join/Prune   message is sent.  Data flows along the reverse path of the Join   messages.  Thus, in contrast to the unicast RIB, which specifies the   next hop that a data packet would take to get to some subnet, the   MRIB gives reverse-path information and indicates the path that a   multicast data packet would take from its origin subnet to the router   that has the MRIB.   Like all multicast routing protocols that implement the service model   fromRFC 1112 [3], PIM-SM must be able to route data packets from   sources to receivers without either the sources or receivers knowing   a priori of the existence of the others.  This is essentially done in   three phases, although as senders and receivers may come and go at   any time, all three phases may occur simultaneously.Fenner, et al.              Standards Track                     [Page 7]

RFC 4601                  PIM-SM Specification               August 20063.1.  Phase One: RP Tree   In phase one, a multicast receiver expresses its interest in   receiving traffic destined for a multicast group.  Typically, it does   this using IGMP [2] or MLD [4], but other mechanisms might also serve   this purpose.  One of the receiver's local routers is elected as the   Designated Router (DR) for that subnet.  On receiving the receiver's   expression of interest, the DR then sends a PIM Join message towards   the RP for that multicast group.  This Join message is known as a   (*,G) Join because it joins group G for all sources to that group.   The (*,G) Join travels hop-by-hop towards the RP for the group, and   in each router it passes through, multicast tree state for group G is   instantiated.  Eventually, the (*,G) Join either reaches the RP or   reaches a router that already has (*,G) Join state for that group.   When many receivers join the group, their Join messages converge on   the RP and form a distribution tree for group G that is rooted at the   RP.  This is known as the RP Tree (RPT), and is also known as the   shared tree because it is shared by all sources sending to that   group.  Join messages are resent periodically so long as the receiver   remains in the group.  When all receivers on a leaf-network leave the   group, the DR will send a PIM (*,G) Prune message towards the RP for   that multicast group.  However, if the Prune message is not sent for   any reason, the state will eventually time out.   A multicast data sender just starts sending data destined for a   multicast group.  The sender's local router (DR) takes those data   packets, unicast-encapsulates them, and sends them directly to the   RP.  The RP receives these encapsulated data packets, decapsulates   them, and forwards them onto the shared tree.  The packets then   follow the (*,G) multicast tree state in the routers on the RP Tree,   being replicated wherever the RP Tree branches, and eventually   reaching all the receivers for that multicast group.  The process of   encapsulating data packets to the RP is called registering, and the   encapsulation packets are known as PIM Register packets.   At the end of phase one, multicast traffic is flowing encapsulated to   the RP, and then natively over the RP tree to the multicast   receivers.3.2.  Phase Two: Register-Stop   Register-encapsulation of data packets is inefficient for two   reasons:   o Encapsulation and decapsulation may be relatively expensive     operations for a router to perform, depending on whether or not the     router has appropriate hardware for these tasks.Fenner, et al.              Standards Track                     [Page 8]

RFC 4601                  PIM-SM Specification               August 2006   o Traveling all the way to the RP, and then back down the shared tree     may result in the packets traveling a relatively long distance to     reach receivers that are close to the sender.  For some     applications, this increased latency or bandwidth consumption is     undesirable.   Although Register-encapsulation may continue indefinitely, for these   reasons, the RP will normally choose to switch to native forwarding.   To do this, when the RP receives a register-encapsulated data packet   from source S on group G, it will normally initiate an (S,G) source-   specific Join towards S.  This Join message travels hop-by-hop   towards S, instantiating (S,G) multicast tree state in the routers   along the path.  (S,G) multicast tree state is used only to forward   packets for group G if those packets come from source S.  Eventually   the Join message reaches S's subnet or a router that already has   (S,G) multicast tree state, and then packets from S start to flow   following the (S,G) tree state towards the RP.  These data packets   may also reach routers with (*,G) state along the path towards the   RP; if they do, they can shortcut onto the RP tree at this point.   While the RP is in the process of joining the source-specific tree   for S, the data packets will continue being encapsulated to the RP.   When packets from S also start to arrive natively at the RP, the RP   will be receiving two copies of each of these packets.  At this   point, the RP starts to discard the encapsulated copy of these   packets, and it sends a Register-Stop message back to S's DR to   prevent the DR from unnecessarily encapsulating the packets.   At the end of phase 2, traffic will be flowing natively from S along   a source-specific tree to the RP, and from there along the shared   tree to the receivers.  Where the two trees intersect, traffic may   transfer from the source-specific tree to the RP tree and thus avoid   taking a long detour via the RP.   Note that a sender may start sending before or after a receiver joins   the group, and thus phase two may happen before the shared tree to   the receiver is built.3.3.  Phase Three: Shortest-Path Tree   Although having the RP join back towards the source removes the   encapsulation overhead, it does not completely optimize the   forwarding paths.  For many receivers, the route via the RP may   involve a significant detour when compared with the shortest path   from the source to the receiver.Fenner, et al.              Standards Track                     [Page 9]

RFC 4601                  PIM-SM Specification               August 2006   To obtain lower latencies or more efficient bandwidth utilization, a   router on the receiver's LAN, typically the DR, may optionally   initiate a transfer from the shared tree to a source-specific   shortest-path tree (SPT).  To do this, it issues an (S,G) Join   towards S.  This instantiates state in the routers along the path to   S.  Eventually, this join either reaches S's subnet or reaches a   router that already has (S,G) state.  When this happens, data packets   from S start to flow following the (S,G) state until they reach the   receiver.   At this point, the receiver (or a router upstream of the receiver)   will be receiving two copies of the data: one from the SPT and one   from the RPT.  When the first traffic starts to arrive from the SPT,   the DR or upstream router starts to drop the packets for G from S   that arrive via the RP tree.  In addition, it sends an (S,G) Prune   message towards the RP.  This is known as an (S,G,rpt) Prune.  The   Prune message travels hop-by-hop, instantiating state along the path   towards the RP indicating that traffic from S for G should NOT be   forwarded in this direction.  The prune is propagated until it   reaches the RP or a router that still needs the traffic from S for   other receivers.   By now, the receiver will be receiving traffic from S along the   shortest-path tree between the receiver and S.  In addition, the RP   is receiving the traffic from S, but this traffic is no longer   reaching the receiver along the RP tree.  As far as the receiver is   concerned, this is the final distribution tree.3.4.  Source-Specific Joins   IGMPv3 permits a receiver to join a group and specify that it only   wants to receive traffic for a group if that traffic comes from a   particular source.  If a receiver does this, and no other receiver on   the LAN requires all the traffic for the group, then the DR may omit   performing a (*,G) join to set up the shared tree, and instead issue   a source-specific (S,G) join only.   The range of multicast addresses from 232.0.0.0 to 232.255.255.255 is   currently set aside for source-specific multicast in IPv4.  For   groups in this range, receivers should only issue source-specific   IGMPv3 joins.  If a PIM router receives a non-source-specific join   for a group in this range, it should ignore it, as described inSection 4.8.Fenner, et al.              Standards Track                    [Page 10]

RFC 4601                  PIM-SM Specification               August 20063.5.  Source-Specific Prunes   IGMPv3 also permits a receiver to join a group and to specify that it   only wants to receive traffic for a group if that traffic does not   come from a specific source or sources.  In this case, the DR will   perform a (*,G) join as normal, but may combine this with an   (S,G,rpt) prune for each of the sources the receiver does not wish to   receive.3.6.  Multi-Access Transit LANs   The overview so far has concerned itself with point-to-point transit   links.  However, using multi-access LANs such as Ethernet for transit   is not uncommon.  This can cause complications for three reasons:   o Two or more routers on the LAN may issue (*,G) Joins to different     upstream routers on the LAN because they have inconsistent MRIB     entries regarding how to reach the RP.  Both paths on the RP tree     will be set up, causing two copies of all the shared tree traffic     to appear on the LAN.   o Two or more routers on the LAN may issue (S,G) Joins to different     upstream routers on the LAN because they have inconsistent MRIB     entries regarding how to reach source S.  Both paths on the source-     specific tree will be set up, causing two copies of all the traffic     from S to appear on the LAN.   o A router on the LAN may issue a (*,G) Join to one upstream router     on the LAN, and another router on the LAN may issue an (S,G) Join     to a different upstream router on the same LAN.  Traffic from S may     reach the LAN over both the RPT and the SPT.  If the receiver     behind the downstream (*,G) router doesn't issue an (S,G,rpt)     prune, then this condition would persist.   All of these problems are caused by there being more than one   upstream router with join state for the group or source-group pair.   PIM does not prevent such duplicate joins from occurring; instead,   when duplicate data packets appear on the LAN from different routers,   these routers notice this and then elect a single forwarder.  This   election is performed using PIM Assert messages, which resolve the   problem in favor of the upstream router that has (S,G) state; or, if   neither or both router has (S,G) state, then the problem is resolved   in favor of the router with the best metric to the RP for RP trees,   or the best metric to the source to source-specific trees.   These Assert messages are also received by the downstream routers on   the LAN, and these cause subsequent Join messages to be sent to the   upstream router that won the Assert.Fenner, et al.              Standards Track                    [Page 11]

RFC 4601                  PIM-SM Specification               August 20063.7.  RP Discovery   PIM-SM routers need to know the address of the RP for each group for   which they have (*,G) state.  This address is obtained automatically   (e.g., embedded-RP), through a bootstrap mechanism, or through static   configuration.   One dynamic way to do this is to use the Bootstrap Router (BSR)   mechanism [11].  One router in each PIM domain is elected the   Bootstrap Router through a simple election process.  All the routers   in the domain that are configured to be candidates to be RPs   periodically unicast their candidacy to the BSR.  From the   candidates, the BSR picks an RP-set, and periodically announces this   set in a Bootstrap message.  Bootstrap messages are flooded hop-by-   hop throughout the domain until all routers in the domain know the   RP-Set.   To map a group to an RP, a router hashes the group address into the   RP-set using an order-preserving hash function (one that minimizes   changes if the RP-Set changes).  The resulting RP is the one that it   uses as the RP for that group.4.  Protocol Specification   The specification of PIM-SM is broken into several parts:   oSection 4.1 details the protocol state stored.   oSection 4.2 specifies the data packet forwarding rules.   oSection 4.3 specifies Designated Router (DR) election and the rules     for sending and processing Hello messages.   oSection 4.4 specifies the PIM Register generation and processing     rules.   oSection 4.5 specifies the PIM Join/Prune generation and processing     rules.   oSection 4.6 specifies the PIM Assert generation and processing     rules.   oSection 4.7 specifies the RP discovery mechanisms.   o The subset of PIM required to support Source-Specific Multicast,     PIM-SSM, is described inSection 4.8.   o PIM packet formats are specified inSection 4.9.Fenner, et al.              Standards Track                    [Page 12]

RFC 4601                  PIM-SM Specification               August 2006   o A summary of PIM-SM timers and their default values is given inSection 4.10.   oAppendix A specifies the PIM Multicast Border Router behavior.4.1.  PIM Protocol State   This section specifies all the protocol state that a PIM   implementation should maintain in order to function correctly.  We   term this state the Tree Information Base (TIB), as it holds the   state of all the multicast distribution trees at this router.  In   this specification, we define PIM mechanisms in terms of the TIB.   However, only a very simple implementation would actually implement   packet forwarding operations in terms of this state.  Most   implementations will use this state to build a multicast forwarding   table, which would then be updated when the relevant state in the TIB   changes.   Although we specify precisely the state to be kept, this does not   mean that an implementation of PIM-SM needs to hold the state in this   form.  This is actually an abstract state definition, which is needed   in order to specify the router's behavior.  A PIM-SM implementation   is free to hold whatever internal state it requires and will still be   conformant with this specification so long as it results in the same   externally visible protocol behavior as an abstract router that holds   the following state.   We divide TIB state into four sections:   (*,*,RP) state        State that maintains per-RP trees, for all groups served by a        given RP.   (*,G) state        State that maintains the RP tree for G.   (S,G) state        State that maintains a source-specific tree for source S and        group G.   (S,G,rpt) state        State that maintains source-specific information about source S        on the RP tree for G.  For example, if a source is being        received on the source-specific tree, it will normally have been        pruned off the RP tree.  This prune state is (S,G,rpt) state.Fenner, et al.              Standards Track                    [Page 13]

RFC 4601                  PIM-SM Specification               August 2006   The state that should be kept is described below.  Of course,   implementations will only maintain state when it is relevant to   forwarding operations; for example, the "NoInfo" state might be   assumed from the lack of other state information rather than being   held explicitly.4.1.1.  General Purpose State   A router holds the following non-group-specific state:   For each interface:        o Effective Override Interval        o Effective Propagation Delay        o Suppression state: One of {"Enable", "Disable"}        Neighbor State:          For each neighbor:               o Information from neighbor's Hello               o Neighbor's GenID.               o Neighbor Liveness Timer (NLT)        Designated Router (DR) State:          o Designated Router's IP Address          o DR's DR Priority   The Effective Override Interval, the Effective Propagation Delay and   the Interface suppression state are described inSection 4.3.3.   Designated Router state is described inSection 4.3.Fenner, et al.              Standards Track                    [Page 14]

RFC 4601                  PIM-SM Specification               August 20064.1.2.  (*,*,RP) State   For every RP, a router keeps the following state:   (*,*,RP) state:        For each interface:             PIM (*,*,RP) Join/Prune State:                  o State: One of {"NoInfo" (NI), "Join" (J), "Prune-                    Pending" (PP)}                  o Prune-Pending Timer (PPT)                  o Join/Prune Expiry Timer (ET)        Not interface specific:             Upstream (*,*,RP) Join/Prune State:                  o State: One of {"NotJoined(*,*,RP)",                    "Joined(*,*,RP)"}             o Upstream Join/Prune Timer (JT)             o Last RPF Neighbor towards RP that was used   PIM (*,*,RP) Join/Prune state is the result of receiving PIM (*,*,RP)   Join/Prune messages on this interface and is specified inSection4.5.1.   The upstream (*,*,RP) Join/Prune State reflects the state of the   upstream (*,*,RP) state machine described inSection 4.5.5.   The upstream (*,*,RP) Join/Prune Timer is used to send out periodic   Join(*,*,RP) messages, and to override Prune(*,*,RP) messages from   peers on an upstream LAN interface.   The last RPF neighbor towards the RP is stored because if the MRIB   changes, then the RPF neighbor towards the RP may change.  If it does   so, then we need to trigger a new Join(*,*,RP) to the new upstream   neighbor and a Prune(*,*,RP) to the old upstream neighbor.   Similarly, if a router detects through a changed GenID in a Hello   message that the upstream neighbor towards the RP has rebooted, then   it should re-instantiate state by sending a Join(*,*,RP).  These   mechanisms are specified inSection 4.5.5.Fenner, et al.              Standards Track                    [Page 15]

RFC 4601                  PIM-SM Specification               August 20064.1.3.  (*,G) State   For every group G, a router keeps the following state:   (*,G) state:        For each interface:             Local Membership:                  State: One of {"NoInfo", "Include"}             PIM (*,G) Join/Prune State:                  o State: One of {"NoInfo" (NI), "Join" (J), "Prune-                    Pending" (PP)}                  o Prune-Pending Timer (PPT)                  o Join/Prune Expiry Timer (ET)             (*,G) Assert Winner State                  o State: One of {"NoInfo" (NI), "I lost Assert" (L),                    "I won Assert" (W)}                  o Assert Timer (AT)                  o Assert winner's IP Address (AssertWinner)                  o Assert winner's Assert Metric (AssertWinnerMetric)        Not interface specific:             Upstream (*,G) Join/Prune State:                  o State: One of {"NotJoined(*,G)", "Joined(*,G)"}             o Upstream Join/Prune Timer (JT)             o Last RP Used             o Last RPF Neighbor towards RP that was used   Local membership is the result of the local membership mechanism   (such as IGMP or MLD) running on that interface.  It need not be kept   if this router is not the DR on that interface unless this router won   a (*,G) assert on this interface for this group, although   implementations may optionally keep this state in case they become   the DR or assert winner.  We recommend storing this information ifFenner, et al.              Standards Track                    [Page 16]

RFC 4601                  PIM-SM Specification               August 2006   possible, as it reduces latency converging to stable operating   conditions after a failure causing a change of DR.  This information   is used by the pim_include(*,G) macro described inSection 4.1.6.   PIM (*,G) Join/Prune state is the result of receiving PIM (*,G)   Join/Prune messages on this interface and is specified inSection4.5.2.  The state is used by the macros that calculate the outgoing   interface list inSection 4.1.6, and in the JoinDesired(*,G) macro   (defined inSection 4.5.6) that is used in deciding whether a   Join(*,G) should be sent upstream.   (*,G) Assert Winner state is the result of sending or receiving (*,G)   Assert messages on this interface.  It is specified inSection 4.6.2.   The upstream (*,G) Join/Prune State reflects the state of the   upstream (*,G) state machine described inSection 4.5.6.   The upstream (*,G) Join/Prune Timer is used to send out periodic   Join(*,G) messages, and to override Prune(*,G) messages from peers on   an upstream LAN interface.   The last RP used must be stored because if the RP-Set changes   (Section 4.7), then state must be torn down and rebuilt for groups   whose RP changes.   The last RPF neighbor towards the RP is stored because if the MRIB   changes, then the RPF neighbor towards the RP may change.  If it does   so, then we need to trigger a new Join(*,G) to the new upstream   neighbor and a Prune(*,G) to the old upstream neighbor.  Similarly,   if a router detects through a changed GenID in a Hello message that   the upstream neighbor towards the RP has rebooted, then it should   re-instantiate state by sending a Join(*,G).  These mechanisms are   specified inSection 4.5.6.4.1.4.  (S,G) State   For every source/group pair (S,G), a router keeps the following   state:   (S,G) state:        For each interface:             Local Membership:                  State: One of {"NoInfo", "Include"}Fenner, et al.              Standards Track                    [Page 17]

RFC 4601                  PIM-SM Specification               August 2006             PIM (S,G) Join/Prune State:                  o State: One of {"NoInfo" (NI), "Join" (J), "Prune-                    Pending" (PP)}                  o Prune-Pending Timer (PPT)                  o Join/Prune Expiry Timer (ET)             (S,G) Assert Winner State                  o State: One of {"NoInfo" (NI), "I lost Assert" (L),                    "I won Assert" (W)}                  o Assert Timer (AT)                  o Assert winner's IP Address (AssertWinner)                  o Assert winner's Assert Metric (AssertWinnerMetric)        Not interface specific:             Upstream (S,G) Join/Prune State:                  o State: One of {"NotJoined(S,G)", "Joined(S,G)"}             o Upstream (S,G) Join/Prune Timer (JT)             o Last RPF Neighbor towards S that was used             o SPTbit (indicates (S,G) state is active)             o (S,G) Keepalive Timer (KAT)             Additional (S,G) state at the DR:                  o Register state: One of {"Join" (J), "Prune" (P),                    "Join-Pending" (JP), "NoInfo" (NI)}                  o Register-Stop timer             Additional (S,G) state at the RP:                  o PMBR: the first PMBR to send a Register for this                    source with the Border bit set.Fenner, et al.              Standards Track                    [Page 18]

RFC 4601                  PIM-SM Specification               August 2006   Local membership is the result of the local source-specific   membership mechanism (such as IGMP version 3) running on that   interface and specifying that this particular source should be   included.  As stored here, this state is the resulting state after   any IGMPv3 inconsistencies have been resolved.  It need not be kept   if this router is not the DR on that interface unless this router won   a (S,G) assert on this interface for this group.  However, we   recommend storing this information if possible, as it reduces latency   converging to stable operating conditions after a failure causing a   change of DR.  This information is used by the pim_include(S,G) macro   described inSection 4.1.6.   PIM (S,G) Join/Prune state is the result of receiving PIM (S,G)   Join/Prune messages on this interface and is specified inSection4.5.2.  The state is used by the macros that calculate the outgoing   interface list inSection 4.1.6, and in the JoinDesired(S,G) macro   (defined inSection 4.5.7) that is used in deciding whether a   Join(S,G) should be sent upstream.   (S,G) Assert Winner state is the result of sending or receiving (S,G)   Assert messages on this interface.  It is specified inSection 4.6.1.   The upstream (S,G) Join/Prune State reflects the state of the   upstream (S,G) state machine described inSection 4.5.7.   The upstream (S,G) Join/Prune Timer is used to send out periodic   Join(S,G) messages, and to override Prune(S,G) messages from peers on   an upstream LAN interface.   The last RPF neighbor towards S is stored because if the MRIB   changes, then the RPF neighbor towards S may change.  If it does so,   then we need to trigger a new Join(S,G) to the new upstream neighbor   and a Prune(S,G) to the old upstream neighbor.  Similarly, if the   router detects through a changed GenID in a Hello message that the   upstream neighbor towards S has rebooted, then it should re-   instantiate state by sending a Join(S,G).  These mechanisms are   specified inSection 4.5.7.   The SPTbit is used to indicate whether forwarding is taking place on   the (S,G) Shortest Path Tree (SPT) or on the (*,G) tree.  A router   can have (S,G) state and still be forwarding on (*,G) state during   the interval when the source-specific tree is being constructed.   When SPTbit is FALSE, only (*,G) forwarding state is used to forward   packets from S to G.  When SPTbit is TRUE, both (*,G) and (S,G)   forwarding state are used.Fenner, et al.              Standards Track                    [Page 19]

RFC 4601                  PIM-SM Specification               August 2006   The (S,G) Keepalive Timer is updated by data being forwarded using   this (S,G) forwarding state.  It is used to keep (S,G) state alive in   the absence of explicit (S,G) Joins.  Amongst other things, this is   necessary for the so-called "turnaround rules" -- when the RP uses   (S,G) joins to stop encapsulation, and then (S,G) prunes to prevent   traffic from unnecessarily reaching the RP.   On a DR, the (S,G) Register State is used to keep track of whether to   encapsulate data to the RP on the Register Tunnel; the (S,G)   Register-Stop timer tracks how long before encapsulation begins again   for a given (S,G).   On an RP, the PMBR value must be cleared when the Keepalive Timer   expires.4.1.5.  (S,G,rpt) State   For every source/group pair (S,G) for which a router also has (*,G)   state, it also keeps the following state:   (S,G,rpt) state:        For each interface:             Local Membership:                  State: One of {"NoInfo", "Exclude"}             PIM (S,G,rpt) Join/Prune State:                  o State: One of {"NoInfo", "Pruned", "Prune-                    Pending"}                  o Prune-Pending Timer (PPT)                  o Join/Prune Expiry Timer (ET)        Not interface specific:             Upstream (S,G,rpt) Join/Prune State:                  o State: One of {"RPTNotJoined(G)",                    "NotPruned(S,G,rpt)", "Pruned(S,G,rpt)"}                  o Override Timer (OT)   Local membership is the result of the local source-specific   membership mechanism (such as IGMPv3) running on that interface and   specifying that although there is (*,G) Include state, thisFenner, et al.              Standards Track                    [Page 20]

RFC 4601                  PIM-SM Specification               August 2006   particular source should be excluded.  As stored here, this state is   the resulting state after any IGMPv3 inconsistencies between LAN   members have been resolved.  It need not be kept if this router is   not the DR on that interface unless this router won a (*,G) assert on   this interface for this group.  However, we recommend storing this   information if possible, as it reduces latency converging to stable   operating conditions after a failure causing a change of DR.  This   information is used by the pim_exclude(S,G) macro described inSection 4.1.6.   PIM (S,G,rpt) Join/Prune state is the result of receiving PIM   (S,G,rpt) Join/Prune messages on this interface and is specified inSection 4.5.4.  The state is used by the macros that calculate the   outgoing interface list inSection 4.1.6, and in the rules for adding   Prune(S,G,rpt) messages to Join(*,G) messages specified inSection4.5.8.   The upstream (S,G,rpt) Join/Prune state is used along with the   Override Timer to send the correct override messages in response to   Join/Prune messages sent by upstream peers on a LAN.  This state and   behavior are specified inSection 4.5.9.4.1.6.  State Summarization Macros   Using this state, we define the following "macro" definitions, which   we will use in the descriptions of the state machines and pseudocode   in the following sections.   The most important macros are those that define the outgoing   interface list (or "olist") for the relevant state.  An olist can be   "immediate" if it is built directly from the state of the relevant   type.  For example, the immediate_olist(S,G) is the olist that would   be built if the router only had (S,G) state and no (*,G) or (S,G,rpt)   state.  In contrast, the "inherited" olist inherits state from other   types.  For example, the inherited_olist(S,G) is the olist that is   relevant for forwarding a packet from S to G using both source-   specific and group-specific state.   There is no immediate_olist(S,G,rpt) as (S,G,rpt) state is negative   state; it removes interfaces in the (*,G) olist from the olist that   is actually used to forward traffic.  The inherited_olist(S,G,rpt) is   therefore the olist that would be used for a packet from S to G   forwarding on the RP tree.  It is a strict subset of   (immediate_olist(*,*,RP) (+) immediate_olist(*,G)).   Generally speaking, the inherited olists are used for forwarding, and   the immediate_olists are used to make decisions about state   maintenance.Fenner, et al.              Standards Track                    [Page 21]

RFC 4601                  PIM-SM Specification               August 2006   immediate_olist(*,*,RP) =       joins(*,*,RP)   immediate_olist(*,G) =       joins(*,G) (+) pim_include(*,G) (-) lost_assert(*,G)   immediate_olist(S,G) =       joins(S,G) (+) pim_include(S,G) (-) lost_assert(S,G)   inherited_olist(S,G,rpt) =           ( joins(*,*,RP(G)) (+) joins(*,G) (-) prunes(S,G,rpt) )       (+) ( pim_include(*,G) (-) pim_exclude(S,G))       (-) ( lost_assert(*,G) (+) lost_assert(S,G,rpt) )   inherited_olist(S,G) =       inherited_olist(S,G,rpt) (+)       joins(S,G) (+) pim_include(S,G) (-) lost_assert(S,G)   The macros pim_include(*,G) and pim_include(S,G) indicate the   interfaces to which traffic might be forwarded because of hosts that   are local members on that interface.  Note that normally only the DR   cares about local membership, but when an assert happens, the assert   winner takes over responsibility for forwarding traffic to local   members that have requested traffic on a group or source/group pair.   pim_include(*,G) =      { all interfaces I such that:        ( ( I_am_DR( I ) AND lost_assert(*,G,I) == FALSE )          OR AssertWinner(*,G,I) == me )        AND  local_receiver_include(*,G,I) }   pim_include(S,G) =       { all interfaces I such that:         ( (I_am_DR( I ) AND lost_assert(S,G,I) == FALSE )           OR AssertWinner(S,G,I) == me )          AND  local_receiver_include(S,G,I) }   pim_exclude(S,G) =       { all interfaces I such that:         ( (I_am_DR( I ) AND lost_assert(*,G,I) == FALSE )           OR AssertWinner(*,G,I) == me )          AND  local_receiver_exclude(S,G,I) }   The clause "local_receiver_include(S,G,I)" is true if the IGMP/MLD   module or other local membership mechanism has determined that local   members on interface I desire to receive traffic sent specifically by   S to G.  "local_receiver_include(*,G,I)" is true if the IGMP/MLD   module or other local membership mechanism has determined that localFenner, et al.              Standards Track                    [Page 22]

RFC 4601                  PIM-SM Specification               August 2006   members on interface I desire to receive all traffic sent to G   (possibly excluding traffic from a specific set of sources).   "local_receiver_exclude(S,G,I) is true if   "local_receiver_include(*,G,I)" is true but none of the local members   desire to receive traffic from S.   The set "joins(*,*,RP)" is the set of all interfaces on which the   router has received (*,*,RP) Joins:   joins(*,*,RP) =       { all interfaces I such that         DownstreamJPState(*,*,RP,I) is either Join or             Prune-Pending }   DownstreamJPState(*,*,RP,I) is the state of the finite state machine   inSection 4.5.1.   The set "joins(*,G)" is the set of all interfaces on which the router   has received (*,G) Joins:   joins(*,G) =       { all interfaces I such that         DownstreamJPState(*,G,I) is either Join or Prune-Pending }   DownstreamJPState(*,G,I) is the state of the finite state machine inSection 4.5.2.   The set "joins(S,G)" is the set of all interfaces on which the router   has received (S,G) Joins:   joins(S,G) =       { all interfaces I such that         DownstreamJPState(S,G,I) is either Join or Prune-Pending }   DownstreamJPState(S,G,I) is the state of the finite state machine inSection 4.5.3.   The set "prunes(S,G,rpt)" is the set of all interfaces on which the   router has received (*,G) joins and (S,G,rpt) prunes.   prunes(S,G,rpt) =       { all interfaces I such that         DownstreamJPState(S,G,rpt,I) is Prune or PruneTmp }   DownstreamJPState(S,G,rpt,I) is the state of the finite state machine   inSection 4.5.4.Fenner, et al.              Standards Track                    [Page 23]

RFC 4601                  PIM-SM Specification               August 2006   The set "lost_assert(*,G)" is the set of all interfaces on which the   router has received (*,G) joins but has lost a (*,G) assert.  The   macro lost_assert(*,G,I) is defined inSection 4.6.5.   lost_assert(*,G) =       { all interfaces I such that         lost_assert(*,G,I) == TRUE }   The set "lost_assert(S,G,rpt)" is the set of all interfaces on which   the router has received (*,G) joins but has lost an (S,G) assert.   The macro lost_assert(S,G,rpt,I) is defined inSection 4.6.5.   lost_assert(S,G,rpt) =       { all interfaces I such that         lost_assert(S,G,rpt,I) == TRUE }   The set "lost_assert(S,G)" is the set of all interfaces on which the   router has received (S,G) joins but has lost an (S,G) assert.  The   macro lost_assert(S,G,I) is defined inSection 4.6.5.   lost_assert(S,G) =       { all interfaces I such that         lost_assert(S,G,I) == TRUE }   The following pseudocode macro definitions are also used in many   places in the specification.  Basically, RPF' is the RPF neighbor   towards an RP or source unless a PIM-Assert has overridden the normal   choice of neighbor.     neighbor RPF'(*,G) {         if ( I_Am_Assert_Loser(*, G, RPF_interface(RP(G))) ) {              return AssertWinner(*, G, RPF_interface(RP(G)) )         } else {              return NBR( RPF_interface(RP(G)), MRIB.next_hop( RP(G) ) )         }     }     neighbor RPF'(S,G,rpt) {         if( I_Am_Assert_Loser(S, G, RPF_interface(RP(G)) ) ) {              return AssertWinner(S, G, RPF_interface(RP(G)) )         } else {              return RPF'(*,G)         }     }Fenner, et al.              Standards Track                    [Page 24]

RFC 4601                  PIM-SM Specification               August 2006     neighbor RPF'(S,G) {         if ( I_Am_Assert_Loser(S, G, RPF_interface(S) )) {              return AssertWinner(S, G, RPF_interface(S) )         } else {              return NBR( RPF_interface(S), MRIB.next_hop( S ) )         }     }   RPF'(*,G) and RPF'(S,G) indicate the neighbor from which data packets   should be coming and to which joins should be sent on the RP tree and   SPT, respectively.   RPF'(S,G,rpt) is basically RPF'(*,G) modified by the result of an   Assert(S,G) on RPF_interface(RP(G)).  In such a case, packets from S   will be originating from a different router than RPF'(*,G).  If we   only have active (*,G) Join state, we need to accept packets from   RPF'(S,G,rpt) and add a Prune(S,G,rpt) to the periodic Join(*,G)   messages that we send to RPF'(*,G) (seeSection 4.5.8).   The function MRIB.next_hop( S ) returns an address of the next-hop   PIM neighbor toward the host S, as indicated by the current MRIB.  If   S is directly adjacent, then MRIB.next_hop( S ) returns NULL.  At the   RP for G, MRIB.next_hop( RP(G)) returns NULL.   The function NBR( I, A ) uses information gathered through PIM Hello   messages to map the IP address A of a directly connected PIM neighbor   router on interface I to the primary IP address of the same router   (Section 4.3.4).  The primary IP address of a neighbor is the address   that it uses as the source of its PIM Hello messages.  Note that a   neighbor's IP address may be non-unique within the PIM neighbor   database due to scope issues.  The address must, however, be unique   amongst the addresses of all the PIM neighbors on a specific   interface.   I_Am_Assert_Loser(S, G, I) is true if the Assert state machine (inSection 4.6.1) for (S,G) on Interface I is in "I am Assert Loser"   state.   I_Am_Assert_Loser(*, G, I) is true if the Assert state machine (inSection 4.6.2) for (*,G) on Interface I is in "I am Assert Loser"   state.Fenner, et al.              Standards Track                    [Page 25]

RFC 4601                  PIM-SM Specification               August 20064.2.  Data Packet Forwarding Rules   The PIM-SM packet forwarding rules are defined below in pseudocode.      iif is the incoming interface of the packet.      S is the source address of the packet.      G is the destination address of the packet (group address).      RP is the address of the Rendezvous Point for this group.      RPF_interface(S) is the interface the MRIB indicates would be used      to route packets to S.      RPF_interface(RP) is the interface the MRIB indicates would be      used to route packets to RP, except at the RP when it is the      decapsulation interface (the "virtual" interface on which register      packets are received).   First, we restart (or start) the Keepalive Timer if the source is on   a directly connected subnet.   Second, we check to see if the SPTbit should be set because we've now   switched from the RP tree to the SPT.   Next, we check to see whether the packet should be accepted based on   TIB state and the interface that the packet arrived on.   If the packet should be forwarded using (S,G) state, we then build an   outgoing interface list for the packet.  If this list is not empty,   then we restart the (S,G) state Keepalive Timer.   If the packet should be forwarded using (*,*,RP) or (*,G) state, then   we just build an outgoing interface list for the packet.  We also   check if we should initiate a switch to start receiving this source   on a shortest path tree.   Finally we remove the incoming interface from the outgoing interface   list we've created, and if the resulting outgoing interface list is   not empty, we forward the packet out of those interfaces.Fenner, et al.              Standards Track                    [Page 26]

RFC 4601                  PIM-SM Specification               August 2006   On receipt of data from S to G on interface iif:    if( DirectlyConnected(S) == TRUE AND iif == RPF_interface(S) ) {         set KeepaliveTimer(S,G) to Keepalive_Period         # Note: a register state transition or UpstreamJPState(S,G)         # transition may happen as a result of restarting         # KeepaliveTimer, and must be dealt with here.    }   if( iif == RPF_interface(S) AND UpstreamJPState(S,G) == Joined AND      inherited_olist(S,G) != NULL ) {          set KeepaliveTimer(S,G) to Keepalive_Period   }   Update_SPTbit(S,G,iif)   oiflist = NULL   if( iif == RPF_interface(S) AND SPTbit(S,G) == TRUE ) {      oiflist = inherited_olist(S,G)   } else if( iif == RPF_interface(RP(G)) AND SPTbit(S,G) == FALSE) {     oiflist = inherited_olist(S,G,rpt)     CheckSwitchToSpt(S,G)   } else {      # Note: RPF check failed      # A transition in an Assert FSM may cause an Assert(S,G)      # or Assert(*,G) message to be sent out interface iif.      # Seesection 4.6 for details.      if ( SPTbit(S,G) == TRUE AND iif is in inherited_olist(S,G) ) {         send Assert(S,G) on iif      } else if ( SPTbit(S,G) == FALSE AND                  iif is in inherited_olist(S,G,rpt) {         send Assert(*,G) on iif      }   }   oiflist = oiflist (-) iif   forward packet on all interfaces in oiflist   This pseudocode employs several "macro" definitions:   DirectlyConnected(S) is TRUE if the source S is on any subnet that is   directly connected to this router (or for packets originating on this   router).   inherited_olist(S,G) and inherited_olist(S,G,rpt) are defined inSection 4.1.Fenner, et al.              Standards Track                    [Page 27]

RFC 4601                  PIM-SM Specification               August 2006   Basically, inherited_olist(S,G) is the outgoing interface list for   packets forwarded on (S,G) state, taking into account (*,*,RP) state,   (*,G) state, asserts, etc.   inherited_olist(S,G,rpt) is the outgoing interface list for packets   forwarded on (*,*,RP) or (*,G) state, taking into account (S,G,rpt)   prune state, asserts, etc.   Update_SPTbit(S,G,iif) is defined inSection 4.2.2.   CheckSwitchToSpt(S,G) is defined inSection 4.2.1.   UpstreamJPState(S,G) is the state of the finite state machine inSection 4.5.7.   Keepalive_Period is defined inSection 4.10.   Data-triggered PIM-Assert messages sent from the above forwarding   code should be rate-limited in a implementation-dependent manner.4.2.1.  Last-Hop Switchover to the SPT   In Sparse-Mode PIM, last-hop routers join the shared tree towards the   RP.  Once traffic from sources to joined groups arrives at a last-hop   router, it has the option of switching to receive the traffic on a   shortest path tree (SPT).   The decision for a router to switch to the SPT is controlled as   follows:     void     CheckSwitchToSpt(S,G) {       if ( ( pim_include(*,G) (-) pim_exclude(S,G)              (+) pim_include(S,G) != NULL )            AND SwitchToSptDesired(S,G) ) {              # Note: Restarting the KAT will result in the SPT switch              set KeepaliveTimer(S,G) to Keepalive_Period       }     }   SwitchToSptDesired(S,G) is a policy function that is implementation   defined.  An "infinite threshold" policy can be implemented by making   SwitchToSptDesired(S,G) return false all the time.  A "switch on   first packet" policy can be implemented by making   SwitchToSptDesired(S,G) return true once a single packet has been   received for the source and group.Fenner, et al.              Standards Track                    [Page 28]

RFC 4601                  PIM-SM Specification               August 20064.2.2.  Setting and Clearing the (S,G) SPTbit   The (S,G) SPTbit is used to distinguish whether to forward on   (*,*,RP)/(*,G) or on (S,G) state.  When switching from the RP tree to   the source tree, there is a transition period when data is arriving   due to upstream (*,*,RP)/(*,G) state while upstream (S,G) state is   being established, during which time a router should continue to   forward only on (*,*,RP)/(*,G) state.  This prevents temporary   black-holes that would be caused by sending a Prune(S,G,rpt) before   the upstream (S,G) state has finished being established.   Thus, when a packet arrives, the (S,G) SPTbit is updated as follows:     void     Update_SPTbit(S,G,iif) {       if ( iif == RPF_interface(S)             AND JoinDesired(S,G) == TRUE             AND ( DirectlyConnected(S) == TRUE                   OR RPF_interface(S) != RPF_interface(RP(G))                   OR inherited_olist(S,G,rpt) == NULL                   OR ( ( RPF'(S,G) == RPF'(*,G) ) AND                        ( RPF'(S,G) != NULL ) )                   OR ( I_Am_Assert_Loser(S,G,iif) ) {          Set SPTbit(S,G) to TRUE       }     }   Additionally, a router can set SPTbit(S,G) to TRUE in other cases,   such as when it receives an Assert(S,G) on RPF_interface(S) (seeSection 4.6.1).   JoinDesired(S,G) is defined inSection 4.5.7 and indicates whether we   have the appropriate (S,G) Join state to wish to send a Join(S,G)   upstream.   Basically, Update_SPTbit will set the SPTbit if we have the   appropriate (S,G) join state, and if the packet arrived on the   correct upstream interface for S, and if one or more of the following   conditions applies:   1.  The source is directly connected, in which case the switch to the       SPT is a no-op.   2.  The RPF interface to S is different from the RPF interface to the       RP.  The packet arrived on RPF_interface(S), and so the SPT must       have been completed.   3.  Noone wants the packet on the RP tree.Fenner, et al.              Standards Track                    [Page 29]

RFC 4601                  PIM-SM Specification               August 2006   4.  RPF'(S,G) == RPF'(*,G).  In this case, the router will never be       able to tell if the SPT has been completed, so it should just       switch immediately.   In the case where the RPF interface is the same for the RP and for S,   but RPF'(S,G) and RPF'(*,G) differ, we wait for an Assert(S,G), which   indicates that the upstream router with (S,G) state believes the SPT   has been completed.  However, item (3) above is needed because there   may not be any (*,G) state to trigger an Assert(S,G) to happen.   The SPTbit is cleared in the (S,G) upstream state machine (seeSection 4.5.7) when JoinDesired(S,G) becomes FALSE.4.3.  Designated Routers (DR) and Hello Messages   A shared-media LAN like Ethernet may have multiple PIM-SM routers   connected to it.  A single one of these routers, the DR, will act on   behalf of directly connected hosts with respect to the PIM-SM   protocol.  Because the distinction between LANs and point-to-point   interfaces can sometimes be blurred, and because routers may also   have multicast host functionality, the PIM-SM specification makes no   distinction between the two.  Thus, DR election will happen on all   interfaces, LAN or otherwise.   DR election is performed using Hello messages.  Hello messages are   also the way that option negotiation takes place in PIM, so that   additional functionality can be enabled, or parameters tuned.4.3.1.  Sending Hello Messages   PIM Hello messages are sent periodically on each PIM-enabled   interface.  They allow a router to learn about the neighboring PIM   routers on each interface.  Hello messages are also the mechanism   used to elect a Designated Router (DR), and to negotiate additional   capabilities.  A router must record the Hello information received   from each PIM neighbor.   Hello messages MUST be sent on all active interfaces, including   physical point-to-point links, and are multicast to the 'ALL-PIM-   ROUTERS' group address ('224.0.0.13' for IPv4 and 'ff02::d' for   IPv6).     We note that some implementations do not send Hello messages on     point-to-point interfaces.  This is non-compliant behavior.  A     compliant PIM router MUST send Hello messages, even on point-to-     point interfaces.Fenner, et al.              Standards Track                    [Page 30]

RFC 4601                  PIM-SM Specification               August 2006   A per-interface Hello Timer (HT(I)) is used to trigger sending Hello   messages on each active interface.  When PIM is enabled on an   interface or a router first starts, the Hello Timer of that interface   is set to a random value between 0 and Triggered_Hello_Delay.  This   prevents synchronization of Hello messages if multiple routers are   powered on simultaneously.  After the initial randomized interval,   Hello messages must be sent every Hello_Period seconds.  The Hello   Timer should not be reset except when it expires.   Note that neighbors will not accept Join/Prune or Assert messages   from a router unless they have first heard a Hello message from that   router.  Thus, if a router needs to send a Join/Prune or Assert   message on an interface on which it has not yet sent a Hello message   with the currently configured IP address, then it MUST immediately   send the relevant Hello message without waiting for the Hello Timer   to expire, followed by the Join/Prune or Assert message.   The DR_Priority Option allows a network administrator to give   preference to a particular router in the DR election process by   giving it a numerically larger DR Priority.  The DR_Priority Option   SHOULD be included in every Hello message, even if no DR Priority is   explicitly configured on that interface.  This is necessary because   priority-based DR election is only enabled when all neighbors on an   interface advertise that they are capable of using the DR_Priority   Option.  The default priority is 1.   The Generation_Identifier (GenID) Option SHOULD be included in all   Hello messages.  The GenID option contains a randomly generated   32-bit value that is regenerated each time PIM forwarding is started   or restarted on the interface, including when the router itself   restarts.  When a Hello message with a new GenID is received from a   neighbor, any old Hello information about that neighbor SHOULD be   discarded and superseded by the information from the new Hello   message.  This may cause a new DR to be chosen on that interface.   The LAN Prune Delay Option SHOULD be included in all Hello messages   sent on multi-access LANs.  This option advertises a router's   capability to use values other than the defaults for the   Propagation_Delay and Override_Interval, which affect the setting of   the Prune-Pending, Upstream Join, and Override Timers (defined inSection 4.10).   The Address List Option advertises all the secondary addresses   associated with the source interface of the router originating the   message.  The option MUST be included in all Hello messages if there   are secondary addresses associated with the source interface and MAY   be omitted if no secondary addresses exist.Fenner, et al.              Standards Track                    [Page 31]

RFC 4601                  PIM-SM Specification               August 2006   To allow new or rebooting routers to learn of PIM neighbors quickly,   when a Hello message is received from a new neighbor, or a Hello   message with a new GenID is received from an existing neighbor, a new   Hello message should be sent on this interface after a randomized   delay between 0 and Triggered_Hello_Delay.  This triggered message   need not change the timing of the scheduled periodic message.  If a   router needs to send a Join/Prune to the new neighbor or send an   Assert message in response to an Assert message from the new neighbor   before this randomized delay has expired, then it MUST immediately   send the relevant Hello message without waiting for the Hello Timer   to expire, followed by the Join/Prune or Assert message.  If it does   not do this, then the new neighbor will discard the Join/Prune or   Assert message.   Before an interface goes down or changes primary IP address, a Hello   message with a zero HoldTime should be sent immediately (with the old   IP address if the IP address changed).  This will cause PIM neighbors   to remove this neighbor (or its old IP address) immediately.  After   an interface has changed its IP address, it MUST send a Hello message   with its new IP address.  If an interface changes one of its   secondary IP addresses, a Hello message with an updated Address_List   option and a non-zero HoldTime should be sent immediately.  This will   cause PIM neighbors to update this neighbor's list of secondary   addresses immediately.4.3.2.  DR Election   When a PIM Hello message is received on interface I, the following   information about the sending neighbor is recorded:     neighbor.interface          The interface on which the Hello message arrived.     neighbor.primary_ip_address          The IP address that the PIM neighbor used as the source          address of the Hello message.     neighbor.genid          The Generation ID of the PIM neighbor.     neighbor.dr_priority          The DR Priority field of the PIM neighbor, if it is present in          the Hello message.     neighbor.dr_priority_present          A flag indicating if the DR Priority field was present in the          Hello message.Fenner, et al.              Standards Track                    [Page 32]

RFC 4601                  PIM-SM Specification               August 2006     neighbor.timeout          A timer value to time out the neighbor state when it becomes          stale, also known as the Neighbor Liveness Timer.          The Neighbor Liveness Timer (NLT(N,I)) is reset to          Hello_Holdtime (from the Hello Holdtime option) whenever a          Hello message is received containing a Holdtime option, or to          Default_Hello_Holdtime if the Hello message does not contain          the Holdtime option.          Neighbor state is deleted when the neighbor timeout expires.   The function for computing the DR on interface I is:     host     DR(I) {         dr = me         for each neighbor on interface I {             if ( dr_is_better( neighbor, dr, I ) == TRUE ) {                 dr = neighbor             }         }         return dr     }   The function used for comparing DR "metrics" on interface I is:     bool     dr_is_better(a,b,I) {         if( there is a neighbor n on I for which n.dr_priority_present                 is false ) {             return a.primary_ip_address > b.primary_ip_address         } else {             return ( a.dr_priority > b.dr_priority ) OR                    ( a.dr_priority == b.dr_priority AND                      a.primary_ip_address > b.primary_ip_address )         }     }   The trivial function I_am_DR(I) is defined to aid readability:     bool     I_am_DR(I) {        return DR(I) == me     }Fenner, et al.              Standards Track                    [Page 33]

RFC 4601                  PIM-SM Specification               August 2006   The DR Priority is a 32-bit unsigned number, and the numerically   larger priority is always preferred.  A router's idea of the current   DR on an interface can change when a PIM Hello message is received,   when a neighbor times out, or when a router's own DR Priority   changes.  If the router becomes the DR or ceases to be the DR, this   will normally cause the DR Register state machine to change state.   Subsequent actions are determined by that state machine.     We note that some PIM implementations do not send Hello messages on     point-to-point interfaces and thus cannot perform DR election on     such interfaces.  This is non-compliant behavior.  DR election MUST     be performed on ALL active PIM-SM interfaces.4.3.3.  Reducing Prune Propagation Delay on LANs   In addition to the information recorded for the DR Election, the   following per neighbor information is obtained from the LAN Prune   Delay Hello option:     neighbor.lan_prune_delay_present          A flag indicating if the LAN Prune Delay option was present in          the Hello message.     neighbor.tracking_support          A flag storing the value of the T bit in the LAN Prune Delay          option if it is present in the Hello message.  This indicates          the neighbor's capability to disable Join message suppression.     neighbor.propagation_delay          The Propagation Delay field of the LAN Prune Delay option (if          present) in the Hello message.     neighbor.override_interval          The Override_Interval field of the LAN Prune Delay option (if          present) in the Hello message.   The additional state described above is deleted along with the DR   neighbor state when the neighbor timeout expires.   Just like the DR_Priority option, the information provided in the LAN   Prune Delay option is not used unless all neighbors on a link   advertise the option.  The function below computes this state:Fenner, et al.              Standards Track                    [Page 34]

RFC 4601                  PIM-SM Specification               August 2006     bool     lan_delay_enabled(I) {         for each neighbor on interface I {             if ( neighbor.lan_prune_delay_present == false ) {                 return false             }         }         return true     }   The Propagation Delay inserted by a router in the LAN Prune Delay   option expresses the expected message propagation delay on the link   and should be configurable by the system administrator.  It is used   by upstream routers to figure out how long they should wait for a   Join override message before pruning an interface.   PIM implementers should enforce a lower bound on the permitted values   for this delay to allow for scheduling and processing delays within   their router.  Such delays may cause received messages to be   processed later as well as triggered messages to be sent later than   intended.  Setting this Propagation Delay to too low a value may   result in temporary forwarding outages because a downstream router   will not be able to override a neighbor's Prune message before the   upstream neighbor stops forwarding.   When all routers on a link are in a position to negotiate a   Propagation Delay different from the default, the largest value from   those advertised by each neighbor is chosen.  The function for   computing the Effective_Propagation_Delay of interface I is:     time_interval     Effective_Propagation_Delay(I) {         if ( lan_delay_enabled(I) == false ) {             return Propagation_delay_default         }         delay = Propagation_Delay(I)         for each neighbor on interface I {             if ( neighbor.propagation_delay > delay ) {                 delay = neighbor.propagation_delay             }         }         return delay     }   To avoid synchronization of override messages when multiple   downstream routers share a multi-access link, sending of such   messages is delayed by a small random amount of time.  The period of   randomization should represent the size of the PIM router populationFenner, et al.              Standards Track                    [Page 35]

RFC 4601                  PIM-SM Specification               August 2006   on the link.  Each router expresses its view of the amount of   randomization necessary in the Override Interval field of the LAN   Prune Delay option.   When all routers on a link are in a position to negotiate an Override   Interval different from the default, the largest value from those   advertised by each neighbor is chosen.  The function for computing   the Effective Override Interval of interface I is:     time_interval     Effective_Override_Interval(I) {         if ( lan_delay_enabled(I) == false ) {             return t_override_default         }         delay = Override_Interval(I)         for each neighbor on interface I {             if ( neighbor.override_interval > delay ) {                 delay = neighbor.override_interval             }         }         return delay     }   Although the mechanisms are not specified in this document, it is   possible for upstream routers to explicitly track the join membership   of individual downstream routers if Join suppression is disabled.  A   router can advertise its willingness to disable Join suppression by   using the T bit in the LAN Prune Delay Hello option.  Unless all PIM   routers on a link negotiate this capability, explicit tracking and   the disabling of the Join suppression mechanism are not possible.   The function for computing the state of Suppression on interface I   is:     bool     Suppression_Enabled(I) {         if ( lan_delay_enabled(I) == false ) {             return true         }         for each neighbor on interface I {             if ( neighbor.tracking_support == false ) {                 return true             }         }         return false     }   Note that the setting of Suppression_Enabled(I) affects the value of   t_suppressed (seeSection 4.10).Fenner, et al.              Standards Track                    [Page 36]

RFC 4601                  PIM-SM Specification               August 20064.3.4.  Maintaining Secondary Address Lists   Communication of a router's interface secondary addresses to its PIM   neighbors is necessary to provide the neighbors with a mechanism for   mapping next_hop information obtained through their MRIB to a primary   address that can be used as a destination for Join/Prune messages.   The mapping is performed through the NBR macro.  The primary address   of a PIM neighbor is obtained from the source IP address used in its   PIM Hello messages.  Secondary addresses are carried within the Hello   message in an Address List Hello option.  The primary address of the   source interface of the router MUST NOT be listed within the Address   List Hello option.   In addition to the information recorded for the DR Election, the   following per neighbor information is obtained from the Address List   Hello option:     neighbor.secondary_address_list          The list of secondary addresses used by the PIM neighbor on          the interface through which the Hello message was transmitted.   When processing a received PIM Hello message containing an Address   List Hello option, the list of secondary addresses in the message   completely replaces any previously associated secondary addresses for   that neighbor.  If a received PIM Hello message does not contain an   Address List Hello option, then all secondary addresses associated   with the neighbor must be deleted.  If a received PIM Hello message   contains an Address List Hello option that includes the primary   address of the sending router in the list of secondary addresses   (although this is not expected), then the addresses listed in the   message, excluding the primary address, are used to update the   associated secondary addresses for that neighbor.   All the advertised secondary addresses in received Hello messages   must be checked against those previously advertised by all other PIM   neighbors on that interface.  If there is a conflict and the same   secondary address was previously advertised by another neighbor, then   only the most recently received mapping MUST be maintained, and an   error message SHOULD be logged to the administrator in a rate-limited   manner.   Within one Address List Hello option, all the addresses MUST be of   the same address family.  It is not permitted to mix IPv4 and IPv6   addresses within the same message.  In addition, the address family   of the fields in the message SHOULD be the same as the IP source and   destination addresses of the packet header.Fenner, et al.              Standards Track                    [Page 37]

RFC 4601                  PIM-SM Specification               August 20064.4.  PIM Register Messages   The Designated Router (DR) on a LAN or point-to-point link   encapsulates multicast packets from local sources to the RP for the   relevant group unless it recently received a Register-Stop message   for that (S,G) or (*,G) from the RP.  When the DR receives a   Register-Stop message from the RP, it starts a Register-Stop Timer to   maintain this state.  Just before the Register-Stop Timer expires,   the DR sends a Null-Register Message to the RP to allow the RP to   refresh the Register-Stop information at the DR.  If the Register-   Stop Timer actually expires, the DR will resume encapsulating packets   from the source to the RP.4.4.1.  Sending Register Messages from the DR   Every PIM-SM router has the capability to be a DR.  The state machine   below is used to implement Register functionality.  For the purposes   of specification, we represent the mechanism to encapsulate packets   to the RP as a Register-Tunnel interface, which is added to or   removed from the (S,G) olist.  The tunnel interface then takes part   in the normal packet forwarding rules as specified inSection 4.2.   If register state is maintained, it is maintained only for directly   connected sources and is per-(S,G).  There are four states in the   DR's per-(S,G) Register state machine:   Join (J)        The register tunnel is "joined" (the join is actually implicit,        but the DR acts as if the RP has joined the DR on the tunnel        interface).   Prune (P)        The register tunnel is "pruned" (this occurs when a Register-        Stop is received).   Join-Pending (JP)        The register tunnel is pruned but the DR is contemplating adding        it back.   NoInfo (NI)        No information.  This is the initial state, and the state when        the router is not the DR.   In addition, a Register-Stop Timer (RST) is kept if the state machine   is not in the NoInfo state.Fenner, et al.              Standards Track                    [Page 38]

RFC 4601                  PIM-SM Specification               August 2006   Figure 1: Per-(S,G) register state machine at a DR in tabular form+----------++----------------------------------------------------------+|          ||                          Event                           ||          ++----------+-----------+-----------+-----------+-----------+|Prev State||Register- | Could     | Could     | Register- | RP changed||          ||Stop Timer| Register  | Register  | Stop      |           ||          ||expires   | ->True    | ->False   | received  |           |+----------++----------+-----------+-----------+-----------+-----------+|NoInfo    ||-         | -> J state| -         | -         | -         ||(NI)      ||          | add reg   |           |           |           ||          ||          | tunnel    |           |           |           |+----------++----------+-----------+-----------+-----------+-----------+|          ||-         | -         | -> NI     | -> P state| -> J state||          ||          |           | state     |           |           ||          ||          |           | remove reg| remove reg| update reg||Join (J)  ||          |           | tunnel    | tunnel;   | tunnel    ||          ||          |           |           | set       |           ||          ||          |           |           | Register- |           ||          ||          |           |           | Stop      |           ||          ||          |           |           | Timer(*)  |           |+----------++----------+-----------+-----------+-----------+-----------+|          ||-> J state| -         | -> NI     | -> P state| -> J state||          ||          |           | state     |           |           ||Join-     ||add reg   |           |           | set       | add reg   ||Pending   ||tunnel    |           |           | Register- | tunnel;   ||(JP)      ||          |           |           | Stop      | cancel    ||          ||          |           |           | Timer(*)  | Register- ||          ||          |           |           |           | Stop Timer|+----------++----------+-----------+-----------+-----------+-----------+|          ||-> JP     | -         | -> NI     | -         | -> J state||          ||state     |           | state     |           |           ||          ||set       |           |           |           | add reg   ||Prune (P) ||Register- |           |           |           | tunnel;   ||          ||Stop      |           |           |           | cancel    ||          ||Timer(**);|           |           |           | Register- ||          ||send Null-|           |           |           | Stop Timer||          ||Register  |           |           |           |           |+----------++----------+-----------+-----------+-----------+-----------+   Notes:   (*)  The Register-Stop Timer is set to a random value chosen        uniformly from the interval ( 0.5 * Register_Suppression_Time,        1.5 * Register_Suppression_Time) minus Register_Probe_Time.Fenner, et al.              Standards Track                    [Page 39]

RFC 4601                  PIM-SM Specification               August 2006        Subtracting off Register_Probe_Time is a bit unnecessary because        it is really small compared to Register_Suppression_Time, but        this was in the old spec and is kept for compatibility.   (**) The Register-Stop Timer is set to Register_Probe_Time.   The following three actions are defined:   Add Register Tunnel      A Register-Tunnel virtual interface, VI, is created (if it doesn't      already exist) with its encapsulation target being RP(G).      DownstreamJPState(S,G,VI) is set to Join state, causing the tunnel      interface to be added to immediate_olist(S,G) and      inherited_olist(S,G).   Remove Register Tunnel      VI is the Register-Tunnel virtual interface with encapsulation      target of RP(G).  DownstreamJPState(S,G,VI) is set to NoInfo      state, causing the tunnel interface to be removed from      immediate_olist(S,G) and inherited_olist(S,G).  If      DownstreamJPState(S,G,VI) is NoInfo for all (S,G), then VI can be      deleted.   Update Register Tunnel      This action occurs when RP(G) changes.      VI_old is the Register-Tunnel virtual interface with encapsulation      target old_RP(G).  A Register-Tunnel virtual interface, VI_new, is      created (if it doesn't already exist) with its encapsulation      target being new_RP(G).  DownstreamJPState(S,G,VI_old) is set to      NoInfo state and DownstreamJPState(S,G,VI_new) is set to Join      state.  If DownstreamJPState(S,G,VI_old) is NoInfo for all (S,G),      then VI_old can be deleted.      Note that we cannot simply change the encapsulation target of      VI_old because not all groups using that encapsulation tunnel will      have moved to the same new RP.Fenner, et al.              Standards Track                    [Page 40]

RFC 4601                  PIM-SM Specification               August 2006   CouldRegister(S,G)      The macro "CouldRegister" in the state machine is defined as:      bool CouldRegister(S,G) {         return ( I_am_DR( RPF_interface(S) ) AND                  KeepaliveTimer(S,G) is running AND                  DirectlyConnected(S) == TRUE )      }      Note that on reception of a packet at the DR from a directly      connected source, KeepaliveTimer(S,G) needs to be set by the      packet forwarding rules before computing CouldRegister(S,G) in the      register state machine, or the first packet from a source won't be      registered.   Encapsulating Data Packets in the Register Tunnel      Conceptually, the Register Tunnel is an interface with a smaller      MTU than the underlying IP interface towards the RP.  IP      fragmentation on packets forwarded on the Register Tunnel is      performed based upon this smaller MTU.  The encapsulating DR may      perform Path MTU Discovery to the RP to determine the effective      MTU of the tunnel.  Fragmentation for the smaller MTU should take      both the outer IP header and the PIM register header overhead into      account.  If a multicast packet is fragmented on the way into the      Register Tunnel, each fragment is encapsulated individually so it      contains IP, PIM, and inner IP headers.      In IPv6, the DR MUST perform Path MTU discovery, and an ICMP      Packet Too Big message MUST be sent by the encapsulating DR if it      receives a packet that will not fit in the effective MTU of the      tunnel.  If the MTU between the DR and the RP results in the      effective tunnel MTU being smaller than 1280 (the IPv6 minimum      MTU), the DR MUST send Fragmentation Required messages with an MTU      value of 1280 and MUST fragment its PIM register messages as      required, using an IPv6 fragmentation header between the outer      IPv6 header and the PIM Register header.      The TTL of a forwarded data packet is decremented before it is      encapsulated in the Register Tunnel.  The encapsulating packet      uses the normal TTL that the router would use for any locally-      generated IP packet.      The IP ECN bits should be copied from the original packet to the      IP header of the encapsulating packet.  They SHOULD NOT be set      independently by the encapsulating router.Fenner, et al.              Standards Track                    [Page 41]

RFC 4601                  PIM-SM Specification               August 2006      The Diffserv Code Point (DSCP) should be copied from the original      packet to the IP header of the encapsulating packet.  It MAY be      set independently by the encapsulating router, based upon static      configuration or traffic classification.  See [12] for more      discussion on setting the DSCP on tunnels.   Handling Register-Stop(*,G) Messages at the DR      An old RP might send a Register-Stop message with the source      address set to all zeros.  This was the normal course of action inRFC 2362 when the Register message matched against (*,G) state at      the RP, and it was defined as meaning "stop encapsulating all      sources for this group".  However, the behavior of such a      Register-Stop(*,G) is ambiguous or incorrect in some      circumstances.      We specify that an RP should not send Register-Stop(*,G) messages,      but for compatibility, a DR should be able to accept one if it is      received.      A Register-Stop(*,G) should be treated as a Register-Stop(S,G) for      all (S,G) Register state machines that are not in the NoInfo      state.  A router should not apply a Register-Stop(*,G) to sources      that become active after the Register-Stop(*,G) was received.Fenner, et al.              Standards Track                    [Page 42]

RFC 4601                  PIM-SM Specification               August 20064.4.2.  Receiving Register Messages at the RP   When an RP receives a Register message, the course of action is   decided according to the following pseudocode:   packet_arrives_on_rp_tunnel( pkt ) {       if( outer.dst is not one of my addresses ) {           drop the packet silently.           # Note: this may be a spoofing attempt       }       if( I_am_RP(G) AND outer.dst == RP(G) ) {             sentRegisterStop = FALSE;             if ( register.borderbit == TRUE ) {                  if ( PMBR(S,G) == unknown ) {                       PMBR(S,G) = outer.src                  } else if ( outer.src != PMBR(S,G) ) {                       send Register-Stop(S,G) to outer.src                       drop the packet silently.                  }             }             if ( SPTbit(S,G) OR              ( SwitchToSptDesired(S,G) AND                ( inherited_olist(S,G) == NULL ))) {               send Register-Stop(S,G) to outer.src               sentRegisterStop = TRUE;             }             if ( SPTbit(S,G) OR SwitchToSptDesired(S,G) ) {                  if ( sentRegisterStop == TRUE ) {                       set KeepaliveTimer(S,G) to RP_Keepalive_Period;                  } else {                       set KeepaliveTimer(S,G) to Keepalive_Period;                  }             }             if( !SPTbit(S,G) AND ! pkt.NullRegisterBit ) {                  decapsulate and forward the inner packet to                  inherited_olist(S,G,rpt) # Note (+)             }       } else {           send Register-Stop(S,G) to outer.src           # Note (*)       }   }   outer.dst is the IP destination address of the encapsulating header.   outer.src is the IP source address of the encapsulating header, i.e.,   the DR's address.Fenner, et al.              Standards Track                    [Page 43]

RFC 4601                  PIM-SM Specification               August 2006   I_am_RP(G) is true if the group-to-RP mapping indicates that this   router is the RP for the group.   Note (*): This may block traffic from S for Register_Suppression_Time      if the DR learned about a new group-to-RP mapping before the RP      did.  However, this doesn't matter unless we figure out some way      for the RP also to accept (*,G) joins when it doesn't yet realize      that it is about to become the RP for G.  This will all get sorted      out once the RP learns the new group-to-rp mapping.  We decided to      do nothing about this and just accept the fact that PIM may suffer      interrupted (*,G) connectivity following an RP change.   Note (+): Implementations are advised not to make this a special      case, but to arrange that this path rejoin the normal packet      forwarding path.  All of the appropriate actions from the "On      receipt of data from S to G on interface iif" pseudocode inSection 4.2 should be performed.   KeepaliveTimer(S,G) is restarted at the RP when packets arrive on the   proper tunnel interface and the RP desires to switch to the SPT or   the SPTbit is already set.  This may cause the upstream (S,G) state   machine to trigger a join if the inherited_olist(S,G) is not NULL.   An RP should preserve (S,G) state that was created in response to a   Register message for at least ( 3 * Register_Suppression_Time );   otherwise, the RP may stop joining (S,G) before the DR for S has   restarted sending registers.  Traffic would then be interrupted until   the Register-Stop Timer expires at the DR.   Thus, at the RP, KeepaliveTimer(S,G) should be restarted to ( 3 *   Register_Suppression_Time + Register_Probe_Time ).   When forwarding a packet from the Register Tunnel, the TTL of the   original data packet is decremented after it is decapsulated.   The IP ECN bits should be copied from the IP header of the Register   packet to the decapsulated packet.   The Diffserv Code Point (DSCP) should be copied from the IP header of   the Register packet to the decapsulated packet.  The RP MAY retain   the DSCP of the inner packet or re-classify the packet and apply a   different DSCP.  Scenarios where each of these might be useful are   discussed in [12].Fenner, et al.              Standards Track                    [Page 44]

RFC 4601                  PIM-SM Specification               August 20064.5.  PIM Join/Prune Messages   A PIM Join/Prune message consists of a list of groups and a list of   Joined and Pruned sources for each group.  When processing a received   Join/Prune message, each Joined or Pruned source for a Group is   effectively considered individually, and applies to one or more of   the following state machines.  When considering a Join/Prune message   whose Upstream Neighbor Address field addresses this router, (*,G)   Joins and Prunes can affect both the (*,G) and (S,G,rpt) downstream   state machines, while (*,*,RP), (S,G), and (S,G,rpt) Joins and Prunes   can only affect their respective downstream state machines.  When   considering a Join/Prune message whose Upstream Neighbor Address   field addresses another router, most Join or Prune messages could   affect each upstream state machine.   In general, a PIM Join/Prune message should only be accepted for   processing if it comes from a known PIM neighbor.  A PIM router hears   about PIM neighbors through PIM Hello messages.  If a router receives   a Join/Prune message from a particular IP source address and it has   not seen a PIM Hello message from that source address, then the   Join/Prune message SHOULD be discarded without further processing.   In addition, if the Hello message from a neighbor was authenticated   using IPsec AH (seeSection 6.3), then all Join/Prune messages from   that neighbor MUST also be authenticated using IPsec AH.   We note that some older PIM implementations incorrectly fail to send   Hello messages on point-to-point interfaces, so we also RECOMMEND   that a configuration option be provided to allow interoperation with   such older routers, but that this configuration option SHOULD NOT be   enabled by default.4.5.1.  Receiving (*,*,RP) Join/Prune Messages   The per-interface state machine for receiving (*,*,RP) Join/Prune   Messages is given below.  There are three states:     NoInfo (NI)          The interface has no (*,*,RP) Join state and no timers          running.     Join (J)          The interface has (*,*,RP) Join state, which will cause the          router to forward packets destined for any group handled by RP          from this interface except if there is also (S,G,rpt) prune          information (seeSection 4.5.4) or the router lost an assert          on this interface.Fenner, et al.              Standards Track                    [Page 45]

RFC 4601                  PIM-SM Specification               August 2006     Prune-Pending (PP)          The router has received a Prune(*,*,RP) on this interface from          a downstream neighbor and is waiting to see whether the prune          will be overridden by another downstream router.  For          forwarding purposes, the Prune-Pending state functions exactly          like the Join state.   In addition, the state machine uses two timers:     ExpiryTimer (ET)          This timer is restarted when a valid Join(*,*,RP) is received.          Expiry of the ExpiryTimer causes the interface state to revert          to NoInfo for this RP.     Prune-Pending Timer (PPT)          This timer is set when a valid Prune(*,*,RP) is received.          Expiry of the Prune-Pending Timer causes the interface state          to revert to NoInfo for this RP.       Figure 2: Downstream per-interface (*,*,RP) state machine                            in tabular form+------------++--------------------------------------------------------+|            ||                          Event                         ||            ++-------------+-------------+--------------+-------------+|Prev State  ||Receive      | Receive     | Prune-       | Expiry Timer||            ||Join(*,*,RP) | Prune       | Pending      | Expires     ||            ||             | (*,*,RP)    | Timer        |             ||            ||             |             | Expires      |             |+------------++-------------+-------------+--------------+-------------+|            ||-> J state   | -> NI state | -            | -           ||NoInfo (NI) ||start Expiry |             |              |             ||            ||Timer        |             |              |             |+------------++-------------+-------------+--------------+-------------+|            ||-> J state   | -> PP state | -            | -> NI state ||Join (J)    ||restart      | start Prune-|              |             ||            ||Expiry Timer | Pending     |              |             ||            ||             | Timer       |              |             |+------------++-------------+-------------+--------------+-------------+|Prune-      ||-> J state   | -> PP state | -> NI state  | -> NI state ||Pending (PP)||restart      |             | Send Prune-  |             ||            ||Expiry Timer |             | Echo(*,*,RP) |             |+------------++-------------+-------------+--------------+-------------+Fenner, et al.              Standards Track                    [Page 46]

RFC 4601                  PIM-SM Specification               August 2006   The transition events "Receive Join(*,*,RP)" and "Receive   Prune(*,*,RP)" imply receiving a Join or Prune targeted to this   router's primary IP address on the received interface.  If the   upstream neighbor address field is not correct, these state   transitions in this state machine must not occur, although seeing   such a packet may cause state transitions in other state machines.   On unnumbered interfaces on point-to-point links, the router's   address should be the same as the source address it chose for the   Hello message it sent over that interface.  However, on point-to-   point links we also recommend that for backwards compatibility PIM   Join/Prune messages with an upstream neighbor address field of all   zeros are also accepted.   Transitions from NoInfo State   When in NoInfo state, the following event may trigger a transition:     Receive Join(*,*,RP)          A Join(*,*,RP) is received on interface I with its Upstream          Neighbor Address set to the router's primary IP address on I.          The (*,*,RP) downstream state machine on interface I          transitions to the Join state.  The Expiry Timer (ET) is          started and set to the HoldTime from the triggering Join/Prune          message.          Note that it is possible to receive a Join(*,*,RP) message for          an RP for which we do not have information telling us that it          is an RP.  In the case of (*,*,RP) state, so long as we have a          route to the RP, this will not cause a problem, and the          transition should still take place.   Transitions from Join State   When in Join state, the following events may trigger a transition:     Receive Join(*,*,RP)          A Join(*,*,RP) is received on interface I with its Upstream          Neighbor Address set to the router's primary IP address on I.          The (*,*,RP) downstream state machine on interface I remains          in Join state, and the Expiry Timer (ET) is restarted, set to          maximum of its current value and the HoldTime from the          triggering Join/Prune message.Fenner, et al.              Standards Track                    [Page 47]

RFC 4601                  PIM-SM Specification               August 2006     Receive Prune(*,*,RP)          A Prune(*,*,RP) is received on interface I with its Upstream          Neighbor Address set to the router's primary IP address on I.          The (*,*,RP) downstream state machine on interface I          transitions to the Prune-Pending state.  The Prune-Pending          Timer is started.  It is set to the J/P_Override_Interval(I)          if the router has more than one neighbor on that interface;          otherwise, it is set to zero, causing it to expire          immediately.     Expiry Timer Expires          The Expiry Timer for the (*,*,RP) downstream state machine on          interface I expires.          The (*,*,RP) downstream state machine on interface I          transitions to the NoInfo state.   Transitions from Prune-Pending State   When in Prune-Pending state, the following events may trigger a   transition:     Receive Join(*,*,RP)          A Join(*,*,RP) is received on interface I with its Upstream          Neighbor Address set to the router's primary IP address on I.          The (*,*,RP) downstream state machine on interface I          transitions to the Join state.  The Prune-Pending Timer is          canceled (without triggering an expiry event).  The Expiry          Timer is restarted, set to maximum of its current value and          the HoldTime from the triggering Join/Prune message.     Expiry Timer Expires          The Expiry Timer for the (*,*,RP) downstream state machine on          interface I expires.          The (*,*,RP) downstream state machine on interface I          transitions to the NoInfo state.     Prune-Pending Timer Expires          The Prune-Pending Timer for the (*,*,RP) downstream state          machine on interface I expires.          The (*,*,RP) downstream state machine on interface I          transitions to the NoInfo state.  A PruneEcho(*,*,RP) is sent          onto the subnet connected to interface I.Fenner, et al.              Standards Track                    [Page 48]

RFC 4601                  PIM-SM Specification               August 2006          The action "Send PruneEcho(*,*,RP)" is triggered when the          router stops forwarding on an interface as a result of a          prune.  A PruneEcho(*,*,RP) is simply a Prune(*,*,RP) message          sent by the upstream router on a LAN with its own address in          the Upstream Neighbor Address field.  Its purpose is to add          additional reliability so that if a Prune that should have          been overridden by another router is lost locally on the LAN,          then the PruneEcho may be received and cause the override to          happen.  A PruneEcho(*,*,RP) need not be sent on an interface          that contains only a single PIM neighbor during the time this          state machine was in Prune-Pending state.4.5.2.  Receiving (*,G) Join/Prune Messages   When a router receives a Join(*,G), it must first check to see   whether the RP in the message matches RP(G) (the router's idea of who   the RP is).  If the RP in the message does not match RP(G), the   Join(*,G) should be silently dropped.  (Note that other source list   entries, such as (S,G,rpt) or (S,G), in the same Group-Specific Set   should still be processed.)  If a router has no RP information (e.g.,   has not recently received a BSR message), then it may choose to   accept Join(*,G) and treat the RP in the message as RP(G).  Received   Prune(*,G) messages are processed even if the RP in the message does   not match RP(G).   The per-interface state machine for receiving (*,G) Join/Prune   Messages is given below.  There are three states:     NoInfo (NI)          The interface has no (*,G) Join state and no timers running.     Join (J)          The interface has (*,G) Join state, which will cause the          router to forward packets destined for G from this interface          except if there is also (S,G,rpt) prune information (seeSection 4.5.4) or the router lost an assert on this interface.     Prune-Pending (PP)          The router has received a Prune(*,G) on this interface from a          downstream neighbor and is waiting to see whether the prune          will be overridden by another downstream router.  For          forwarding purposes, the Prune-Pending state functions exactly          like the Join state.Fenner, et al.              Standards Track                    [Page 49]

RFC 4601                  PIM-SM Specification               August 2006   In addition, the state machine uses two timers:     Expiry Timer (ET)          This timer is restarted when a valid Join(*,G) is received.          Expiry of the Expiry Timer causes the interface state to          revert to NoInfo for this group.     Prune-Pending Timer (PPT)          This timer is set when a valid Prune(*,G) is received.  Expiry          of the Prune-Pending Timer causes the interface state to          revert to NoInfo for this group. Figure 3: Downstream per-interface (*,G) state machine in tabular form+------------++--------------------------------------------------------+|            ||                         Event                          ||            ++-------------+--------------+-------------+-------------+|Prev State  ||Receive      | Receive      | Prune-      | Expiry Timer||            ||Join(*,G)    | Prune(*,G)   | Pending     | Expires     ||            ||             |              | Timer       |             ||            ||             |              | Expires     |             |+------------++-------------+--------------+-------------+-------------+|            ||-> J state   | -> NI state  | -           | -           ||NoInfo (NI) ||start Expiry |              |             |             ||            ||Timer        |              |             |             |+------------++-------------+--------------+-------------+-------------+|            ||-> J state   | -> PP state  | -           | -> NI state ||Join (J)    ||restart      | start Prune- |             |             ||            ||Expiry Timer | Pending      |             |             ||            ||             | Timer        |             |             |+------------++-------------+--------------+-------------+-------------+|Prune-      ||-> J state   | -> PP state  | -> NI state | -> NI state ||Pending (PP)||restart      |              | Send Prune- |             ||            ||Expiry Timer |              | Echo(*,G)   |             |+------------++-------------+--------------+-------------+-------------+   The transition events "Receive Join(*,G)" and "Receive Prune(*,G)"   imply receiving a Join or Prune targeted to this router's primary IP   address on the received interface.  If the upstream neighbor address   field is not correct, these state transitions in this state machine   must not occur, although seeing such a packet may cause state   transitions in other state machines.   On unnumbered interfaces on point-to-point links, the router's   address should be the same as the source address it chose for the   Hello message it sent over that interface.  However, on point-to-Fenner, et al.              Standards Track                    [Page 50]

RFC 4601                  PIM-SM Specification               August 2006   point links we also recommend that for backwards compatibility PIM   Join/Prune messages with an upstream neighbor address field of all   zeros are also accepted.   Transitions from NoInfo State   When in NoInfo state, the following event may trigger a transition:     Receive Join(*,G)          A Join(*,G) is received on interface I with its Upstream          Neighbor Address set to the router's primary IP address on I.          The (*,G) downstream state machine on interface I transitions          to the Join state.  The Expiry Timer (ET) is started and set          to the HoldTime from the triggering Join/Prune message.   Transitions from Join State   When in Join state, the following events may trigger a transition:     Receive Join(*,G)          A Join(*,G) is received on interface I with its Upstream          Neighbor Address set to the router's primary IP address on I.          The (*,G) downstream state machine on interface I remains in          Join state, and the Expiry Timer (ET) is restarted, set to          maximum of its current value and the HoldTime from the          triggering Join/Prune message.     Receive Prune(*,G)          A Prune(*,G) is received on interface I with its Upstream          Neighbor Address set to the router's primary IP address on I.          The (*,G) downstream state machine on interface I transitions          to the Prune-Pending state.  The Prune-Pending Timer is          started.  It is set to the J/P_Override_Interval(I) if the          router has more than one neighbor on that interface;          otherwise, it is set to zero, causing it to expire          immediately.     Expiry Timer Expires          The Expiry Timer for the (*,G) downstream state machine on          interface I expires.          The (*,G) downstream state machine on interface I transitions          to the NoInfo state.Fenner, et al.              Standards Track                    [Page 51]

RFC 4601                  PIM-SM Specification               August 2006   Transitions from Prune-Pending State   When in Prune-Pending state, the following events may trigger a   transition:     Receive Join(*,G)          A Join(*,G) is received on interface I with its Upstream          Neighbor Address set to the router's primary IP address on I.          The (*,G) downstream state machine on interface I transitions          to the Join state.  The Prune-Pending Timer is canceled          (without triggering an expiry event).  The Expiry Timer is          restarted, set to maximum of its current value and the          HoldTime from the triggering Join/Prune message.     Expiry Timer Expires          The Expiry Timer for the (*,G) downstream state machine on          interface I expires.          The (*,G) downstream state machine on interface I transitions          to the NoInfo state.     Prune-Pending Timer Expires          The Prune-Pending Timer for the (*,G) downstream state machine          on interface I expires.          The (*,G) downstream state machine on interface I transitions          to the NoInfo state.  A PruneEcho(*,G) is sent onto the subnet          connected to interface I.          The action "Send PruneEcho(*,G)" is triggered when the router          stops forwarding on an interface as a result of a prune.  A          PruneEcho(*,G) is simply a Prune(*,G) message sent by the          upstream router on a LAN with its own address in the Upstream          Neighbor Address field.  Its purpose is to add additional          reliability so that if a Prune that should have been          overridden by another router is lost locally on the LAN, then          the PruneEcho may be received and cause the override to          happen.  A PruneEcho(*,G) need not be sent on an interface          that contains only a single PIM neighbor during the time this          state machine was in Prune-Pending state.Fenner, et al.              Standards Track                    [Page 52]

RFC 4601                  PIM-SM Specification               August 20064.5.3.  Receiving (S,G) Join/Prune Messages   The per-interface state machine for receiving (S,G) Join/Prune   messages is given below and is almost identical to that for (*,G)   messages.  There are three states:     NoInfo (NI)          The interface has no (S,G) Join state and no (S,G) timers          running.     Join (J)          The interface has (S,G) Join state, which will cause the          router to forward packets from S destined for G from this          interface if the (S,G) state is active (the SPTbit is set)          except if the router lost an assert on this interface.     Prune-Pending (PP)          The router has received a Prune(S,G) on this interface from a          downstream neighbor and is waiting to see whether the prune          will be overridden by another downstream router.  For          forwarding purposes, the Prune-Pending state functions exactly          like the Join state.   In addition, there are two timers:     Expiry Timer (ET)          This timer is set when a valid Join(S,G) is received.  Expiry          of the Expiry Timer causes this state machine to revert to          NoInfo state.     Prune-Pending Timer (PPT)          This timer is set when a valid Prune(S,G) is received.  Expiry          of the Prune-Pending Timer causes this state machine to revert          to NoInfo state.Fenner, et al.              Standards Track                    [Page 53]

RFC 4601                  PIM-SM Specification               August 2006 Figure 4: Downstream per-interface (S,G) state machine in tabular form+------------++--------------------------------------------------------+|            ||                         Event                          ||            ++-------------+--------------+-------------+-------------+|Prev State  ||Receive      | Receive      | Prune-      | Expiry Timer||            ||Join(S,G)    | Prune(S,G)   | Pending     | Expires     ||            ||             |              | Timer       |             ||            ||             |              | Expires     |             |+------------++-------------+--------------+-------------+-------------+|            ||-> J state   | -> NI state  | -           | -           ||NoInfo (NI) ||start Expiry |              |             |             ||            ||Timer        |              |             |             |+------------++-------------+--------------+-------------+-------------+|            ||-> J state   | -> PP state  | -           | -> NI state ||Join (J)    ||restart      | start Prune- |             |             ||            ||Expiry Timer | Pending      |             |             ||            ||             | Timer        |             |             |+------------++-------------+--------------+-------------+-------------+|Prune-      ||-> J state   | -> PP state  | -> NI state | -> NI state ||Pending (PP)||restart      |              | Send Prune- |             ||            ||Expiry Timer |              | Echo(S,G)   |             |+------------++-------------+--------------+-------------+-------------+   The transition events "Receive Join(S,G)" and "Receive Prune(S,G)"   imply receiving a Join or Prune targeted to this router's primary IP   address on the received interface.  If the upstream neighbor address   field is not correct, these state transitions in this state machine   must not occur, although seeing such a packet may cause state   transitions in other state machines.   On unnumbered interfaces on point-to-point links, the router's   address should be the same as the source address it chose for the   Hello message it sent over that interface.  However, on point-to-   point links we also recommend that for backwards compatibility PIM   Join/Prune messages with an upstream neighbor address field of all   zeros are also accepted.   Transitions from NoInfo State   When in NoInfo state, the following event may trigger a transition:     Receive Join(S,G)          A Join(S,G) is received on interface I with its Upstream          Neighbor Address set to the router's primary IP address on I.Fenner, et al.              Standards Track                    [Page 54]

RFC 4601                  PIM-SM Specification               August 2006          The (S,G) downstream state machine on interface I transitions          to the Join state.  The Expiry Timer (ET) is started and set          to the HoldTime from the triggering Join/Prune message.   Transitions from Join State   When in Join state, the following events may trigger a transition:     Receive Join(S,G)          A Join(S,G) is received on interface I with its Upstream          Neighbor Address set to the router's primary IP address on I.          The (S,G) downstream state machine on interface I remains in          Join state, and the Expiry Timer (ET) is restarted, set to          maximum of its current value and the HoldTime from the          triggering Join/Prune message.     Receive Prune(S,G)          A Prune(S,G) is received on interface I with its Upstream          Neighbor Address set to the router's primary IP address on I.          The (S,G) downstream state machine on interface I transitions          to the Prune-Pending state.  The Prune-Pending Timer is          started.  It is set to the J/P_Override_Interval(I) if the          router has more than one neighbor on that interface;          otherwise, it is set to zero, causing it to expire          immediately.     Expiry Timer Expires          The Expiry Timer for the (S,G) downstream state machine on          interface I expires.          The (S,G) downstream state machine on interface I transitions          to the NoInfo state.   Transitions from Prune-Pending State   When in Prune-Pending state, the following events may trigger a   transition:     Receive Join(S,G)          A Join(S,G) is received on interface I with its Upstream          Neighbor Address set to the router's primary IP address on I.Fenner, et al.              Standards Track                    [Page 55]

RFC 4601                  PIM-SM Specification               August 2006          The (S,G) downstream state machine on interface I transitions          to the Join state.  The Prune-Pending Timer is canceled          (without triggering an expiry event).  The Expiry Timer is          restarted, set to maximum of its current value and the          HoldTime from the triggering Join/Prune message.     Expiry Timer Expires          The Expiry Timer for the (S,G) downstream state machine on          interface I expires.          The (S,G) downstream state machine on interface I transitions          to the NoInfo state.     Prune-Pending Timer Expires          The Prune-Pending Timer for the (S,G) downstream state machine          on interface I expires.          The (S,G) downstream state machine on interface I transitions          to the NoInfo state.  A PruneEcho(S,G) is sent onto the subnet          connected to interface I.          The action "Send PruneEcho(S,G)" is triggered when the router          stops forwarding on an interface as a result of a prune.  A          PruneEcho(S,G) is simply a Prune(S,G) message sent by the          upstream router on a LAN with its own address in the Upstream          Neighbor Address field.  Its purpose is to add additional          reliability so that if a Prune that should have been          overridden by another router is lost locally on the LAN, then          the PruneEcho may be received and cause the override to          happen.  A PruneEcho(S,G) need not be sent on an interface          that contains only a single PIM neighbor during the time this          state machine was in Prune-Pending state.4.5.4.  Receiving (S,G,rpt) Join/Prune Messages   The per-interface state machine for receiving (S,G,rpt) Join/Prune   messages is given below.  There are five states:     NoInfo (NI)          The interface has no (S,G,rpt) Prune state and no (S,G,rpt)          timers running.     Prune (P)          The interface has (S,G,rpt) Prune state, which will cause the          router not to forward packets from S destined for G from this          interface even though the interface has active (*,G) Join          state.Fenner, et al.              Standards Track                    [Page 56]

RFC 4601                  PIM-SM Specification               August 2006     Prune-Pending (PP)          The router has received a Prune(S,G,rpt) on this interface          from a downstream neighbor and is waiting to see whether the          prune will be overridden by another downstream router.  For          forwarding purposes, the Prune-Pending state functions exactly          like the NoInfo state.     PruneTmp (P')          This state is a transient state that for forwarding purposes          behaves exactly like the Prune state.  A (*,G) Join has been          received (which may cancel the (S,G,rpt) Prune).  As we parse          the Join/Prune message from top to bottom, we first enter this          state if the message contains a (*,G) Join.  Later in the          message, we will normally encounter an (S,G,rpt) prune to          reinstate the Prune state.  However, if we reach the end of          the message without encountering such a (S,G,rpt) prune, then          we will revert to NoInfo state in this state machine.          As no time is spent in this state, no timers can expire.     Prune-Pending-Tmp (PP')          This state is a transient state that is identical to P' except          that it is associated with the PP state rather than the P          state.  For forwarding purposes, PP' behaves exactly like PP          state.   In addition, there are two timers:     Expiry Timer (ET)          This timer is set when a valid Prune(S,G,rpt) is received.          Expiry of the Expiry Timer causes this state machine to revert          to NoInfo state.     Prune-Pending Timer (PPT)          This timer is set when a valid Prune(S,G,rpt) is received.          Expiry of the Prune-Pending Timer causes this state machine to          move on to Prune state.Fenner, et al.              Standards Track                    [Page 57]

RFC 4601                  PIM-SM Specification               August 2006      Figure 5: Downstream per-interface (S,G,rpt) state machine                            in tabular form+----------++----------------------------------------------------------+|          ||                          Event                           ||          ++---------+----------+----------+--------+--------+--------+|Prev      ||Receive  | Receive  | Receive  | End of | Prune- | Expiry ||State     ||Join(*,G)| Join     | Prune    | Message| Pending| Timer  ||          ||         | (S,G,rpt)| (S,G,rpt)|        | Timer  | Expires||          ||         |          |          |        | Expires|        |+----------++---------+----------+----------+--------+--------+--------+|          ||-        | -        | -> PP    | -      | -      | -      ||          ||         |          | state    |        |        |        ||          ||         |          | start    |        |        |        ||NoInfo    ||         |          | Prune-   |        |        |        ||(NI)      ||         |          | Pending  |        |        |        ||          ||         |          | Timer;   |        |        |        ||          ||         |          | start    |        |        |        ||          ||         |          | Expiry   |        |        |        ||          ||         |          | Timer    |        |        |        |+----------++---------+----------+----------+--------+--------+--------+|          ||-> P'    | -> NI    | -> P     | -      | -      | -> NI  ||          ||state    | state    | state    |        |        | state  ||Prune (P) ||         |          | restart  |        |        |        ||          ||         |          | Expiry   |        |        |        ||          ||         |          | Timer    |        |        |        |+----------++---------+----------+----------+--------+--------+--------+|Prune-    ||-> PP'   | -> NI    | -        | -      | -> P   | -      ||Pending   ||state    | state    |          |        | state  |        ||(PP)      ||         |          |          |        |        |        |+----------++---------+----------+----------+--------+--------+--------+|          ||-        | -        | -> P     | -> NI  | -      | -      ||PruneTmp  ||         |          | state    | state  |        |        ||(P')      ||         |          | restart  |        |        |        ||          ||         |          | Expiry   |        |        |        ||          ||         |          | Timer    |        |        |        |+----------++---------+----------+----------+--------+--------+--------+|          ||-        | -        | -> PP    | -> NI  | -      | -      ||Prune-    ||         |          | state    | state  |        |        ||Pending-  ||         |          | restart  |        |        |        ||Tmp (PP') ||         |          | Expiry   |        |        |        ||          ||         |          | Timer    |        |        |        |+----------++---------+----------+----------+--------+--------+--------+   The transition events "Receive Join(S,G,rpt)", "Receive   Prune(S,G,rpt)", and "Receive Join(*,G)" imply receiving a Join or   Prune targeted to this router's primary IP address on the received   interface.  If the upstream neighbor address field is not correct,Fenner, et al.              Standards Track                    [Page 58]

RFC 4601                  PIM-SM Specification               August 2006   these state transitions in this state machine must not occur,   although seeing such a packet may cause state transitions in other   state machines.   On unnumbered interfaces on point-to-point links, the router's   address should be the same as the source address it chose for the   Hello message it sent over that interface.  However, on point-to-   point links we also recommend that PIM Join/Prune messages with an   upstream neighbor address field of all zeros are also accepted.   Transitions from NoInfo State   When in NoInfo (NI) state, the following event may trigger a   transition:     Receive Prune(S,G,rpt)          A Prune(S,G,rpt) is received on interface I with its Upstream          Neighbor Address set to the router's primary IP address on I.          The (S,G,rpt) downstream state machine on interface I          transitions to the Prune-Pending state.  The Expiry Timer (ET)          is started and set to the HoldTime from the triggering          Join/Prune message.  The Prune-Pending Timer is started.  It          is set to the J/P_Override_Interval(I) if the router has more          than one neighbor on that interface; otherwise, it is set to          zero, causing it to expire immediately.   Transitions from Prune-Pending State   When in Prune-Pending (PP) state, the following events may trigger a   transition:     Receive Join(*,G)          A Join(*,G) is received on interface I with its Upstream          Neighbor Address set to the router's primary IP address on I.          The (S,G,rpt) downstream state machine on interface I          transitions to Prune-Pending-Tmp state whilst the remainder of          the compound Join/Prune message containing the Join(*,G) is          processed.     Receive Join(S,G,rpt)          A Join(S,G,rpt) is received on interface I with its Upstream          Neighbor Address set to the router's primary IP address on I.          The (S,G,rpt) downstream state machine on interface I          transitions to NoInfo state.  ET and PPT are canceled.Fenner, et al.              Standards Track                    [Page 59]

RFC 4601                  PIM-SM Specification               August 2006     Prune-Pending Timer Expires          The Prune-Pending Timer for the (S,G,rpt) downstream state          machine on interface I expires.          The (S,G,rpt) downstream state machine on interface I          transitions to the Prune state.   Transitions from Prune State   When in Prune (P) state, the following events may trigger a   transition:     Receive Join(*,G)          A Join(*,G) is received on interface I with its Upstream          Neighbor Address set to the router's primary IP address on I.          The (S,G,rpt) downstream state machine on interface I          transitions to PruneTmp state whilst the remainder of the          compound Join/Prune message containing the Join(*,G) is          processed.     Receive Join(S,G,rpt)          A Join(S,G,rpt) is received on interface I with its Upstream          Neighbor Address set to the router's primary IP address on I.          The (S,G,rpt) downstream state machine on interface I          transitions to NoInfo state.  ET and PPT are canceled.     Receive Prune(S,G,rpt)          A Prune(S,G,rpt) is received on interface I with its Upstream          Neighbor Address set to the router's primary IP address on I.          The (S,G,rpt) downstream state machine on interface I remains          in Prune state.  The Expiry Timer (ET) is restarted, set to          maximum of its current value and the HoldTime from the          triggering Join/Prune message.     Expiry Timer Expires          The Expiry Timer for the (S,G,rpt) downstream state machine on          interface I expires.          The (S,G,rpt) downstream state machine on interface I          transitions to the NoInfo state.   Transitions from Prune-Pending-Tmp State   When in Prune-Pending-Tmp (PP') state and processing a compound   Join/Prune message, the following events may trigger a transition:Fenner, et al.              Standards Track                    [Page 60]

RFC 4601                  PIM-SM Specification               August 2006     Receive Prune(S,G,rpt)          The compound Join/Prune message contains a Prune(S,G,rpt).          The (S,G,rpt) downstream state machine on interface I          transitions back to the Prune-Pending state.  The Expiry Timer          (ET) is restarted, set to maximum of its current value and the          HoldTime from the triggering Join/Prune message.     End of Message          The end of the compound Join/Prune message is reached.          The (S,G,rpt) downstream state machine on interface I          transitions to the NoInfo state.  ET and PPT are canceled.   Transitions from PruneTmp State   When in PruneTmp (P') state and processing a compound Join/Prune   message, the following events may trigger a transition:     Receive Prune(S,G,rpt)          The compound Join/Prune message contains a Prune(S,G,rpt).          The (S,G,rpt) downstream state machine on interface I          transitions back to the Prune state.  The Expiry Timer (ET) is          restarted, set to maximum of its current value and the          HoldTime from the triggering Join/Prune message.     End of Message          The end of the compound Join/Prune message is reached.          The (S,G,rpt) downstream state machine on interface I          transitions to the NoInfo state.  ET is canceled.   Notes:   Receiving a Prune(*,G) does not affect the (S,G,rpt) downstream state   machine.   Receiving a Join(*,*,RP) does not affect the (S,G,rpt) downstream   state machine.  If a router has originated Join(*,*,RP) and pruned a   source off it using Prune(S,G,rpt), then to receive that source again   it should explicitly re-join using Join(S,G,rpt) or Join(*,G).  In   some LAN topologies it is possible for a router sending a new   Join(*,*,RP) to have to wait as much as a Join/Prune Interval before   noticing that it needs to override a neighbor's preexisting   Prune(S,G,rpt).  This is considered acceptable, as (*,*,RP) state is   intended to be used only in long-lived and persistent scenarios.Fenner, et al.              Standards Track                    [Page 61]

RFC 4601                  PIM-SM Specification               August 20064.5.5.  Sending (*,*,RP) Join/Prune Messages   The per-interface state machines for (*,*,RP) hold join state from   downstream PIM routers.  This state then determines whether a router   needs to propagate a Join(*,*,RP) upstream towards the RP.   If a router wishes to propagate a Join(*,*,RP) upstream, it must also   watch for messages on its upstream interface from other routers on   that subnet, and these may modify its behavior.  If it sees a   Join(*,*,RP) to the correct upstream neighbor, it should suppress its   own Join(*,*,RP).  If it sees a Prune(*,*,RP) to the correct upstream   neighbor, it should be prepared to override that prune by sending a   Join(*,*,RP) almost immediately.  Finally, if it sees the Generation   ID (seeSection 4.3) of the correct upstream neighbor change, it   knows that the upstream neighbor has lost state, and it should be   prepared to refresh the state by sending a Join(*,*,RP) almost   immediately.   In addition, if the MRIB changes to indicate that the next hop   towards the RP has changed, the router should prune off from the old   next hop and join towards the new next hop.   The upstream (*,*,RP) state machine contains only two states:   Not Joined      The downstream state machines and local membership information do      not indicate that the router needs to join the (*,*,RP) tree for      this RP.   Joined      The downstream state machines and local membership information      indicate that the router should join the (*,*,RP) tree for this      RP.   In addition, one timer JT(*,*,RP) is kept that is used to trigger the   sending of a Join(*,*,RP) to the upstream next hop towards the RP,   NBR(RPF_interface(RP), MRIB.next_hop(RP)).Fenner, et al.              Standards Track                    [Page 62]

RFC 4601                  PIM-SM Specification               August 2006       Figure 6: Upstream (*,*,RP) state machine in tabular form+-------------------++-------------------------------------------------+|                   ||                      Event                      ||  Prev State       ++-------------------------+-----------------------+|                   ||   JoinDesired           |    JoinDesired        ||                   ||   (*,*,RP) ->True       |    (*,*,RP) ->False   |+-------------------++-------------------------+-----------------------+|                   ||   -> J state            |    -                  ||  NotJoined (NJ)   ||   Send Join(*,*,RP);    |                       ||                   ||   Set Join Timer to     |                       ||                   ||   t_periodic            |                       |+-------------------++-------------------------+-----------------------+|  Joined (J)       ||   -                     |    -> NJ state        ||                   ||                         |    Send Prune         ||                   ||                         |    (*,*,RP); Cancel   ||                   ||                         |    Join Timer         |+-------------------++-------------------------+-----------------------+   In addition, we have the following transitions, which occur within   the Joined state:+----------------------------------------------------------------------+|                         In Joined (J) State                          |+-------------------+--------------------+-----------------------------+| Timer Expires     |  See               |   See                       ||                   |  Join(*,*,RP)      |   Prune(*,*,RP)             ||                   |  to MRIB.          |   to MRIB.                  ||                   |  next_hop(RP)      |   next_hop(RP)              |+-------------------+--------------------+-----------------------------+| Send              |  Increase Join     |   Decrease Join             || Join(*,*,RP);     |  Timer to          |   Timer to                  || Set Join Timer    |  t_joinsuppress    |   t_override                || to t_periodic     |                    |                             |+-------------------+--------------------+-----------------------------+Fenner, et al.              Standards Track                    [Page 63]

RFC 4601                  PIM-SM Specification               August 2006+----------------------------------------------------------------------+|                         In Joined (J) State                          |+-----------------------------------+----------------------------------+|    NBR(RPF_interface(RP),         |       MRIB.next_hop(RP) GenID    ||    MRIB.next_hop(RP))             |       changes                    ||    changes                        |                                  |+-----------------------------------+----------------------------------+|    Send Join(*,*,RP) to new       |       Decrease Join Timer to     ||    next hop; Send                 |       t_override                 ||    Prune(*,*,RP) to old           |                                  ||    next hop; set Join Timer       |                                  ||    to t_periodic                  |                                  |+-----------------------------------+----------------------------------+   This state machine uses the following macro:     bool JoinDesired(*,*,RP) {        if immediate_olist(*,*,RP) != NULL            return TRUE        else            return FALSE     }   JoinDesired(*,*,RP) is true when the router has received (*,*,RP)   Joins from any downstream interface.  Note that although JoinDesired   is true, the router's sending of a Join(*,*,RP) message may be   suppressed by another router sending a Join(*,*,RP) onto the upstream   interface.   Transitions from NotJoined State   When the upstream (*,*,RP) state machine is in NotJoined state, the   following event may trigger a state transition:     JoinDesired(*,*,RP) becomes True          The downstream state for (*,*,RP) has changed so that at least          one interface is in immediate_olist(*,*,RP), making          JoinDesired(*,*,RP) become True.          The upstream (*,*,RP) state machine transitions to Joined          state.  Send Join(*,*,RP) to the appropriate upstream          neighbor, which is NBR(RPF_interface(RP), MRIB.next_hop(RP)).          Set the Join Timer (JT) to expire after t_periodic seconds.   Transitions from Joined State   When the upstream (*,*,RP) state machine is in Joined state, the   following events may trigger state transitions:Fenner, et al.              Standards Track                    [Page 64]

RFC 4601                  PIM-SM Specification               August 2006     JoinDesired(*,*,RP) becomes False          The downstream state for (*,*,RP) has changed so no interface          is in immediate_olist(*,*,RP), making JoinDesired(*,*,RP)          become False.          The upstream (*,*,RP) state machine transitions to NotJoined          state.  Send Prune(*,*,RP) to the appropriate upstream          neighbor, which is NBR(RPF_interface(RP), MRIB.next_hop(RP)).          Cancel the Join Timer (JT).     Join Timer Expires          The Join Timer (JT) expires, indicating time to send a          Join(*,*,RP)          Send Join(*,*,RP) to the appropriate upstream neighbor, which          is NBR(RPF_interface(RP), MRIB.next_hop(RP)).  Restart the          Join Timer (JT) to expire after t_periodic seconds.     See Join(*,*,RP) to MRIB.next_hop(RP)          This event is only relevant if RPF_interface(RP) is a shared          medium.  This router sees another router on RPF_interface(RP)          send a Join(*,*,RP) to NBR(RPF_interface(RP),          MRIB.next_hop(RP)).  This causes this router to suppress its          own Join.          The upstream (*,*,RP) state machine remains in Joined state.          Let t_joinsuppress be the minimum of t_suppressed and the          HoldTime from the Join/Prune message triggering this event.          If the Join Timer is set to expire in less than t_joinsuppress          seconds, reset it so that it expires after t_joinsuppress          seconds.  If the Join Timer is set to expire in more than          t_joinsuppress seconds, leave it unchanged.     See Prune(*,*,RP) to MRIB.next_hop(RP)          This event is only relevant if RPF_interface(RP) is a shared          medium.  This router sees another router on RPF_interface(RP)          send a Prune(*,*,RP) to NBR(RPF_interface(RP),          MRIB.next_hop(RP)).  As this router is in Joined state, it          must override the Prune after a short random interval.          The upstream (*,*,RP) state machine remains in Joined state.          If the Join Timer is set to expire in more than t_override          seconds, reset it so that it expires after t_override seconds.          If the Join Timer is set to expire in less than t_override          seconds, leave it unchanged.Fenner, et al.              Standards Track                    [Page 65]

RFC 4601                  PIM-SM Specification               August 2006     NBR(RPF_interface(RP), MRIB.next_hop(RP)) changes          A change in the MRIB routing base causes the next hop towards          the RP to change.          The upstream (*,*,RP) state machine remains in Joined state.          Send Join(*,*,RP) to the new upstream neighbor, which is the          new value of NBR(RPF_interface(RP), MRIB.next_hop(RP)).  Send          Prune(*,*,RP) to the old upstream neighbor, which is the old          value of NBR(RPF_interface(RP), MRIB.next_hop(RP)).  Set the          Join Timer (JT) to expire after t_periodic seconds.     MRIB.next_hop(RP) GenID changes          The Generation ID of the router that is MRIB.next_hop(RP)          changes.  This normally means that this neighbor has lost          state, and so the state must be refreshed.          The upstream (*,*,RP) state machine remains in Joined state.          If the Join Timer is set to expire in more than t_override          seconds, reset it so that it expires after t_override seconds.4.5.6.  Sending (*,G) Join/Prune Messages   The per-interface state machines for (*,G) hold join state from   downstream PIM routers.  This state then determines whether a router   needs to propagate a Join(*,G) upstream towards the RP.   If a router wishes to propagate a Join(*,G) upstream, it must also   watch for messages on its upstream interface from other routers on   that subnet, and these may modify its behavior.  If it sees a   Join(*,G) to the correct upstream neighbor, it should suppress its   own Join(*,G).  If it sees a Prune(*,G) to the correct upstream   neighbor, it should be prepared to override that prune by sending a   Join(*,G) almost immediately.  Finally, if it sees the Generation ID   (seeSection 4.3) of the correct upstream neighbor change, it knows   that the upstream neighbor has lost state, and it should be prepared   to refresh the state by sending a Join(*,G) almost immediately.   If a (*,G) Assert occurs on the upstream interface, and this changes   this router's idea of the upstream neighbor, it should be prepared to   ensure that the Assert winner is aware of downstream routers by   sending a Join(*,G) almost immediately.   In addition, if the MRIB changes to indicate that the next hop   towards the RP has changed, and either the upstream interface changes   or there is no Assert winner on the upstream interface, the router   should prune off from the old next hop and join towards the new next   hop.Fenner, et al.              Standards Track                    [Page 66]

RFC 4601                  PIM-SM Specification               August 2006   The upstream (*,G) state machine only contains two states:   Not Joined      The downstream state machines indicate that the router does not      need to join the RP tree for this group.   Joined      The downstream state machines indicate that the router should join      the RP tree for this group.   In addition, one timer JT(*,G) is kept that is used to trigger the   sending of a Join(*,G) to the upstream next hop towards the RP,   RPF'(*,G).         Figure 7: Upstream (*,G) state machine in tabular form+-------------------++-------------------------------------------------+|                   ||                      Event                      ||  Prev State       ++------------------------+------------------------+|                   ||   JoinDesired(*,G)     |    JoinDesired(*,G)    ||                   ||   ->True               |    ->False             |+-------------------++------------------------+------------------------+|                   ||   -> J state           |    -                   ||  NotJoined (NJ)   ||   Send Join(*,G);      |                        ||                   ||   Set Join Timer to    |                        ||                   ||   t_periodic           |                        |+-------------------++------------------------+------------------------+|  Joined (J)       ||   -                    |    -> NJ state         ||                   ||                        |    Send Prune(*,G);    ||                   ||                        |    Cancel Join Timer   |+-------------------++------------------------+------------------------+   In addition, we have the following transitions, which occur within   the Joined state:+----------------------------------------------------------------------+|                        In Joined (J) State                           |+----------------+-----------------+-----------------+-----------------+|Timer Expires   | See Join(*,G)   | See Prune(*,G)  | RPF'(*,G)       ||                | to RPF'(*,G)    | to RPF'(*,G)    | changes due to  ||                |                 |                 | an Assert       |+----------------+-----------------+-----------------+-----------------+|Send            | Increase Join   | Decrease Join   | Decrease Join   ||Join(*,G); Set  | Timer to        | Timer to        | Timer to        ||Join Timer to   | t_joinsuppress  | t_override      | t_override      ||t_periodic      |                 |                 |                 |+----------------+-----------------+-----------------+-----------------+Fenner, et al.              Standards Track                    [Page 67]

RFC 4601                  PIM-SM Specification               August 2006+----------------------------------------------------------------------+|                         In Joined (J) State                          |+----------------------------------+-----------------------------------+|    RPF'(*,G) changes not         |       RPF'(*,G) GenID changes     ||    due to an Assert              |                                   |+----------------------------------+-----------------------------------+|    Send Join(*,G) to new         |       Decrease Join Timer to      ||    next hop; Send                |       t_override                  ||    Prune(*,G) to old next        |                                   ||    hop; Set Join Timer to        |                                   ||    t_periodic                    |                                   |+----------------------------------+-----------------------------------+   This state machine uses the following macro:     bool JoinDesired(*,G) {        if (immediate_olist(*,G) != NULL OR            (JoinDesired(*,*,RP(G)) AND             AssertWinner(*, G, RPF_interface(RP(G))) != NULL))            return TRUE        else            return FALSE     }   JoinDesired(*,G) is true when the router has forwarding state that   would cause it to forward traffic for G using shared tree state.   Note that although JoinDesired is true, the router's sending of a   Join(*,G) message may be suppressed by another router sending a   Join(*,G) onto the upstream interface.   Transitions from NotJoined State   When the upstream (*,G) state machine is in NotJoined state, the   following event may trigger a state transition:     JoinDesired(*,G) becomes True          The macro JoinDesired(*,G) becomes True, e.g., because the          downstream state for (*,G) has changed so that at least one          interface is in immediate_olist(*,G).          The upstream (*,G) state machine transitions to Joined state.          Send Join(*,G) to the appropriate upstream neighbor, which is          RPF'(*,G).  Set the Join Timer (JT) to expire after t_periodic          seconds.Fenner, et al.              Standards Track                    [Page 68]

RFC 4601                  PIM-SM Specification               August 2006   Transitions from Joined State   When the upstream (*,G) state machine is in Joined state, the   following events may trigger state transitions:     JoinDesired(*,G) becomes False          The macro JoinDesired(*,G) becomes False, e.g., because the          downstream state for (*,G) has changed so no interface is in          immediate_olist(*,G).          The upstream (*,G) state machine transitions to NotJoined          state.  Send Prune(*,G) to the appropriate upstream neighbor,          which is RPF'(*,G).  Cancel the Join Timer (JT).     Join Timer Expires          The Join Timer (JT) expires, indicating time to send a          Join(*,G)          Send Join(*,G) to the appropriate upstream neighbor, which is          RPF'(*,G).  Restart the Join Timer (JT) to expire after          t_periodic seconds.     See Join(*,G) to RPF'(*,G)          This event is only relevant if RPF_interface(RP(G)) is a          shared medium.  This router sees another router on          RPF_interface(RP(G)) send a Join(*,G) to RPF'(*,G).  This          causes this router to suppress its own Join.          The upstream (*,G) state machine remains in Joined state.          Let t_joinsuppress be the minimum of t_suppressed and the          HoldTime from the Join/Prune message triggering this event.          If the Join Timer is set to expire in less than t_joinsuppress          seconds, reset it so that it expires after t_joinsuppress          seconds.  If the Join Timer is set to expire in more than          t_joinsuppress seconds, leave it unchanged.     See Prune(*,G) to RPF'(*,G)          This event is only relevant if RPF_interface(RP(G)) is a          shared medium.  This router sees another router on          RPF_interface(RP(G)) send a Prune(*,G) to RPF'(*,G).  As this          router is in Joined state, it must override the Prune after a          short random interval.Fenner, et al.              Standards Track                    [Page 69]

RFC 4601                  PIM-SM Specification               August 2006          The upstream (*,G) state machine remains in Joined state.  If          the Join Timer is set to expire in more than t_override          seconds, reset it so that it expires after t_override seconds.          If the Join Timer is set to expire in less than t_override          seconds, leave it unchanged.     RPF'(*,G) changes due to an Assert          The current next hop towards the RP changes due to an          Assert(*,G) on the RPF_interface(RP(G)).          The upstream (*,G) state machine remains in Joined state.  If          the Join Timer is set to expire in more than t_override          seconds, reset it so that it expires after t_override seconds.          If the Join Timer is set to expire in less than t_override          seconds, leave it unchanged.     RPF'(*,G) changes not due to an Assert          An event occurred that caused the next hop towards the RP for          G to change.  This may be caused by a change in the MRIB          routing database or the group-to-RP mapping.  Note that this          transition does not occur if an Assert is active and the          upstream interface does not change.          The upstream (*,G) state machine remains in Joined state.          Send Join(*,G) to the new upstream neighbor, which is the new          value of RPF'(*,G).  Send Prune(*,G) to the old upstream          neighbor, which is the old value of RPF'(*,G).  Use the new          value of RP(G) in the Prune(*,G) message or all zeros if RP(G)          becomes unknown (old value of RP(G) may be used instead to          improve behavior in routers implementing older versions of          this spec).  Set the Join Timer (JT) to expire after          t_periodic seconds.     RPF'(*,G) GenID changes          The Generation ID of the router that is RPF'(*,G) changes.          This normally means that this neighbor has lost state, and so          the state must be refreshed.          The upstream (*,G) state machine remains in Joined state.  If          the Join Timer is set to expire in more than t_override          seconds, reset it so that it expires after t_override seconds.Fenner, et al.              Standards Track                    [Page 70]

RFC 4601                  PIM-SM Specification               August 20064.5.7.  Sending (S,G) Join/Prune Messages   The per-interface state machines for (S,G) hold join state from   downstream PIM routers.  This state then determines whether a router   needs to propagate a Join(S,G) upstream towards the source.   If a router wishes to propagate a Join(S,G) upstream, it must also   watch for messages on its upstream interface from other routers on   that subnet, and these may modify its behavior.  If it sees a   Join(S,G) to the correct upstream neighbor, it should suppress its   own Join(S,G).  If it sees a Prune(S,G), Prune(S,G,rpt), or   Prune(*,G) to the correct upstream neighbor towards S, it should be   prepared to override that prune by scheduling a Join(S,G) to be sent   almost immediately.  Finally, if it sees the Generation ID of its   upstream neighbor change, it knows that the upstream neighbor has   lost state, and it should refresh the state by scheduling a Join(S,G)   to be sent almost immediately.   If a (S,G) Assert occurs on the upstream interface, and this changes   the this router's idea of the upstream neighbor, it should be   prepared to ensure that the Assert winner is aware of downstream   routers by scheduling a Join(S,G) to be sent almost immediately.   In addition, if MRIB changes cause the next hop towards the source to   change, and either the upstream interface changes or there is no   Assert winner on the upstream interface, the router should send a   prune to the old next hop and a join to the new next hop.   The upstream (S,G) state machine only contains two states:   Not Joined      The downstream state machines and local membership information do      not indicate that the router needs to join the shortest-path tree      for this (S,G).   Joined      The downstream state machines and local membership information      indicate that the router should join the shortest-path tree for      this (S,G).   In addition, one timer JT(S,G) is kept that is used to trigger the   sending of a Join(S,G) to the upstream next hop towards S, RPF'(S,G).Fenner, et al.              Standards Track                    [Page 71]

RFC 4601                  PIM-SM Specification               August 2006         Figure 8: Upstream (S,G) state machine in tabular form+-------------------+--------------------------------------------------+|                   |                      Event                       ||  Prev State       +-------------------------+------------------------+|                   |   JoinDesired(S,G)      |   JoinDesired(S,G)     ||                   |   ->True                |   ->False              |+-------------------+-------------------------+------------------------+|  NotJoined (NJ)   |   -> J state            |   -                    ||                   |   Send Join(S,G);       |                        ||                   |   Set Join Timer to     |                        ||                   |   t_periodic            |                        |+-------------------+-------------------------+------------------------+|  Joined (J)       |   -                     |   -> NJ state          ||                   |                         |   Send Prune(S,G);     ||                   |                         |   Set SPTbit(S,G) to   ||                   |                         |   FALSE; Cancel Join   ||                   |                         |   Timer                |+-------------------+-------------------------+------------------------+   In addition, we have the following transitions, which occur within   the Joined state:+----------------------------------------------------------------------+|                         In Joined (J) State                          |+-----------------+-----------------+-----------------+----------------+| Timer Expires   | See Join(S,G)   | See Prune(S,G)  | See Prune      ||                 | to RPF'(S,G)    | to RPF'(S,G)    | (S,G,rpt) to   ||                 |                 |                 | RPF'(S,G)      |+-----------------+-----------------+-----------------+----------------+| Send            | Increase Join   | Decrease Join   | Decrease Join  || Join(S,G); Set  | Timer to        | Timer to        | Timer to       || Join Timer to   | t_joinsuppress  | t_override      | t_override     || t_periodic      |                 |                 |                |+-----------------+-----------------+-----------------+----------------+Fenner, et al.              Standards Track                    [Page 72]

RFC 4601                  PIM-SM Specification               August 2006+----------------------------------------------------------------------+|                        In Joined (J) State                           |+-----------------+-----------------+----------------+-----------------+| See Prune(*,G)  | RPF'(S,G)       | RPF'(S,G)      | RPF'(S,G)       || to RPF'(S,G)    | changes not     | GenID changes  | changes due to  ||                 | due to an       |                | an Assert       ||                 | Assert          |                |                 |+-----------------+-----------------+----------------+-----------------+| Decrease Join   | Send Join(S,G)  | Decrease Join  | Decrease Join   || Timer to        | to new next     | Timer to       | Timer to        || t_override      | hop; Send       | t_override     | t_override      ||                 | Prune(S,G) to   |                |                 ||                 | old next hop;   |                |                 ||                 | Set Join Timer  |                |                 ||                 | to t_periodic   |                |                 |+-----------------+-----------------+----------------+-----------------+   This state machine uses the following macro:     bool JoinDesired(S,G) {         return( immediate_olist(S,G) != NULL                 OR ( KeepaliveTimer(S,G) is running                      AND inherited_olist(S,G) != NULL ) )     }   JoinDesired(S,G) is true when the router has forwarding state that   would cause it to forward traffic for G using source tree state.  The   source tree state can be as a result of either active source-specific   join state, or the (S,G) Keepalive Timer and active non-source-   specific state.  Note that although JoinDesired is true, the router's   sending of a Join(S,G) message may be suppressed by another router   sending a Join(S,G) onto the upstream interface.   Transitions from NotJoined State   When the upstream (S,G) state machine is in NotJoined state, the   following event may trigger a state transition:     JoinDesired(S,G) becomes True          The macro JoinDesired(S,G) becomes True, e.g., because the          downstream state for (S,G) has changed so that at least one          interface is in inherited_olist(S,G).          The upstream (S,G) state machine transitions to Joined state.          Send Join(S,G) to the appropriate upstream neighbor, which is          RPF'(S,G).  Set the Join Timer (JT) to expire after t_periodic          seconds.Fenner, et al.              Standards Track                    [Page 73]

RFC 4601                  PIM-SM Specification               August 2006   Transitions from Joined State   When the upstream (S,G) state machine is in Joined state, the   following events may trigger state transitions:     JoinDesired(S,G) becomes False          The macro JoinDesired(S,G) becomes False, e.g., because the          downstream state for (S,G) has changed so no interface is in          inherited_olist(S,G).          The upstream (S,G) state machine transitions to NotJoined          state.  Send Prune(S,G) to the appropriate upstream neighbor,          which is RPF'(S,G).  Cancel the Join Timer (JT), and set          SPTbit(S,G) to FALSE.     Join Timer Expires          The Join Timer (JT) expires, indicating time to send a          Join(S,G)          Send Join(S,G) to the appropriate upstream neighbor, which is          RPF'(S,G).  Restart the Join Timer (JT) to expire after          t_periodic seconds.     See Join(S,G) to RPF'(S,G)          This event is only relevant if RPF_interface(S) is a shared          medium.  This router sees another router on RPF_interface(S)          send a Join(S,G) to RPF'(S,G).  This causes this router to          suppress its own Join.          The upstream (S,G) state machine remains in Joined state.          Let t_joinsuppress be the minimum of t_suppressed and the          HoldTime from the Join/Prune message triggering this event.          If the Join Timer is set to expire in less than t_joinsuppress          seconds, reset it so that it expires after t_joinsuppress          seconds.  If the Join Timer is set to expire in more than          t_joinsuppress seconds, leave it unchanged.     See Prune(S,G) to RPF'(S,G)          This event is only relevant if RPF_interface(S) is a shared          medium.  This router sees another router on RPF_interface(S)          send a Prune(S,G) to RPF'(S,G).  As this router is in Joined          state, it must override the Prune after a short random          interval.Fenner, et al.              Standards Track                    [Page 74]

RFC 4601                  PIM-SM Specification               August 2006          The upstream (S,G) state machine remains in Joined state.  If          the Join Timer is set to expire in more than t_override          seconds, reset it so that it expires after t_override seconds.     See Prune(S,G,rpt) to RPF'(S,G)          This event is only relevant if RPF_interface(S) is a shared          medium.  This router sees another router on RPF_interface(S)          send a Prune(S,G,rpt) to RPF'(S,G).  If the upstream router is          anRFC-2362-compliant PIM router, then the Prune(S,G,rpt) will          cause it to stop forwarding.  For backwards compatibility,          this router should override the prune so that forwarding          continues.          The upstream (S,G) state machine remains in Joined state.  If          the Join Timer is set to expire in more than t_override          seconds, reset it so that it expires after t_override seconds.     See Prune(*,G) to RPF'(S,G)          This event is only relevant if RPF_interface(S) is a shared          medium.  This router sees another router on RPF_interface(S)          send a Prune(*,G) to RPF'(S,G).  If the upstream router is anRFC-2362-compliant PIM router, then the Prune(*,G) will cause          it to stop forwarding.  For backwards compatibility, this          router should override the prune so that forwarding continues.          The upstream (S,G) state machine remains in Joined state.  If          the Join Timer is set to expire in more than t_override          seconds, reset it so that it expires after t_override seconds.     RPF'(S,G) changes due to an Assert          The current next hop towards S changes due to an Assert(S,G)          on the RPF_interface(S).          The upstream (S,G) state machine remains in Joined state.  If          the Join Timer is set to expire in more than t_override          seconds, reset it so that it expires after t_override seconds.          If the Join Timer is set to expire in less than t_override          seconds, leave it unchanged.     RPF'(S,G) changes not due to an Assert          An event occurred that caused the next hop towards S to          change.  Note that this transition does not occur if an Assert          is active and the upstream interface does not change.Fenner, et al.              Standards Track                    [Page 75]

RFC 4601                  PIM-SM Specification               August 2006          The upstream (S,G) state machine remains in Joined state.          Send Join(S,G) to the new upstream neighbor, which is the new          value of RPF'(S,G).  Send Prune(S,G) to the old upstream          neighbor, which is the old value of RPF'(S,G).  Set the Join          Timer (JT) to expire after t_periodic seconds.     RPF'(S,G) GenID changes          The Generation ID of the router that is RPF'(S,G) changes.          This normally means that this neighbor has lost state, and so          the state must be refreshed.          The upstream (S,G) state machine remains in Joined state.  If          the Join Timer is set to expire in more than t_override          seconds, reset it so that it expires after t_override seconds.4.5.8.  (S,G,rpt) Periodic Messages   (S,G,rpt) Joins and Prunes are (S,G) Joins or Prunes sent on the RP   tree with the RPT bit set, either to modify the results of (*,G)   Joins, or to override the behavior of other upstream LAN peers.  The   next section describes the rules for sending triggered messages.   This section describes the rules for including a Prune(S,G,rpt)   message with a Join(*,G).   When a router is going to send a Join(*,G), it should use the   following pseudocode, for each (S,G) for which it has state, to   decide whether to include a Prune(S,G,rpt) in the compound Join/Prune   message:     if( SPTbit(S,G) == TRUE ) {         # Note: If receiving (S,G) on the SPT, we only prune off the         # shared tree if the RPF neighbors differ.          if( RPF'(*,G) != RPF'(S,G) ) {              add Prune(S,G,rpt) to compound message          }     } else if ( inherited_olist(S,G,rpt) == NULL ) {       # Note: all (*,G) olist interfaces received RPT prunes for (S,G).       add Prune(S,G,rpt) to compound message     } else if ( RPF'(*,G) != RPF'(S,G,rpt) {       # Note: we joined the shared tree, but there was an (S,G) assert       # and the source tree RPF neighbor is different.       add Prune(S,G,rpt) to compound message     }   Note that Join(S,G,rpt) is normally sent not as a periodic message,   but only as a triggered message.Fenner, et al.              Standards Track                    [Page 76]

RFC 4601                  PIM-SM Specification               August 20064.5.9.  State Machine for (S,G,rpt) Triggered Messages   The state machine for (S,G,rpt) triggered messages is required per-   (S,G) when there is (*,G) or (*,*,RP) join state at a router, and the   router or any of its upstream LAN peers wishes to prune S off the RP   tree.   There are three states in the state machine.  One of the states is   when there is neither (*,G) nor (*,*,RP(G)) join state at this   router.  If there is (*,G) or (*,*,RP(G)) join state at the router,   then the state machine must be at one of the other two states.  The   three states are:   Pruned(S,G,rpt)      (*,G) or (*,*,RP(G)) Joined, but (S,G,rpt) pruned   NotPruned(S,G,rpt)      (*,G) or (*,*,RP(G)) Joined, and (S,G,rpt) not pruned   RPTNotJoined(G)      neither (*,G) nor (*,*,RP(G)) has been joined.   In addition, there is an (S,G,rpt) Override Timer, OT(S,G,rpt), which   is used to delay triggered Join(S,G,rpt) messages to prevent   implosions of triggered messages.Fenner, et al.              Standards Track                    [Page 77]

RFC 4601                  PIM-SM Specification               August 2006   Figure 9: Upstream (S,G,rpt) state machine for triggered messages                            in tabular form+------------++--------------------------------------------------------+|            ||                           Event                        ||            ++--------------+--------------+-------------+------------+|Prev State  || PruneDesired | PruneDesired | RPTJoin     | inherited_ ||            || (S,G,rpt)    | (S,G,rpt)    | Desired(G)  | olist      ||            || ->True       | ->False      | ->False     | (S,G,rpt)  ||            ||              |              |             | ->non-NULL |+------------++--------------+--------------+-------------+------------+|RPTNotJoined|| -> P state   | -            | -           | -> NP state||(G) (NJ)    ||              |              |             |            |+------------++--------------+--------------+-------------+------------+|Pruned      || -            | -> NP state  | -> NJ state | -          ||(S,G,rpt)   ||              | Send Join    |             |            ||(P)         ||              | (S,G,rpt)    |             |            |+------------++--------------+--------------+-------------+------------+|NotPruned   || -> P state   | -            | -> NJ state | -          ||(S,G,rpt)   || Send Prune   |              | Cancel OT   |            ||(NP)        || (S,G,rpt);   |              |             |            ||            || Cancel OT    |              |             |            |+------------++--------------+--------------+-------------+------------+   Additionally, we have the following transitions within the   NotPruned(S,G,rpt) state, which are all used for prune override   behavior.+----------------------------------------------------------------------+|                    In NotPruned(S,G,rpt) State                       |+----------+--------------+--------------+--------------+--------------+|Override  | See Prune    | See Join     | See Prune    | RPF'         ||Timer     | (S,G,rpt) to | (S,G,rpt) to | (S,G) to     | (S,G,rpt) -> ||expires   | RPF'         | RPF'         | RPF'         | RPF' (*,G)   ||          | (S,G,rpt)    | (S,G,rpt)    | (S,G,rpt)    |              |+----------+--------------+--------------+--------------+--------------+|Send Join | OT = min(OT, | Cancel OT    | OT = min(OT, | OT = min(OT, ||(S,G,rpt);| t_override)  |              | t_override)  | t_override)  ||Leave OT  |              |              |              |              ||unset     |              |              |              |              |+----------+--------------+--------------+--------------+--------------+   Note that the min function in the above state machine considers a   non-running timer to have an infinite value (e.g., min(not-running,   t_override) = t_override).Fenner, et al.              Standards Track                    [Page 78]

RFC 4601                  PIM-SM Specification               August 2006   This state machine uses the following macros:     bool RPTJoinDesired(G) {       return (JoinDesired(*,G) OR JoinDesired(*,*,RP(G)))     }   RPTJoinDesired(G) is true when the router has forwarding state that   would cause it to forward traffic for G using either (*,G) or   (*,*,RP) shared tree state.     bool PruneDesired(S,G,rpt) {          return ( RPTJoinDesired(G) AND                   ( inherited_olist(S,G,rpt) == NULL                     OR (SPTbit(S,G)==TRUE                         AND (RPF'(*,G) != RPF'(S,G)) )))     }   PruneDesired(S,G,rpt) can only be true if RPTJoinDesired(G) is true.   If RPTJoinDesired(G) is true, then PruneDesired(S,G,rpt) is true   either if there are no outgoing interfaces that S would be forwarded   on, or if the router has active (S,G) forwarding state but RPF'(*,G)   != RPF'(S,G).   The state machine contains the following transition events:   See Join(S,G,rpt) to RPF'(S,G,rpt)      This event is only relevant in the "Not Pruned" state.      The router sees a Join(S,G,rpt) from someone else to      RPF'(S,G,rpt), which is the correct upstream neighbor.  If we're      in "NotPruned" state and the (S,G,rpt) Override Timer is running,      then this is because we have been triggered to send our own      Join(S,G,rpt) to RPF'(S,G,rpt).  Someone else beat us to it, so      there's no need to send our own Join.      The action is to cancel the Override Timer.   See Prune(S,G,rpt) to RPF'(S,G,rpt)      This event is only relevant in the "NotPruned" state.      The router sees a Prune(S,G,rpt) from someone else to      RPF'(S,G,rpt), which is the correct upstream neighbor.  If we're      in the "NotPruned" state, then we want to continue to receive      traffic from S destined for G, and that traffic is being supplied      by RPF'(S,G,rpt).  Thus, we need to override the Prune.Fenner, et al.              Standards Track                    [Page 79]

RFC 4601                  PIM-SM Specification               August 2006      The action is to set the (S,G,rpt) Override Timer to the      randomized prune-override interval, t_override.  However, if the      Override Timer is already running, we only set the timer if doing      so would set it to a lower value.  At the end of this interval, if      noone else has sent a Join, then we will do so.   See Prune(S,G) to RPF'(S,G,rpt)      This event is only relevant in the "NotPruned" state.      This transition and action are the same as the above transition      and action, except that the Prune does not have the RPT bit set.      This transition is necessary to be compatible with routers      implemented fromRFC2362 that don't maintain separate (S,G) and      (S,G,rpt) state.   The (S,G,rpt) prune Override Timer expires      This event is only relevant in the "NotPruned" state.      When the Override Timer expires, we must send a Join(S,G,rpt) to      RPF'(S,G,rpt) to override the Prune message that caused the timer      to be running.  We only send this if RPF'(S,G,rpt) equals      RPF'(*,G); if this were not the case, then the Join might be sent      to a router that does not have (*,G) or (*,*,RP(G)) Join state,      and so the behavior would not be well defined.  If RPF'(S,G,rpt)      is not the same as RPF'(*,G), then it may stop forwarding S.      However, if this happens, then the router will send an      AssertCancel(S,G), which would then cause RPF'(S,G,rpt) to become      equal to RPF'(*,G) (see below).   RPF'(S,G,rpt) changes to become equal to RPF'(*,G)      This event is only relevant in the "NotPruned" state.      RPF'(S,G,rpt) can only be different from RPF'(*,G) if an (S,G)      Assert has happened, which means that traffic from S is arriving      on the SPT, and so Prune(S,G,rpt) will have been sent to      RPF'(*,G).  When RPF'(S,G,rpt) changes to become equal to      RPF'(*,G), we need to trigger a Join(S,G,rpt) to RPF'(*,G) to      cause that router to start forwarding S again.      The action is to set the (S,G,rpt) Override Timer to the      randomized prune-override interval t_override.  However, if the      timer is already running, we only set the timer if doing so would      set it to a lower value.  At the end of this interval, if noone      else has sent a Join, then we will do so.   PruneDesired(S,G,rpt)->TRUE      See macro above.  This event is relevant in the "NotPruned" and      "RPTNotJoined(G)" states.Fenner, et al.              Standards Track                    [Page 80]

RFC 4601                  PIM-SM Specification               August 2006      The router wishes to receive traffic for G, but does not wish to      receive traffic from S destined for G.  This causes the router to      transition into the Pruned state.      If the router was previously in NotPruned state, then the action      is to send a Prune(S,G,rpt) to RPF'(S,G,rpt), and to cancel the      Override Timer.  If the router was previously in RPTNotJoined(G)      state, then there is no need to trigger an action in this state      machine because sending a Prune(S,G,rpt) is handled by the rules      for sending the Join(*,G) or Join(*,*,RP).   PruneDesired(S,G,rpt)->FALSE      See macro above.  This transition is only relevant in the "Pruned"      state.      If the router is in the Pruned(S,G,rpt) state, and      PruneDesired(S,G,rpt) changes to FALSE, this could be because the      router no longer has RPTJoinDesired(G) true, or it now wishes to      receive traffic from S again.  If it is the former, then this      transition should not happen, but instead the      "RPTJoinDesired(G)->FALSE" transition should happen.  Thus, this      transition should be interpreted as "PruneDesired(S,G,rpt)->FALSE      AND RPTJoinDesired(G)==TRUE".      The action is to send a Join(S,G,rpt) to RPF'(S,G,rpt).   RPTJoinDesired(G)->FALSE      This event is relevant in the "Pruned" and "NotPruned" states.      The router no longer wishes to receive any traffic destined for G      on the RP Tree.  This causes a transition to the RPTNotJoined(G)      state, and the Override Timer is canceled if it was running.  Any      further actions are handled by the appropriate upstream state      machine for (*,G) or (*,*,RP).   inherited_olist(S,G,rpt) becomes non-NULL      This transition is only relevant in the RPTNotJoined(G) state.      The router has joined the RP tree (handled by the (*,G) or      (*,*,RP) upstream state machine as appropriate) and wants to      receive traffic from S.  This does not trigger any events in this      state machine, but causes a transition to the NotPruned(S,G,rpt)      state.Fenner, et al.              Standards Track                    [Page 81]

RFC 4601                  PIM-SM Specification               August 20064.5.10.  Background: (*,*,RP) and (S,G,rpt) Interaction   In Sections4.5.8 and4.5.9, the mechanisms for sending periodic and   triggered (S,G,rpt) messages are described.  The astute reader will   note that periodic Prune(S,G,rpt) messages are only sent in PIM   Join/Prune messages containing a Join(*,G), whereas it is possible   for a triggered Prune(S,G,rpt) message to be sent when the router has   no (*,G) join state.  This may seem like a contradiction, but in fact   it is intentional and is a side effect of not optimizing (*,*,RP)   behavior.   We first note that reception of a Join(*,*,RP) by itself does not   cancel (S,G,rpt) prune state on that interface, whereas receiving a   Join(*,G) by itself does cancel (S,G,rpt) prune state on that   interface.  Similarly, reception of a Prune(*,G) on an interface with   (*,*,RP) join state does not by itself prevent forwarding of G using   the (*,*,RP) state; this is because a Prune(*,G) only serves to   cancel (*,G) join state.  Conceptually (*,*,RP) state functions   "above" the normal (*,G) and (S,G) mechanisms, and so neither   Join(*,*,RP) nor Prune(*,*,RP) messages affect any other state.   The upshot of this is that to prevent forwarding (S,G) on (*,*,RP)   state, a Prune(S,G,rpt) must be used.   We also note that for historical reasons there is no Assert(*,*,RP)   message, so any forwarding contention is resolved using Assert(*,G)   messages.   We now need to consider the interaction between (*,*,RP) state and   (*,G) state.  If there is a need for an assert between two upstream   routers on a LAN, we need to ensure that the correct thing happens   for all combinations of (*,*,RP) and (*,G) forwarding state.  As   there is no Assert(*,*,RP) message, no router can tell whether the   assert winner has (*,*,RP) state or (*,G) state.  Thus, a downstream   router has to treat the two the same and send its periodic   Prune(S,G,rpt) messages to RPF'(*,G).   To avoid needing to specify all the complex override rules between   (*,*,RP), (*,G), and (S,G,rpt), we simply require that to prune (S,G)   off the (*,*,RP) tree, a Join(*,G) must also be sent.   If a router is receiving on (*,*,RP) state and has not yet had (*,G)   state instantiated, it may still need to send a triggered   Join(S,G,rpt) to override a Prune(S,G,rpt) that it sees directed to   RPF'(*,G) on its upstream interface.  Hence, triggered (S,G,rpt)   messages may be sent when JoinDesired(*,G) is false but   JoinDesired(*,*,RP) is true.Fenner, et al.              Standards Track                    [Page 82]

RFC 4601                  PIM-SM Specification               August 2006   Finally, we note that there is an unoptimized case when the upstream   router on a LAN already has (*,G) join and (S,G,rpt) prune state   caused by an existing downstream router.  If at this time a new   Join(*,*,RP) is sent to the upstream router from a different   downstream router, this will not override the (S,G,rpt) prune state   at the upstream router.  The override will not occur until the next   time the original downstream router resends its Prune(S,G,rpt).  This   case was not considered worth optimizing, as (*,*,RP) state is   generally very long lived, and so any minor delays in getting traffic   to a new PMBR seem unimportant.4.6.  PIM Assert Messages   Where multiple PIM routers peer over a shared LAN, it is possible for   more than one upstream router to have valid forwarding state for a   packet, which can lead to packet duplication (seeSection 3.6).  PIM   does not attempt to prevent this from occurring.  Instead, it detects   when this has happened and elects a single forwarder amongst the   upstream routers to prevent further duplication.  This election is   performed using PIM Assert messages.  Assert messages are also   received by downstream routers on the LAN, and these cause subsequent   Join/Prune messages to be sent to the upstream router that won the   Assert.   In general, a PIM Assert message should only be accepted for   processing if it comes from a known PIM neighbor.  A PIM router hears   about PIM neighbors through PIM Hello messages.  If a router receives   an Assert message from a particular IP source address and it has not   seen a PIM Hello message from that source address, then the Assert   message SHOULD be discarded without further processing.  In addition,   if the Hello message from a neighbor was authenticated using the   IPsec Authentication Header (AH) (seeSection 6.3), then all Assert   messages from that neighbor MUST also be authenticated using IPsec   AH.   We note that some older PIM implementations incorrectly fail to send   Hello messages on point-to-point interfaces, so we also RECOMMEND   that a configuration option be provided to allow interoperation with   such older routers, but that this configuration option SHOULD NOT be   enabled by default.4.6.1.  (S,G) Assert Message State Machine   The (S,G) Assert state machine for interface I is shown in Figure 10.   There are three states:   NoInfo (NI)      This router has no (S,G) assert state on interface I.Fenner, et al.              Standards Track                    [Page 83]

RFC 4601                  PIM-SM Specification               August 2006   I am Assert Winner (W)      This router has won an (S,G) assert on interface I.  It is now      responsible for forwarding traffic from S destined for G out of      interface I.  Irrespective of whether it is the DR for I, while a      router is the assert winner, it is also responsible for forwarding      traffic onto I on behalf of local hosts on I that have made      membership requests that specifically refer to S (and G).   I am Assert Loser (L)      This router has lost an (S,G) assert on interface I.  It must not      forward packets from S destined for G onto interface I.  If it is      the DR on I, it is no longer responsible for forwarding traffic      onto I to satisfy local hosts with membership requests that      specifically refer to S and G.   In addition, there is also an Assert Timer (AT) that is used to time   out asserts on the assert losers and to resend asserts on the assert   winner.  Figure 10: Per-interface (S,G) Assert State machine in tabular form+----------------------------------------------------------------------+|                         In NoInfo (NI) State                         |+---------------+-------------------+------------------+---------------+| Receive       |  Receive Assert   |  Data arrives    |  Receive      || Inferior      |  with RPTbit      |  from S to G on  |  Acceptable   || Assert with   |  set and          |  I and           |  Assert with  || RPTbit clear  |  CouldAssert      |  CouldAssert     |  RPTbit clear || and           |  (S,G,I)          |  (S,G,I)         |  and AssTrDes || CouldAssert   |                   |                  |  (S,G,I)      || (S,G,I)       |                   |                  |               |+---------------+-------------------+------------------+---------------+| -> W state    |  -> W state       |  -> W state      |  -> L state   || [Actions A1]  |  [Actions A1]     |  [Actions A1]    |  [Actions A6] |+---------------+-------------------+------------------+---------------++----------------------------------------------------------------------+|                   In I Am Assert Winner (W) State                    |+----------------+------------------+-----------------+----------------+| Assert Timer   |   Receive        |  Receive        |  CouldAssert   || Expires        |   Inferior       |  Preferred      |  (S,G,I) ->    ||                |   Assert         |  Assert         |  FALSE         |+----------------+------------------+-----------------+----------------+| -> W state     |   -> W state     |  -> L state     |  -> NI state   || [Actions A3]   |   [Actions A3]   |  [Actions A2]   |  [Actions A4]  |+----------------+------------------+-----------------+----------------+Fenner, et al.              Standards Track                    [Page 84]

RFC 4601                  PIM-SM Specification               August 2006+---------------------------------------------------------------------+|                   In I Am Assert Loser (L) State                    |+-------------+-------------+-------------+-------------+-------------+|Receive      |Receive      |Receive      |Assert Timer |Current      ||Preferred    |Acceptable   |Inferior     |Expires      |Winner's     ||Assert       |Assert with  |Assert or    |             |GenID        ||             |RPTbit clear |Assert       |             |Changes or   ||             |from Current |Cancel from  |             |NLT Expires  ||             |Winner       |Current      |             |             ||             |             |Winner       |             |             |+-------------+-------------+-------------+-------------+-------------+|-> L state   |-> L state   |-> NI state  |-> NI state  |-> NI state  ||[Actions A2] |[Actions A2] |[Actions A5] |[Actions A5] |[Actions A5] |+-------------+-------------+-------------+-------------+-------------++----------------------------------------------------------------------+|                    In I Am Assert Loser (L) State                    |+----------------+-----------------+------------------+----------------+| AssTrDes       |  my_metric ->   |  RPF_interface   |  Receive       || (S,G,I) ->     |  better than    |  (S) stops       |  Join(S,G) on  || FALSE          |  winner's       |  being I         |  interface I   ||                |  metric         |                  |                |+----------------+-----------------+------------------+----------------+| -> NI state    |  -> NI state    |  -> NI state     |  -> NI State   || [Actions A5]   |  [Actions A5]   |  [Actions A5]    |  [Actions A5]  |+----------------+-----------------+------------------+----------------+   Note that for reasons of compactness, "AssTrDes(S,G,I)" is used in   the state machine table to refer to AssertTrackingDesired(S,G,I).   Terminology:      A "preferred assert" is one with a better metric than the current      winner.      An "acceptable assert" is one that has a better metric than      my_assert_metric(S,G,I).  An assert is never considered acceptable      if its metric is infinite.      An "inferior assert" is one with a worse metric than      my_assert_metric(S,G,I).  An assert is never considered inferior      if my_assert_metric(S,G,I) is infinite.Fenner, et al.              Standards Track                    [Page 85]

RFC 4601                  PIM-SM Specification               August 2006   The state machine uses the following macros:CouldAssert(S,G,I) =     SPTbit(S,G)==TRUE     AND (RPF_interface(S) != I)     AND (I in ( ( joins(*,*,RP(G)) (+) joins(*,G) (-) prunes(S,G,rpt) )                 (+) ( pim_include(*,G) (-) pim_exclude(S,G) )                 (-) lost_assert(*,G)                 (+) joins(S,G) (+) pim_include(S,G) ) )   CouldAssert(S,G,I) is true for downstream interfaces that would be in   the inherited_olist(S,G) if (S,G) assert information was not taken   into account.   AssertTrackingDesired(S,G,I) =        (I in ( ( joins(*,*,RP(G)) (+) joins(*,G) (-) prunes(S,G,rpt) )                (+) ( pim_include(*,G) (-) pim_exclude(S,G) )                (-) lost_assert(*,G)                (+) joins(S,G) ) )        OR (local_receiver_include(S,G,I) == TRUE            AND (I_am_DR(I) OR (AssertWinner(S,G,I) == me)))        OR ((RPF_interface(S) == I) AND (JoinDesired(S,G) == TRUE))        OR ((RPF_interface(RP(G)) == I) AND (JoinDesired(*,G) == TRUE)            AND (SPTbit(S,G) == FALSE))   AssertTrackingDesired(S,G,I) is true on any interface in which an   (S,G) assert might affect our behavior.   The first three lines of AssertTrackingDesired account for (*,G) join   and local membership information received on I that might cause the   router to be interested in asserts on I.   The 4th line accounts for (S,G) join information received on I that   might cause the router to be interested in asserts on I.   The 5th and 6th lines account for (S,G) local membership information   on I.  Note that we can't use the pim_include(S,G) macro since it   uses lost_assert(S,G,I) and would result in the router forgetting   that it lost an assert if the only reason it was interested was local   membership.  The AssertWinner(S,G,I) check forces an assert winner to   keep on being responsible for forwarding as long as local receivers   are present.  Removing this check would make the assert winner give   up forwarding as soon as the information that originally caused it to   forward went away, and the task of forwarding for local receivers   would revert back to the DR.Fenner, et al.              Standards Track                    [Page 86]

RFC 4601                  PIM-SM Specification               August 2006   The last three lines account for the fact that a router must keep   track of assert information on upstream interfaces in order to send   joins and prunes to the proper neighbor.   Transitions from NoInfo State   When in NoInfo state, the following events may trigger transitions:     Receive Inferior Assert with RPTbit cleared AND          CouldAssert(S,G,I)==TRUE          An assert is received for (S,G) with the RPT bit cleared that          is inferior to our own assert metric.  The RPT bit cleared          indicates that the sender of the assert had (S,G) forwarding          state on this interface.  If the assert is inferior to our          metric, then we must also have (S,G) forwarding state (i.e.,          CouldAssert(S,G,I)==TRUE) as (S,G) asserts beat (*,G) asserts,          and so we should be the assert winner.  We transition to the          "I am Assert Winner" state and perform Actions A1 (below).     Receive Assert with RPTbit set AND CouldAssert(S,G,I)==TRUE          An assert is received for (S,G) on I with the RPT bit set          (it's a (*,G) assert).  CouldAssert(S,G,I) is TRUE only if we          have (S,G) forwarding state on this interface, so we should be          the assert winner.  We transition to the "I am Assert Winner"          state and perform Actions A1 (below).     An (S,G) data packet arrives on interface I, AND          CouldAssert(S,G,I)==TRUE          An (S,G) data packet arrived on an downstream interface that          is in our (S,G) outgoing interface list.  We optimistically          assume that we will be the assert winner for this (S,G), and          so we transition to the "I am Assert Winner" state and perform          Actions A1 (below), which will initiate the assert negotiation          for (S,G).     Receive Acceptable Assert with RPT bit clear AND          AssertTrackingDesired(S,G,I)==TRUE          We're interested in (S,G) Asserts, either because I is a          downstream interface for which we have (S,G) or (*,G)          forwarding state, or because I is the upstream interface for S          and we have (S,G) forwarding state.  The received assert has a          better metric than our own, so we do not win the Assert.  We          transition to "I am Assert Loser" and perform Actions A6          (below).Fenner, et al.              Standards Track                    [Page 87]

RFC 4601                  PIM-SM Specification               August 2006   Transitions from "I am Assert Winner" State   When in "I am Assert Winner" state, the following events trigger   transitions:     Assert Timer Expires          The (S,G) Assert Timer expires.  As we're in the Winner state,          we must still have (S,G) forwarding state that is actively          being kept alive.  We resend the (S,G) Assert and restart the          Assert Timer (Actions A3 below).  Note that the assert          winner's Assert Timer is engineered to expire shortly before          timers on assert losers; this prevents unnecessary thrashing          of the forwarder and periodic flooding of duplicate packets.     Receive Inferior Assert          We receive an (S,G) assert or (*,G) assert mentioning S that          has a worse metric than our own.  Whoever sent the assert is          in error, and so we resend an (S,G) Assert and restart the          Assert Timer (Actions A3 below).     Receive Preferred Assert          We receive an (S,G) assert that has a better metric than our          own.  We transition to "I am Assert Loser" state and perform          Actions A2 (below).  Note that this may affect the value of          JoinDesired(S,G) and PruneDesired(S,G,rpt), which could cause          transitions in the upstream (S,G) or (S,G,rpt) state machines.     CouldAssert(S,G,I) -> FALSE          Our (S,G) forwarding state or RPF interface changed so as to          make CouldAssert(S,G,I) become false.  We can no longer          perform the actions of the assert winner, and so we transition          to NoInfo state and perform Actions A4 (below).  This includes          sending a "canceling assert" with an infinite metric.   Transitions from "I am Assert Loser" State   When in "I am Assert Loser" state, the following transitions can   occur:     Receive Preferred Assert          We receive an assert that is better than that of the current          assert winner.  We stay in Loser state and perform Actions A2          below.Fenner, et al.              Standards Track                    [Page 88]

RFC 4601                  PIM-SM Specification               August 2006     Receive Acceptable Assert with RPTbit clear from Current Winner          We receive an assert from the current assert winner that is          better than our own metric for this (S,G) (although the metric          may be worse than the winner's previous metric).  We stay in          Loser state and perform Actions A2 below.     Receive Inferior Assert or Assert Cancel from Current Winner          We receive an assert from the current assert winner that is          worse than our own metric for this group (typically, because          the winner's metric became worse or because it is an assert          cancel).  We transition to NoInfo state, deleting the (S,G)          assert information and allowing the normal PIM Join/Prune          mechanisms to operate.  Usually, we will eventually re-assert          and win when data packets from S have started flowing again.     Assert Timer Expires          The (S,G) Assert Timer expires.  We transition to NoInfo          state, deleting the (S,G) assert information (Actions A5          below).     Current Winner's GenID Changes or NLT Expires          The Neighbor Liveness Timer associated with the current winner          expires or we receive a Hello message from the current winner          reporting a different GenID from the one it previously          reported.  This indicates that the current winner's interface          or router has gone down (and may have come back up), and so we          must assume it no longer knows it was the winner.  We          transition to the NoInfo state, deleting this (S,G) assert          information (Actions A5 below).     AssertTrackingDesired(S,G,I)->FALSE          AssertTrackingDesired(S,G,I) becomes FALSE.  Our forwarding          state has changed so that (S,G) Asserts on interface I are no          longer of interest to us.  We transition to the NoInfo state,          deleting the (S,G) assert information.     My metric becomes better than the assert winner's metric          my_assert_metric(S,G,I) has changed so that now my assert          metric for (S,G) is better than the metric we have stored for          current assert winner.  This might happen when the underlying          routing metric changes, or when CouldAssert(S,G,I) becomes          true; for example, when SPTbit(S,G) becomes true.  We          transition to NoInfo state, delete this (S,G) assert state          (Actions A5 below), and allow the normal PIM Join/Prune          mechanisms to operate.  Usually, we will eventually re-assert          and win when data packets from S have started flowing again.Fenner, et al.              Standards Track                    [Page 89]

RFC 4601                  PIM-SM Specification               August 2006     RPF_interface(S) stops being interface I          Interface I used to be the RPF interface for S, and now it is          not.  We transition to NoInfo state, deleting this (S,G)          assert state (Actions A5 below).     Receive Join(S,G) on Interface I          We receive a Join(S,G) that has the Upstream Neighbor Address          field set to my primary IP address on interface I.  The action          is to transition to NoInfo state, delete this (S,G) assert          state (Actions A5 below), and allow the normal PIM Join/Prune          mechanisms to operate.  If whoever sent the Join was in error,          then the normal assert mechanism will eventually re-apply, and          we will lose the assert again.  However, whoever sent the          assert may know that the previous assert winner has died, and          so we may end up being the new forwarder.   (S,G) Assert State machine Actions     A1:  Send Assert(S,G).          Set Assert Timer to (Assert_Time - Assert_Override_Interval).          Store self as AssertWinner(S,G,I).          Store spt_assert_metric(S,I) as AssertWinnerMetric(S,G,I).     A2:  Store new assert winner as AssertWinner(S,G,I) and assert          winner metric as AssertWinnerMetric(S,G,I).          Set Assert Timer to Assert_Time.     A3:  Send Assert(S,G).          Set Assert Timer to (Assert_Time - Assert_Override_Interval).     A4:  Send AssertCancel(S,G).          Delete assert info (AssertWinner(S,G,I) and          AssertWinnerMetric(S,G,I) will then return their default          values).     A5:  Delete assert info (AssertWinner(S,G,I) and          AssertWinnerMetric(S,G,I) will then return their default          values).     A6:  Store new assert winner as AssertWinner(S,G,I) and assert          winner metric as AssertWinnerMetric(S,G,I).          Set Assert Timer to Assert_Time.          If (I is RPF_interface(S)) AND (UpstreamJPState(S,G) == true)          set SPTbit(S,G) to TRUE.   Note that some of these actions may cause the value of   JoinDesired(S,G), PruneDesired(S,G,rpt), or RPF'(S,G) to change,   which could cause further transitions in other state machines.Fenner, et al.              Standards Track                    [Page 90]

RFC 4601                  PIM-SM Specification               August 20064.6.2.  (*,G) Assert Message State Machine   The (*,G) Assert state machine for interface I is shown in Figure 11.   There are three states:   NoInfo (NI)      This router has no (*,G) assert state on interface I.   I am Assert Winner (W)      This router has won an (*,G) assert on interface I.  It is now      responsible for forwarding traffic destined for G onto interface I      with the exception of traffic for which it has (S,G) "I am Assert      Loser" state.  Irrespective of whether it is the DR for I, it is      also responsible for handling the membership requests for G from      local hosts on I.   I am Assert Loser (L)      This router has lost an (*,G) assert on interface I.  It must not      forward packets for G onto interface I with the exception of      traffic from sources for which is has (S,G) "I am Assert Winner"      state.  If it is the DR, it is no longer responsible for handling      the membership requests for group G from local hosts on I.   In addition, there is also an Assert Timer (AT) that is used to time   out asserts on the assert losers and to resend asserts on the assert   winner.   When an Assert message is received with a source address other than   zero, a PIM implementation must first match it against the possible   events in the (S,G) assert state machine and process any transitions   and actions, before considering whether the Assert message matches   against the (*,G) assert state machine.   It is important to note that NO TRANSITION CAN OCCUR in the (*,G)   state machine as a result of receiving an Assert message unless the   (S,G) assert state machine for the relevant S and G is in the   "NoInfo" state after the (S,G) state machine has processed the   message.  Also, NO TRANSITION CAN OCCUR in the (*,G) state machine as   a result of receiving an assert message if that message triggers any   change of state in the (S,G) state machine.  Obviously, when the   source address in the received message is set to zero, an (S,G) state   machine for the S and G does not exist and can be assumed to be in   the "NoInfo" state.Fenner, et al.              Standards Track                    [Page 91]

RFC 4601                  PIM-SM Specification               August 2006   For example, if both the (S,G) and (*,G) assert state machines are in   the NoInfo state when an Assert message arrives, and the message   causes the (S,G) state machine to transition to either "W" or "L"   state, then the assert will not be processed by the (*,G) assert   state machine.   Another example: if the (S,G) assert state machine is in "L" state   when an assert message is received, and the assert metric in the   message is worse than my_assert_metric(S,G,I), then the (S,G) assert   state machine will transition to NoInfo state.  In such a case, if   the (*,G) assert state machine were in NoInfo state, it might appear   that it would transition to "W" state, but this is not the case   because this message already triggered a transition in the (S,G)   assert state machine.  Figure 11: Per-interface (*,G) Assert State machine in tabular form+----------------------------------------------------------------------+|                         In NoInfo (NI) State                         |+-----------------------+-----------------------+----------------------+| Receive Inferior      |  Data arrives for G   |  Receive Acceptable  || Assert with RPTbit    |  on I and             |  Assert with RPTbit  || set and               |  CouldAssert          |  set and AssTrDes    || CouldAssert(*,G,I)    |  (*,G,I)              |  (*,G,I)             |+-----------------------+-----------------------+----------------------+| -> W state            |  -> W state           |  -> L state          || [Actions A1]          |  [Actions A1]         |  [Actions A2]        |+-----------------------+-----------------------+----------------------++---------------------------------------------------------------------+|                    In I Am Assert Winner (W) State                  |+----------------+-----------------+-----------------+----------------+| Assert Timer   |  Receive        |  Receive        |  CouldAssert   || Expires        |  Inferior       |  Preferred      |  (*,G,I) ->    ||                |  Assert         |  Assert         |  FALSE         |+----------------+-----------------+-----------------+----------------+| -> W state     |  -> W state     |  -> L state     |  -> NI state   || [Actions A3]   |  [Actions A3]   |  [Actions A2]   |  [Actions A4]  |+----------------+-----------------+-----------------+----------------+Fenner, et al.              Standards Track                    [Page 92]

RFC 4601                  PIM-SM Specification               August 2006+---------------------------------------------------------------------+|                    In I Am Assert Loser (L) State                   |+-------------+-------------+-------------+-------------+-------------+|Receive      |Receive      |Receive      |Assert Timer |Current      ||Preferred    |Acceptable   |Inferior     |Expires      |Winner's     ||Assert with  |Assert from  |Assert or    |             |GenID        ||RPTbit set   |Current      |Assert       |             |Changes or   ||             |Winner with  |Cancel from  |             |NLT Expires  ||             |RPTbit set   |Current      |             |             ||             |             |Winner       |             |             |+-------------+-------------+-------------+-------------+-------------+|-> L state   |-> L state   |-> NI state  |-> NI state  |-> NI state  ||[Actions A2] |[Actions A2] |[Actions A5] |[Actions A5] |[Actions A5] |+-------------+-------------+-------------+-------------+-------------++----------------------------------------------------------------------+|                    In I Am Assert Loser (L) State                    |+----------------+----------------+-----------------+------------------+| AssTrDes       | my_metric ->   |  RPF_interface  |  Receive         || (*,G,I) ->     | better than    |  (RP(G)) stops  |  Join(*,G) or    || FALSE          | Winner's       |  being I        |  Join            ||                | metric         |                 |  (*,*,RP(G)) on  ||                |                |                 |  Interface I     |+----------------+----------------+-----------------+------------------+| -> NI state    | -> NI state    |  -> NI state    |  -> NI State     || [Actions A5]   | [Actions A5]   |  [Actions A5]   |  [Actions A5]    |+----------------+----------------+-----------------+------------------+   The state machine uses the following macros:   CouldAssert(*,G,I) =       ( I in ( joins(*,*,RP(G)) (+) joins(*,G)                (+) pim_include(*,G)) )       AND (RPF_interface(RP(G)) != I)   CouldAssert(*,G,I) is true on downstream interfaces for which we have   (*,*,RP(G)) or (*,G) join state, or local members that requested any   traffic destined for G.   AssertTrackingDesired(*,G,I) =       CouldAssert(*,G,I)       OR (local_receiver_include(*,G,I)==TRUE           AND (I_am_DR(I) OR AssertWinner(*,G,I) == me))       OR (RPF_interface(RP(G)) == I AND RPTJoinDesired(G))   AssertTrackingDesired(*,G,I) is true on any interface on which an   (*,G) assert might affect our behavior.Fenner, et al.              Standards Track                    [Page 93]

RFC 4601                  PIM-SM Specification               August 2006   Note that for reasons of compactness, "AssTrDes(*,G,I)" is used in   the state machine table to refer to AssertTrackingDesired(*,G,I).   Terminology:      A "preferred assert" is one with a better metric than the current      winner.      An "acceptable assert" is one that has a better metric than      my_assert_metric(*,G,I).  An assert is never considered acceptable      if its metric is infinite.      An "inferior assert" is one with a worse metric than      my_assert_metric(*,G,I).  An assert is never considered inferior      if my_assert_metric(*,G,I) is infinite.   Transitions from NoInfo State   When in NoInfo state, the following events trigger transitions, but   only if the (S,G) assert state machine is in NoInfo state before and   after consideration of the received message:     Receive Inferior Assert with RPTbit set AND          CouldAssert(*,G,I)==TRUE          An Inferior (*,G) assert is received for G on Interface I.  If          CouldAssert(*,G,I) is TRUE, then I is our downstream          interface, and we have (*,G) forwarding state on this          interface, so we should be the assert winner.  We transition          to the "I am Assert Winner" state and perform Actions A1          (below).     A data packet destined for G arrives on interface I, AND          CouldAssert(*,G,I)==TRUE          A data packet destined for G arrived on a downstream interface          that is in our (*,G) outgoing interface list.  We therefore          believe we should be the forwarder for this (*,G), and so we          transition to the "I am Assert Winner" state and perform          Actions A1 (below).     Receive Acceptable Assert with RPT bit set AND          AssertTrackingDesired(*,G,I)==TRUE          We're interested in (*,G) Asserts, either because I is a          downstream interface for which we have (*,G) forwarding state,          or because I is the upstream interface for RP(G) and we have          (*,G) forwarding state.  We get a (*,G) Assert that has a          better metric than our own, so we do not win the Assert.  We          transition to "I am Assert Loser" and perform Actions A2          (below).Fenner, et al.              Standards Track                    [Page 94]

RFC 4601                  PIM-SM Specification               August 2006   Transitions from "I am Assert Winner" State   When in "I am Assert Winner" state, the following events trigger   transitions, but only if the (S,G) assert state machine is in NoInfo   state before and after consideration of the received message:     Receive Inferior Assert          We receive a (*,G) assert that has a worse metric than our          own.  Whoever sent the assert has lost, and so we resend a          (*,G) Assert and restart the Assert Timer (Actions A3 below).     Receive Preferred Assert          We receive a (*,G) assert that has a better metric than our          own.  We transition to "I am Assert Loser" state and perform          Actions A2 (below).   When in "I am Assert Winner" state, the following events trigger   transitions:     Assert Timer Expires          The (*,G) Assert Timer expires.  As we're in the Winner state,          then we must still have (*,G) forwarding state that is          actively being kept alive.  To prevent unnecessary thrashing          of the forwarder and periodic flooding of duplicate packets,          we resend the (*,G) Assert and restart the Assert Timer          (Actions A3 below).     CouldAssert(*,G,I) -> FALSE          Our (*,G) forwarding state or RPF interface changed so as to          make CouldAssert(*,G,I) become false.  We can no longer          perform the actions of the assert winner, and so we transition          to NoInfo state and perform Actions A4 (below).   Transitions from "I am Assert Loser" State   When in "I am Assert Loser" state, the following events trigger   transitions, but only if the (S,G) assert state machine is in NoInfo   state before and after consideration of the received message:     Receive Preferred Assert with RPTbit set          We receive a (*,G) assert that is better than that of the          current assert winner.  We stay in Loser state and perform          Actions A2 below.Fenner, et al.              Standards Track                    [Page 95]

RFC 4601                  PIM-SM Specification               August 2006     Receive Acceptable Assert from Current Winner with RPTbit set          We receive a (*,G) assert from the current assert winner that          is better than our own metric for this group (although the          metric may be worse than the winner's previous metric).  We          stay in Loser state and perform Actions A2 below.     Receive Inferior Assert or Assert Cancel from Current Winner          We receive an assert from the current assert winner that is          worse than our own metric for this group (typically because          the winner's metric became worse or is now an assert cancel).          We transition to NoInfo state, delete this (*,G) assert state          (Actions A5), and allow the normal PIM Join/Prune mechanisms          to operate.  Usually, we will eventually re-assert and win          when data packets for G have started flowing again.   When in "I am Assert Loser" state, the following events trigger   transitions:     Assert Timer Expires          The (*,G) Assert Timer expires.  We transition to NoInfo state          and delete this (*,G) assert info (Actions A5).     Current Winner's GenID Changes or NLT Expires          The Neighbor Liveness Timer associated with the current winner          expires or we receive a Hello message from the current winner          reporting a different GenID from the one it previously          reported.  This indicates that the current winner's interface          or router has gone down (and may have come back up), and so we          must assume it no longer knows it was the winner.  We          transition to the NoInfo state, deleting the (*,G) assert          information (Actions A5).     AssertTrackingDesired(*,G,I)->FALSE          AssertTrackingDesired(*,G,I) becomes FALSE.  Our forwarding          state has changed so that (*,G) Asserts on interface I are no          longer of interest to us.  We transition to NoInfo state and          delete this (*,G) assert info (Actions A5).     My metric becomes better than the assert winner's metric          My routing metric, rpt_assert_metric(G,I), has changed so that          now my assert metric for (*,G) is better than the metric we          have stored for current assert winner.  We transition to          NoInfo state, delete this (*,G) assert state (Actions A5), and          allow the normal PIM Join/Prune mechanisms to operate.          Usually, we will eventually re-assert and win when data          packets for G have started flowing again.Fenner, et al.              Standards Track                    [Page 96]

RFC 4601                  PIM-SM Specification               August 2006     RPF_interface(RP(G)) stops being interface I          Interface I used to be the RPF interface for RP(G), and now it          is not.  We transition to NoInfo state and delete this (*,G)          assert state (Actions A5).     Receive Join(*,G) or Join(*,*,RP(G)) on interface I          We receive a Join(*,G) or a Join(*,*,RP(G)) that has the          Upstream Neighbor Address field set to my primary IP address          on interface I.  The action is to transition to NoInfo state,          delete this (*,G) assert state (Actions A5), and allow the          normal PIM Join/Prune mechanisms to operate.  If whoever sent          the Join was in error, then the normal assert mechanism will          eventually re-apply, and we will lose the assert again.          However, whoever sent the assert may know that the previous          assert winner has died, so we may end up being the new          forwarder.   (*,G) Assert State machine Actions     A1:  Send Assert(*,G).          Set Assert Timer to (Assert_Time - Assert_Override_Interval).          Store self as AssertWinner(*,G,I).          Store rpt_assert_metric(G,I) as AssertWinnerMetric(*,G,I).     A2:  Store new assert winner as AssertWinner(*,G,I) and assert          winner metric as AssertWinnerMetric(*,G,I).          Set Assert Timer to Assert_Time.     A3:  Send Assert(*,G)          Set Assert Timer to (Assert_Time - Assert_Override_Interval).     A4:  Send AssertCancel(*,G).          Delete assert info (AssertWinner(*,G,I) and          AssertWinnerMetric(*,G,I) will then return their default          values).     A5:  Delete assert info (AssertWinner(*,G,I) and          AssertWinnerMetric(*,G,I) will then return their default          values).   Note that some of these actions may cause the value of   JoinDesired(*,G) or RPF'(*,G)) to change, which could cause further   transitions in other state machines.Fenner, et al.              Standards Track                    [Page 97]

RFC 4601                  PIM-SM Specification               August 20064.6.3.  Assert Metrics   Assert metrics are defined as:     struct assert_metric {       rpt_bit_flag;       metric_preference;       route_metric;       ip_address;     };   When comparing assert_metrics, the rpt_bit_flag, metric_preference,   and route_metric field are compared in order, where the first lower   value wins.  If all fields are equal, the primary IP address of the   router that sourced the Assert message is used as a tie-breaker, with   the highest IP address winning.   An assert metric for (S,G) to include in (or compare against) an   Assert message sent on interface I should be computed using the   following pseudocode:     assert_metric     my_assert_metric(S,G,I) {         if( CouldAssert(S,G,I) == TRUE ) {             return spt_assert_metric(S,I)         } else if( CouldAssert(*,G,I) == TRUE ) {             return rpt_assert_metric(G,I)         } else {             return infinite_assert_metric()         }     }   spt_assert_metric(S,I) gives the assert metric we use if we're   sending an assert based on active (S,G) forwarding state:     assert_metric     spt_assert_metric(S,I) {        return {0,MRIB.pref(S),MRIB.metric(S),my_ip_address(I)}     }   rpt_assert_metric(G,I) gives the assert metric we use if we're   sending an assert based only on (*,G) forwarding state:     assert_metric     rpt_assert_metric(G,I) {         return {1,MRIB.pref(RP(G)),MRIB.metric(RP(G)),my_ip_address(I)}     }Fenner, et al.              Standards Track                    [Page 98]

RFC 4601                  PIM-SM Specification               August 2006   MRIB.pref(X) and MRIB.metric(X) are the routing preference and   routing metrics associated with the route to a particular (unicast)   destination X, as determined by the MRIB.  my_ip_address(I) is simply   the router's primary IP address that is associated with the local   interface I.   infinite_assert_metric() gives the assert metric we need to send an   assert but don't match either (S,G) or (*,G) forwarding state:     assert_metric     infinite_assert_metric() {          return {1,infinity,infinity,0}     }4.6.4.  AssertCancel Messages   An AssertCancel message is simply an RPT Assert message but with   infinite metric.  It is sent by the assert winner when it deletes the   forwarding state that had caused the assert to occur.  Other routers   will see this metric, and it will cause any other router that has   forwarding state to send its own assert, and to take over forwarding.   An AssertCancel(S,G) is an infinite metric assert with the RPT bit   set that names S as the source.   An AssertCancel(*,G) is an infinite metric assert with the RPT bit   set and the source set to zero.   AssertCancel messages are simply an optimization.  The original   Assert timeout mechanism will allow a subnet to eventually become   consistent; the AssertCancel mechanism simply causes faster   convergence.  No special processing is required for an AssertCancel   message, since it is simply an Assert message from the current   winner.Fenner, et al.              Standards Track                    [Page 99]

RFC 4601                  PIM-SM Specification               August 20064.6.5.  Assert State Macros   The macros lost_assert(S,G,rpt,I), lost_assert(S,G,I), and   lost_assert(*,G,I) are used in the olist computations ofSection 4.1,   and are defined as:     bool lost_assert(S,G,rpt,I) {       if ( RPF_interface(RP(G)) == I  OR            ( RPF_interface(S) == I AND SPTbit(S,G) == TRUE ) ) {          return FALSE       } else {          return ( AssertWinner(S,G,I) != NULL AND                   AssertWinner(S,G,I) != me )       }     }     bool lost_assert(S,G,I) {       if ( RPF_interface(S) == I ) {          return FALSE       } else {          return ( AssertWinner(S,G,I) != NULL AND                   AssertWinner(S,G,I) != me  AND                   (AssertWinnerMetric(S,G,I) is better                      than spt_assert_metric(S,I) )       }     }   Note: the term "AssertWinnerMetric(S,G,I) is better than   spt_assert_metric(S,I)" is required to correctly handle the   transition phase when a router has (S,G) join state, but has not yet   set the SPT bit.  In this case, it needs to ignore the assert state   if it will win the assert once the SPTbit is set.     bool lost_assert(*,G,I) {       if ( RPF_interface(RP(G)) == I ) {          return FALSE       } else {          return ( AssertWinner(*,G,I) != NULL AND                   AssertWinner(*,G,I) != me )       }     }   AssertWinner(S,G,I) is the IP source address of the Assert(S,G)   packet that won an Assert.   AssertWinner(*,G,I) is the IP source address of the Assert(*,G)   packet that won an Assert.Fenner, et al.              Standards Track                   [Page 100]

RFC 4601                  PIM-SM Specification               August 2006   AssertWinnerMetric(S,G,I) is the Assert metric of the Assert(S,G)   packet that won an Assert.   AssertWinnerMetric(*,G,I) is the Assert metric of the Assert(*,G)   packet that won an Assert.   AssertWinner(S,G,I) defaults to NULL and AssertWinnerMetric(S,G,I)   defaults to Infinity when in the NoInfo state.   Summary of Assert Rules and Rationale   This section summarizes the key rules for sending and reacting to   asserts and the rationale for these rules.  This section is not   intended to be and should not be treated as a definitive   specification of protocol behavior.  The state machines and   pseudocode should be consulted for that purpose.  Rather, this   section is intended to document important aspects of the Assert   protocol behavior and to provide information that may prove helpful   to the reader in understanding and implementing this part of the   protocol.   1.  Behavior: Downstream neighbors send Join(*,G) and Join(S,G)       periodic messages to the appropriate RPF' neighbor, i.e., the RPF       neighbor as modified by the assert process.  They are not always       sent to the RPF neighbor as indicated by the MRIB.  Normal       suppression and override rules apply.       Rationale: By sending the periodic and triggered Join messages to       the RPF' neighbor instead of to the RPF neighbor, the downstream       router avoids re-triggering the Assert process with every Join.       A side effect of sending Joins to the Assert winner is that       traffic will not switch back to the "normal" RPF neighbor until       the Assert times out.  This will not happen until data stops       flowing, if item 8, below, is implemented.   2.  Behavior: The assert winner for (*,G) acts as the local DR for       (*,G) on behalf of IGMP/MLD members.       Rationale: This is required to allow a single router to merge PIM       and IGMP/MLD joins and leaves.  Without this, overrides don't       work.   3.  Behavior: The assert winner for (S,G) acts as the local DR for       (S,G) on behalf of IGMPv3 members.       Rationale: Same rationale as for item 2.Fenner, et al.              Standards Track                   [Page 101]

RFC 4601                  PIM-SM Specification               August 2006   4.  Behavior: (S,G) and (*,G) prune overrides are sent to the RPF'       neighbor and not to the regular RPF neighbor.       Rationale: Same rationale as for item 1.   5.  Behavior: An (S,G,rpt) prune override is not sent (at all) if       RPF'(S,G,rpt) != RPF'(*,G).       Rationale: This avoids keeping state alive on the (S,G) tree when       only (*,G) downstream members are left.  Also, it avoids sending       (S,G,rpt) joins to a router that is not on the (*,G) tree.  This       behavior might be confusing although this specification does       indicate that such a join should be dropped.   6.  Behavior: An assert loser that receives a Join(S,G) with an       Upstream Neighbor Address that is its primary IP address on that       interface cancels the (S,G) Assert Timer.       Rationale: This is necessary in order to have rapid convergence       in the event that the downstream router that initially sent a       join to the prior Assert winner has undergone a topology change.   7.  Behavior: An assert loser that receives a Join(*,G) or a       Join(*,*,RP(G)) with an Upstream Neighbor Address that is its       primary IP address on that interface cancels the (*,G) Assert       Timer and all (S,G) assert timers that do not have corresponding       Prune(S,G,rpt) messages in the compound Join/Prune message.       Rationale: Same rationale as for item 6.   8.  Behavior: An assert winner for (*,G) or (S,G) sends a canceling       assert when it is about to stop forwarding on a (*,G) or an (S,G)       entry.  This behavior does not apply to (S,G,rpt).       Rationale: This allows switching back to the shared tree after       the last SPT router on the LAN leaves.  Doing this prevents       downstream routers on the shared tree from keeping SPT state       alive.   9.  Behavior: Resend the assert messages before timing out an assert.       (This behavior is optional.)       Rationale: This prevents the periodic duplicates that would       otherwise occur each time that an assert times out and is then       re-established.   10. Behavior: When RPF'(S,G,rpt) changes to be the same as RPF'(*,G)       we need to trigger a Join(S,G,rpt) to RPF'(*,G).Fenner, et al.              Standards Track                   [Page 102]

RFC 4601                  PIM-SM Specification               August 2006       Rationale: This allows switching back to the RPT after the last       SPT member leaves.4.7.  PIM Bootstrap and RP Discovery   For correct operation, every PIM router within a PIM domain must be   able to map a particular multicast group address to the same RP.  If   this is not the case, then black holes may appear, where some   receivers in the domain cannot receive some groups.  A domain in this   context is a contiguous set of routers that all implement PIM and are   configured to operate within a common boundary.   A notable exception to this is where a PIM domain is broken up into   multiple administrative scope regions; these are regions where a   border has been configured so that a range of multicast groups will   not be forwarded across that border.  For more information on   Administratively Scoped IP Multicast, seeRFC 2365.  The modified   criteria for admin-scoped regions are that the region is convex with   respect to forwarding based on the MRIB, and that all PIM routers   within the scope region map scoped groups to the same RP within that   region.   This specification does not mandate the use of a single mechanism to   provide routers with the information to perform the group-to-RP   mapping.  Currently four mechanisms are possible, and all four have   associated problems:   Static Configuration        A PIM router MUST support the static configuration of group-to-        RP mappings.  Such a mechanism is not robust to failures, but        does at least provide a basic interoperability mechanism.   Embedded-RP        Embedded-RP defines an address allocation policy in which the        address of the Rendezvous Point (RP) is encoded in an IPv6        multicast group address [17].   Cisco's Auto-RP        Auto-RP uses a PIM Dense-Mode multicast group to announce        group-to-RP mappings from a central location.  This mechanism is        not useful if PIM Dense-Mode is not being run in parallel with        PIM Sparse-Mode, and was only intended for use with PIM Sparse-        Mode Version 1.  No standard specification currently exists.   BootStrap Router (BSR)RFC 2362 specifies a bootstrap mechanism based on the automatic        election of a bootstrap router (BSR).  Any router in the domain        that is configured to be a possible RP reports its candidacy toFenner, et al.              Standards Track                   [Page 103]

RFC 4601                  PIM-SM Specification               August 2006        the BSR, and then a domain-wide flooding mechanism distributes        the BSR's chosen set of RPs throughout the domain.  As specified        inRFC 2362, BSR is flawed in its handling of admin-scoped        regions that are smaller than a PIM domain, but the mechanism        does work for global-scoped groups.   As far as PIM-SM is concerned, the only important requirement is that   all routers in the domain (or admin scope zone for scoped regions)   receive the same set of group-range-to-RP mappings.  This may be   achieved through the use of any of these mechanisms, or through   alternative mechanisms not currently specified.   It must be operationally ensured that any RP address configured,   learned, or advertised is reachable from all routers in the PIM   domain.4.7.1.  Group-to-RP Mapping   Using one of the mechanisms described above, a PIM router receives   one or more possible group-range-to-RP mappings.  Each mapping   specifies a range of multicast groups (expressed as a group and mask)   and the RP to which such groups should be mapped.  Each mapping may   also have an associated priority.  It is possible to receive multiple   mappings, all of which might match the same multicast group; this is   the common case with BSR.  The algorithm for performing the group-   to-RP mapping is as follows:   1.  Perform longest match on group-range to obtain a list of RPs.   2.  From this list of matching RPs, find the one with highest       priority.  Eliminate any RPs from the list that have lower       priorities.   3.  If only one RP remains in the list, use that RP.   4.  If multiple RPs are in the list, use the PIM hash function to       choose one.   Thus, if two or more group-range-to-RP mappings cover a particular   group, the one with the longest mask is the mapping to use.  If the   mappings have the same mask length, then the one with the highest   priority is chosen.  If there is more than one matching entry with   the same longest mask and the priorities are identical, then a hash   function (seeSection 4.7.2) is applied to choose the RP.   This algorithm is invoked by a DR when it needs to determine an RP   for a given group, e.g., upon reception of a packet or IGMP/MLD   membership indication for a group for which the DR does not know theFenner, et al.              Standards Track                   [Page 104]

RFC 4601                  PIM-SM Specification               August 2006   RP.  It is invoked by any router that has (*,*,RP) state when a   packet is received for which there is no corresponding (S,G) or (*,G)   entry.  Furthermore, the mapping function is invoked by all routers   upon receiving a (*,G) or (*,*,RP) Join/Prune message.   Note that if the set of possible group-range-to-RP mappings changes,   each router will need to check whether any existing groups are   affected.  This may, for example, cause a DR or acting DR to re-join   a group, or cause it to restart register encapsulation to the new RP.     Implementation note: the bootstrap mechanism described inRFC 2362     omitted step 1 above.  However, of the implementations we are aware     of, approximately half performed step 1 anyway.  Note that     implementations of BSR that omit step 1 will not correctly     interoperate with implementations of this specification when used     with the BSR mechanism described in [11].4.7.2.  Hash Function   The hash function is used by all routers within a domain, to map a   group to one of the RPs from the matching set of group-range-to-RP   mappings (this set all have the same longest mask length and same   highest priority).  The algorithm takes as input the group address,   and the addresses of the candidate RPs from the mappings, and gives   as output one RP address to be used.   The protocol requires that all routers hash to the same RP within a   domain (except for transients).  The following hash function must be   used in each router:   1.  For RP addresses in the matching group-range-to-RP mappings,       compute a value:   Value(G,M,C(i))=   (1103515245 * ((1103515245 * (G&M)+12345) XOR C(i)) + 12345) mod 2^31       where C(i) is the RP address and M is a hash-mask.  If BSR is       being used, the hash-mask is given in the Bootstrap messages.  If       BSR is not being used, the alternative mechanism that supplies       the group-range-to-RP mappings may supply the value, or else it       defaults to a mask with the most significant 30 bits being one       for IPv4 and the most significant 126 bits being one for IPv6.       The hash-mask allows a small number of consecutive groups (e.g.,       4) to always hash to the same RP.  For instance, hierarchically-       encoded data can be sent on consecutive group addresses to get       the same delay and fate-sharing characteristics.Fenner, et al.              Standards Track                   [Page 105]

RFC 4601                  PIM-SM Specification               August 2006       For address families other than IPv4, a 32-bit digest to be used       as C(i) and G must first be derived from the actual RP or group       address.  Such a digest method must be used consistently       throughout the PIM domain.  For IPv6 addresses, we recommend       using the equivalent IPv4 address for an IPv4-compatible address,       and the exclusive-or of each 32-bit segment of the address for       all other IPv6 addresses.  For example, the digest of the IPv6       address 3ffe:b00:c18:1::10 would be computed as 0x3ffe0b00 ^       0x0c180001 ^ 0x00000000 ^ 0x00000010, where ^ represents the       exclusive-or operation.   2.  The candidate RP with the highest resulting hash value is then       the RP chosen by this Hash Function.  If more than one RP has the       same highest hash value, the RP with the highest IP address is       chosen.4.8.  Source-Specific Multicast   The Source-Specific Multicast (SSM) service model [6] can be   implemented with a strict subset of the PIM-SM protocol mechanisms.   Both regular IP Multicast and SSM semantics can coexist on a single   router, and both can be implemented using the PIM-SM protocol.  A   range of multicast addresses, currently 232.0.0.0/8 in IPv4 and   FF3x::/32 for IPv6, is reserved for SSM, and the choice of semantics   is determined by the multicast group address in both data packets and   PIM messages.4.8.1.  Protocol Modifications for SSM Destination Addresses   The following rules override the normal PIM-SM behavior for a   multicast address G in the SSM range:   o A router MUST NOT send a (*,G) Join/Prune message for any reason.   o A router MUST NOT send an (S,G,rpt) Join/Prune message for any   reason.   o A router MUST NOT send a Register message for any packet that is     destined to an SSM address.   o A router MUST NOT forward packets based on (*,G) or (S,G,rpt)     state.  The (*,G)- and (S,G,rpt)-related state summarization macros     are NULL for any SSM address, for the purposes of packet     forwarding.   o A router acting as an RP MUST NOT forward any Register-encapsulated     packet that has an SSM destination address.Fenner, et al.              Standards Track                   [Page 106]

RFC 4601                  PIM-SM Specification               August 2006   The last two rules are present to deal with "legacy" routers unaware   of SSM that may be sending (*,G) and (S,G,rpt) Join/Prunes, or   Register messages for SSM destination addresses.   Additionally:   o A router MAY be configured to advertise itself as a Candidate RP     for an SSM address.  If so, it SHOULD respond with a Register-Stop     message to any Register message containing a packet destined for an     SSM address.   o A router MAY optimize out the creation and maintenance of (S,G,rpt)     and (*,G) state for SSM destination addresses -- this state is not     needed for SSM packets.4.8.2.  PIM-SSM-Only Routers   An implementer may choose to implement only the subset of PIM   Sparse-Mode that provides SSM forwarding semantics.   A PIM-SSM-only router MUST implement the following portions of this   specification:   o Upstream (S,G) state machine (Section 4.5.7)   o Downstream (S,G) state machine (Section 4.5.3)   o (S,G) Assert state machine (Section 4.6.1)   o Hello messages, neighbor discovery, and DR election (Section 4.3)   o Packet forwarding rules (Section 4.2)   A PIM-SSM-only router does not need to implement the following   protocol elements:   o Register state machine (Section 4.4)   o (*,G), (S,G,rpt), and (*,*,RP) Downstream state machines (Sections     4.5.2, 4.5.4, and 4.5.1)   o (*,G), (S,G,rpt), and (*,*,RP) Upstream state machines (Sections     4.5.6, 4.5.8, and 4.5.5)   o (*,G) Assert state machine (Section 4.6.2)   o Bootstrap RP Election (Section 4.7)Fenner, et al.              Standards Track                   [Page 107]

RFC 4601                  PIM-SM Specification               August 2006   o Keepalive Timer   o SPTbit (Section 4.2.2)   The Keepalive Timer should be treated as always running, and SPTbit   should be treated as always being set for an SSM address.   Additionally, the Packet forwarding rules ofSection 4.2 can be   simplified in a PIM-SSM-only router:     if( iif == RPF_interface(S) AND UpstreamJPState(S,G) == Joined ) {         oiflist = inherited_olist(S,G)     } else if( iif is in inherited_olist(S,G) ) {         send Assert(S,G) on iif     }     oiflist = oiflist (-) iif     forward packet on all interfaces in oiflist   This is nothing more than the reduction of the normal PIM-SM   forwarding rule, with all (S,G,rpt) and (*,G) clauses replaced with   NULL.4.9.  PIM Packet Formats   This section describes the details of the packet formats for PIM   control messages.   All PIM control messages have IP protocol number 103.   PIM messages are either unicast (e.g., Registers and Register-Stop)   or multicast with TTL 1 to the 'ALL-PIM-ROUTERS' group (e.g.,   Join/Prune, Asserts, etc.).  The source address used for unicast   messages is a domain-wide reachable address; the source address used   for multicast messages is the link-local address of the interface on   which the message is being sent.   The IPv4 'ALL-PIM-ROUTERS' group is '224.0.0.13'.  The IPv6 'ALL-PIM-   ROUTERS' group is 'ff02::d'.Fenner, et al.              Standards Track                   [Page 108]

RFC 4601                  PIM-SM Specification               August 2006   The PIM header common to all PIM messages is:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |PIM Ver| Type  |   Reserved    |           Checksum            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   PIM Ver        PIM Version number is 2.   Type Types for specific PIM messages.  PIM Types are:   Message Type                          Destination   ---------------------------------------------------------------------   0 = Hello                             Multicast to ALL-PIM-ROUTERS   1 = Register                          Unicast to RP   2 = Register-Stop                     Unicast to source of Register                                            packet   3 = Join/Prune                        Multicast to ALL-PIM-ROUTERS   4 = Bootstrap                         Multicast to ALL-PIM-ROUTERS   5 = Assert                            Multicast to ALL-PIM-ROUTERS   6 = Graft (used in PIM-DM only)       Unicast to RPF'(S)   7 = Graft-Ack (used in PIM-DM only)   Unicast to source of Graft                                            packet   8 = Candidate-RP-Advertisement        Unicast to Domain's BSR   Reserved        Set to zero on transmission.  Ignored upon receipt.   Checksum        The checksum is a standard IP checksum, i.e., the 16-bit one's        complement of the one's complement sum of the entire PIM        message, excluding the "Multicast data packet" section of the        Register message.  For computing the checksum, the checksum        field is zeroed.  If the packet's length is not an integral        number of 16-bit words, the packet is padded with a trailing        byte of zero before performing the checksum.        For IPv6, the checksum also includes the IPv6 "pseudo-header",        as specified inRFC 2460, Section 8.1 [5].  This "pseudo-header"        is prepended to the PIM header for the purposes of calculating        the checksum.  The "Upper-Layer Packet Length" in the pseudo-        header is set to the length of the PIM message, except in        Register messages where it is set to the length of the PIM        register header (8).  The Next Header value used in the pseudo-        header is 103.Fenner, et al.              Standards Track                   [Page 109]

RFC 4601                  PIM-SM Specification               August 2006   If a message is received with an unrecognized PIM Ver or Type field,   or if a message's destination does not correspond to the table above,   the message MUST be discarded, and an error message SHOULD be logged   to the administrator in a rate-limited manner.4.9.1.  Encoded Source and Group Address Formats   Encoded-Unicast Address   An Encoded-Unicast address takes the following format:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |  Addr Family  | Encoding Type |     Unicast Address   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...   Addr Family        The PIM address family of the 'Unicast Address' field of this        address.        Values 0-127 are as assigned by the IANA for Internet Address        Families in [7].  Values 128-250 are reserved to be assigned by        the IANA for PIM-specific Address Families.  Values 251 though        255 are designated for private use.  As there is no assignment        authority for this space, collisions should be expected.   Encoding Type        The type of encoding used within a specific Address Family.  The        value '0' is reserved for this field and represents the native        encoding of the Address Family.   Unicast Address        The unicast address as represented by the given Address Family        and Encoding Type.Fenner, et al.              Standards Track                   [Page 110]

RFC 4601                  PIM-SM Specification               August 2006   Encoded-Group Address   Encoded-Group addresses take the following format:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |  Addr Family  | Encoding Type |B| Reserved  |Z|  Mask Len     |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                Group multicast Address   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...   Addr Family        Described above.   Encoding Type        Described above.   [B]idirectional PIM        Indicates the group range should use Bidirectional PIM [13].        For PIM-SM defined in this specification, this bit MUST be zero.   Reserved        Transmitted as zero.  Ignored upon receipt.   Admin Scope [Z]one        indicates the group range is an admin scope zone.  This is used        in the Bootstrap Router Mechanism [11] only.  For all other        purposes, this bit is set to zero and ignored on receipt.   Mask Len        The Mask length field is 8 bits.  The value is the number of        contiguous one bits that are left justified and used as a mask;        when combined with the group address, it describes a range of        groups.  It is less than or equal to the address length in bits        for the given Address Family and Encoding Type.  If the message        is sent for a single group, then the Mask length must equal the        address length in bits for the given Address Family and Encoding        Type (e.g., 32 for IPv4 native encoding, 128 for IPv6 native        encoding).   Group multicast Address        Contains the group address.Fenner, et al.              Standards Track                   [Page 111]

RFC 4601                  PIM-SM Specification               August 2006   Encoded-Source Address   Encoded-Source address takes the following format:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | Addr Family   | Encoding Type | Rsrvd   |S|W|R|  Mask Len     |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                        Source Address   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...   Addr Family        Described above.   Encoding Type        Described above.   Reserved        Transmitted as zero, ignored on receipt.   S    The Sparse bit is a 1-bit value, set to 1 for PIM-SM.  It is        used for PIM version 1 compatibility.   W    The WC (or WildCard) bit is a 1-bit value for use with PIM        Join/Prune messages (seeSection 4.9.5.1).   R    The RPT (or Rendezvous Point Tree) bit is a 1-bit value for use        with PIM Join/Prune messages (seeSection 4.9.5.1).  If the WC        bit is 1, the RPT bit MUST be 1.   Mask Len        The mask length field is 8 bits.  The value is the number of        contiguous one bits left justified used as a mask which,        combined with the Source Address, describes a source subnet.        The mask length MUST be equal to the mask length in bits for the        given Address Family and Encoding Type (32 for IPv4 native and        128 for IPv6 native).  A router SHOULD ignore any messages        received with any other mask length.   Source Address        The source address.Fenner, et al.              Standards Track                   [Page 112]

RFC 4601                  PIM-SM Specification               August 20064.9.2.  Hello Message Format   It is sent periodically by routers on all interfaces.    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |PIM Ver| Type  |   Reserved    |           Checksum            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |          OptionType           |         OptionLength          |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                          OptionValue                          |   |                              ...                              |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                               .                               |   |                               .                               |   |                               .                               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |          OptionType           |         OptionLength          |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                          OptionValue                          |   |                              ...                              |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   PIM Version, Type, Reserved, Checksum        Described inSection 4.9.   OptionType        The type of the option given in the following OptionValue field.   OptionLength        The length of the OptionValue field in bytes.   OptionValue        A variable length field, carrying the value of the option.Fenner, et al.              Standards Track                   [Page 113]

RFC 4601                  PIM-SM Specification               August 2006   The Option fields may contain the following values:   o OptionType 1: Holdtime      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |          Type = 1             |         Length = 2            |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |          Holdtime             |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     Holdtime is the amount of time a receiver must keep the neighbor     reachable, in seconds.  If the Holdtime is set to '0xffff', the     receiver of this message never times out the neighbor.  This may be     used with dial-on-demand links, to avoid keeping the link up with     periodic Hello messages.     Hello messages with a Holdtime value set to '0' are also sent by a     router on an interface about to go down or changing IP address (seeSection 4.3.1).  These are effectively goodbye messages, and the     receiving routers should immediately time out the neighbor     information for the sender.   o OptionType 2: LAN Prune Delay      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |          Type = 2             |          Length = 4           |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |T|      Propagation_Delay      |      Override_Interval        |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     The LAN Prune Delay option is used to tune the prune propagation     delay on multi-access LANs.  The T bit specifies the ability of the     sending router to disable joins suppression.  Propagation_Delay and     Override_Interval are time intervals in units of milliseconds.  A     router originating a LAN Prune Delay option on interface I sets the     Propagation_Delay field to the configured value of     Propagation_Delay(I) and the value of the Override_Interval field     to the value of Override_Interval(I).  On a receiving router, the     values of the fields are used to tune the value of the     Effective_Override_Interval(I) and its derived timer values.Section 4.3.3 describes how these values affect the behavior of a     router.Fenner, et al.              Standards Track                   [Page 114]

RFC 4601                  PIM-SM Specification               August 2006   o OptionType 3 to 16: reserved to be defined in future versions of     this document.   o OptionType 18: deprecated and should not be used.   o OptionType 19: DR Priority      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |          Type = 19            |          Length = 4           |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                         DR Priority                           |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     DR Priority is a 32-bit unsigned number and should be considered in     the DR election as described inSection 4.3.2.   o OptionType 20: Generation ID      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |          Type = 20            |          Length = 4           |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                       Generation ID                           |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     Generation ID is a random 32-bit value for the interface on which     the Hello message is sent.  The Generation ID is regenerated     whenever PIM forwarding is started or restarted on the interface.Fenner, et al.              Standards Track                   [Page 115]

RFC 4601                  PIM-SM Specification               August 2006   o OptionType 24: Address List      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |          Type = 24            |      Length = <Variable>      |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |         Secondary Address 1 (Encoded-Unicast format)          |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                                    ...     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |         Secondary Address N (Encoded-Unicast format)          |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     The contents of the Address List Hello option are described inSection 4.3.4. All addresses within a single Address List must     belong to the same address family.   OptionTypes 17 through 65000 are assigned by the IANA.  OptionTypes   65001 through 65535 are reserved for Private Use, as defined in [9].   Unknown options MUST be ignored and MUST NOT prevent a neighbor   relationship from being formed.  The "Holdtime" option MUST be   implemented; the "DR Priority" and "Generation ID" options SHOULD be   implemented.  The "Address List" option MUST be implemented for IPv6.4.9.3.  Register Message Format   A Register message is sent by the DR or a PMBR to the RP when a   multicast packet needs to be transmitted on the RP-tree.  The IP   source address is set to the address of the DR, the destination   address to the RP's address.  The IP TTL of the PIM packet is the   system's normal unicast TTL.    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |PIM Ver| Type  |   Reserved    |           Checksum            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |B|N|                       Reserved2                           |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                                                               |   .                     Multicast data packet                     .   |                                                               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+Fenner, et al.              Standards Track                   [Page 116]

RFC 4601                  PIM-SM Specification               August 2006   PIM Version, Type, Reserved, Checksum        Described inSection 4.9. Note that in order to reduce        encapsulation overhead, the checksum for Registers is done only        on the first 8 bytes of the packet, including the PIM header and        the next 4 bytes, excluding the data packet portion.  For        interoperability reasons, a message carrying a checksum        calculated over the entire PIM Register message should also be        accepted.  When calculating the checksum, the IPv6 pseudoheader        "Upper-Layer Packet Length" is set to 8.   B    The Border bit.  If the router is a DR for a source that it is        directly connected to, it sets the B bit to 0.  If the router is        a PMBR for a source in a directly connected cloud, it sets the B        bit to 1.   N    The Null-Register bit.  Set to 1 by a DR that is probing the RP        before expiring its local Register-Suppression Timer.  Set to 0        otherwise.   Reserved2        Transmitted as zero, ignored on receipt.   Multicast data packet        The original packet sent by the source.  This packet must be of        the same address family as the encapsulating PIM packet, e.g.,        an IPv6 data packet must be encapsulated in an IPv6 PIM packet.        Note that the TTL of the original packet is decremented before        encapsulation, just like any other packet that is forwarded.  In        addition, the RP decrements the TTL after decapsulating, before        forwarding the packet down the shared tree.        For (S,G) Null-Registers, the Multicast data packet portion        contains a dummy IP header with S as the source address, G as        the destination address.  When generating an IPv4 Null-Register        message, the fields in the dummy IPv4 header SHOULD be filled in        according to the following table.  Other IPv4 header fields may        contain any value that is valid for that field.        Field                  Value        ---------------------------------------        IP Version             4        Header Length          5        Checksum               Header checksum        Fragmentation offset   0        More Fragments         0        Total Length           20        IP Protocol            103 (PIM)Fenner, et al.              Standards Track                   [Page 117]

RFC 4601                  PIM-SM Specification               August 2006        On receipt of an (S,G) Null-Register, if the Header Checksum        field is non-zero, the recipient SHOULD check the checksum and        discard null registers that have a bad checksum.  The recipient        SHOULD NOT check the value of any individual fields; a correct        IP header checksum is sufficient.  If the Header Checksum field        is zero, the recipient MUST NOT check the checksum.        With IPv6, an implementation generates a dummy IP header        followed by a dummy PIM header with values according to the        following table in addition to the source and group.  Other IPv6        header fields may contain any value that is valid for that        field.        Header Field   Value        --------------------------------------        IP Version     6        Next Header    103 (PIM)        Length         4        PIM Version    0        PIM Type       0        PIM Reserved   0        PIM Checksum   PIM checksum including                       IPv6 "pseudo-header";                       seeSection 4.9        On receipt of an IPv6 (S,G) Null-Register, if the dummy PIM        header is present, the recipient SHOULD check the checksum and        discard Null-Registers that have a bad checksum.Fenner, et al.              Standards Track                   [Page 118]

RFC 4601                  PIM-SM Specification               August 20064.9.4.  Register-Stop Message Format   A Register-Stop is unicast from the RP to the sender of the Register   message.  The IP source address is the address to which the register   was addressed.  The IP destination address is the source address of   the register message.    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |PIM Ver| Type  |   Reserved    |           Checksum            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |             Group Address (Encoded-Group format)              |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |            Source Address (Encoded-Unicast format)            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   PIM Version, Type, Reserved, Checksum        Described inSection 4.9.   Group Address        The group address from the multicast data packet in the        Register.  Format described inSection 4.9.1. Note that for        Register-Stops the Mask Len field contains the full address        length * 8 (e.g., 32 for IPv4 native encoding), if the message        is sent for a single group.   Source Address        The host address of the source from the multicast data packet in        the register.  The format for this address is given in the        Encoded-Unicast address inSection 4.9.1. A special wild card        value consisting of an address field of all zeros can be used to        indicate any source.4.9.5.  Join/Prune Message Format   A Join/Prune message is sent by routers towards upstream sources and   RPs.  Joins are sent to build shared trees (RP trees) or source trees   (SPT).  Prunes are sent to prune source trees when members leave   groups as well as sources that do not use the shared tree.Fenner, et al.              Standards Track                   [Page 119]

RFC 4601                  PIM-SM Specification               August 2006    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |PIM Ver| Type  |   Reserved    |           Checksum            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Upstream Neighbor Address (Encoded-Unicast format)     |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |  Reserved     | Num groups    |          Holdtime             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |         Multicast Group Address 1 (Encoded-Group format)      |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |   Number of Joined Sources    |   Number of Pruned Sources    |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Joined Source Address 1 (Encoded-Source format)        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                             .                                 |   |                             .                                 |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Joined Source Address n (Encoded-Source format)        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Pruned Source Address 1 (Encoded-Source format)        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                             .                                 |   |                             .                                 |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Pruned Source Address n (Encoded-Source format)        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                           .                                   |   |                           .                                   |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |         Multicast Group Address m (Encoded-Group format)      |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |   Number of Joined Sources    |   Number of Pruned Sources    |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Joined Source Address 1 (Encoded-Source format)        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                             .                                 |   |                             .                                 |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Joined Source Address n (Encoded-Source format)        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Pruned Source Address 1 (Encoded-Source format)        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                             .                                 |   |                             .                                 |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Pruned Source Address n (Encoded-Source format)        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+Fenner, et al.              Standards Track                   [Page 120]

RFC 4601                  PIM-SM Specification               August 2006   PIM Version, Type, Reserved, Checksum        Described inSection 4.9.   Unicast Upstream Neighbor Address        The address of the upstream neighbor that is the target of the        message.  The format for this address is given in the Encoded-        Unicast address inSection 4.9.1. For IPv6 the source address        used for multicast messages is the link-local address of the        interface on which the message is being sent.  For IPv4, the        source address is the primary address associated with that        interface.   Reserved        Transmitted as zero, ignored on receipt.   Holdtime        The amount of time a receiver must keep the Join/Prune state        alive, in seconds.  If the Holdtime is set to '0xffff', the        receiver of this message should hold the state until canceled by        the appropriate canceling Join/Prune message, or timed out        according to local policy.  This may be used with dial-on-demand        links, to avoid keeping the link up with periodic Join/Prune        messages.        Note that the HoldTime must be larger than the        J/P_Override_Interval(I).   Number of Groups        The number of multicast group sets contained in the message.   Multicast group address        For format description, seeSection 4.9.1.   Number of Joined Sources        Number of joined source addresses listed for a given group.   Joined Source Address 1 .. n        This list contains the sources for a given group that the        sending router will forward multicast datagrams from if received        on the interface on which the Join/Prune message is sent.        See Encoded-Source-Address format inSection 4.9.1.   Number of Pruned Sources        Number of pruned source addresses listed for a group.Fenner, et al.              Standards Track                   [Page 121]

RFC 4601                  PIM-SM Specification               August 2006   Pruned Source Address 1 .. n        This list contains the sources for a given group that the        sending router does not want to forward multicast datagrams from        when received on the interface on which the Join/Prune message        is sent.   Within one PIM Join/Prune message, all the Multicast Group Addresses,   Joined Source addresses, and Pruned Source addresses MUST be of the   same address family.  It is NOT PERMITTED to mix IPv4 and IPv6   addresses within the same message.  In addition, the address family   of the fields in the message SHOULD be the same as the IP source and   destination addresses of the packet.  This permits maximum   implementation flexibility for dual-stack IPv4/IPv6 routers.  If a   router receives a message with mixed family addresses, it SHOULD only   process the addresses that are of the same family as the unicast   upstream neighbor address.4.9.5.1.  Group Set Source List Rules   As described above, Join/Prune messages are composed of one or more   group sets.  Each set contains two source lists, the Joined Sources   and the Pruned Sources.  This section describes the different types   of group sets and source list entries that can exist in a Join/Prune   message.   There are two valid group set types:   Wildcard Group Set        The wildcard group set is represented by the entire multicast        range:  the beginning of the multicast address range in the        group address field and the prefix length of the multicast        address range in the mask length field of the Multicast Group        Address (i.e., '224.0.0.0/4' for IPv4 or 'ff00::/8' for IPv6).        Each Join/Prune message SHOULD contain at most one wildcard        group set.  Each wildcard group set may contain one or more        (*,*,RP) source list entries in either the Joined or Pruned        lists.        A (*,*,RP) source list entry may only exist in a wildcard group        set.  When added to a Joined source list, this type of source        entry expresses the router's interest in receiving traffic for        all groups mapping to the specified RP.  When added to a Pruned        source list a (*,*,RP) entry expresses the router's interest to        stop receiving such traffic.  Note that as indicated by the        Join/Prune state machines, such a Join or Prune will NOT        override Join/Prune state created using a Group-Specific Set        (see below).Fenner, et al.              Standards Track                   [Page 122]

RFC 4601                  PIM-SM Specification               August 2006        (*,*,RP) source list entries have the Source-Address set to the        address of the RP, the Source-Address Mask-Len set to the full        length of the IP address, and both the WC and RPT bits of the        Source-Address set to 1.   Group-Specific Set        A Group-Specific Set is represented by a valid IP multicast        address in the group address field and the full length of the IP        address in the mask length field of the Multicast Group Address.        Each Join/Prune message SHOULD NOT contain more than one group-        specific set for the same IP multicast address.  Each group-        specific set may contain (*,G), (S,G,rpt), and (S,G) source list        entries in the Joined or Pruned lists.     (*,G)          The (*,G) source list entry is used in Join/Prune messages          sent towards the RP for the specified group.  It expresses          interest (or lack thereof) in receiving traffic sent to the          group through the Rendezvous-Point shared tree.  There may          only be one such entry in both the Joined and Pruned lists of          a group-specific set.          (*,G) source list entries have the Source-Address set to the          address of the RP for group G, the Source-Address Mask-Len set          to the full length of the IP address, and both the WC and RPT          bits of the Encoded-Source-Address set.     (S,G,rpt)          The (S,G,rpt) source list entry is used in Join/Prune messages          sent towards the RP for the specified group.  It expresses          interest (or lack thereof) in receiving traffic through the          shared tree sent by the specified source to this group.  For          each source address, the entry may exist in only one of the          Joined and Pruned source lists of a group-specific set, but          not both.          (S,G,rpt) source list entries have the Source-Address set to          the address of the source S, the Source-Address Mask-Len set          to the full length of the IP address, and the WC bit cleared          and the RPT bit set in the Encoded-Source-Address.     (S,G)          The (S,G) source list entry is used in Join/Prune messages          sent towards the specified source.  It expresses interest (or          lack thereof) in receiving traffic through the shortest path          tree sent by the source to the specified group.  For each          source address, the entry may exist in only one of the Joined          and Pruned source lists of a group-specific set, but not both.Fenner, et al.              Standards Track                   [Page 123]

RFC 4601                  PIM-SM Specification               August 2006          (S,G) source list entries have the Source-Address set to the          address of the source S, the Source-Address Mask-Len set to          the full length of the IP address, and both the WC and RPT          bits of the Encoded-Source-Address cleared.   The rules described above are sufficient to prevent invalid   combinations of source list entries in group-specific sets.  There   are, however, a number of combinations that have a valid   interpretation but that are not generated by the protocol as   described in this specification:   o Combining a (*,G) Join and a (S,G,rpt) Join entry in the same     message is redundant as the (*,G) entry covers the information     provided by the (S,G,rpt) entry.   o The same applies for a (*,G) Prunes and (S,G,rpt) Prunes.   o The combination of a (*,G) Prune and a (S,G,rpt) Join is also not     generated.  (S,G,rpt) Joins are only sent when the router is     receiving all traffic for a group on the shared tree and it wishes     to indicate a change for the particular source.  As a (*,G) prune     indicates that the router no longer wishes to receive shared tree     traffic, the (S,G,rpt) Join would be meaningless.   o As Join/Prune messages are targeted to a single PIM neighbor,     including both a (S,G) Join and a (S,G,rpt) Prune in the same     message is usually redundant.  The (S,G) Join informs the neighbor     that the sender wishes to receive the particular source on the     shortest path tree.  It is therefore unnecessary for the router to     say that it no longer wishes to receive it on the shared tree.     However, there is a valid interpretation for this combination of     entries.  A downstream router may have to instruct its upstream     only to start forwarding a specific source once it has started     receiving the source on the shortest-path tree.   o The combination of a (S,G) Prune and a (S,G,rpt) Join could     possibly be used by a router to switch from receiving a particular     source on the shortest-path tree back to receiving it on the shared     tree (provided that the RPF neighbor for the shortest-path and     shared trees is common).  However, Sparse-Mode PIM does not provide     a mechanism for explicitly switching back to the shared tree.Fenner, et al.              Standards Track                   [Page 124]

RFC 4601                  PIM-SM Specification               August 2006   The rules are summarized in the tables below.   +----------++------+-------+-----------+-----------+-------+-------+   |          ||Join  | Prune | Join      | Prune     | Join  | Prune |   |          ||(*,G) | (*,G) | (S,G,rpt) | (S,G,rpt) | (S,G) | (S,G) |   +----------++------+-------+-----------+-----------+-------+-------+   |Join      ||-     | no    | ?         | yes       | yes   | yes   |   |(*,G)     ||      |       |           |           |       |       |   +----------++------+-------+-----------+-----------+-------+-------+   |Prune     ||no    | -     | ?         | ?         | yes   | yes   |   |(*,G)     ||      |       |           |           |       |       |   +----------++------+-------+-----------+-----------+-------+-------+   |Join      ||?     | ?     | -         | no        | yes   | ?     |   |(S,G,rpt) ||      |       |           |           |       |       |   +----------++------+-------+-----------+-----------+-------+-------+   |Prune     ||yes   | ?     | no        | -         | yes   | ?     |   |(S,G,rpt) ||      |       |           |           |       |       |   +----------++------+-------+-----------+-----------+-------+-------+   |Join      ||yes   | yes   | yes       | yes       | -     | no    |   |(S,G)     ||      |       |           |           |       |       |   +----------++------+-------+-----------+-----------+-------+-------+   |Prune     ||yes   | yes   | ?         | ?         | no    | -     |   |(S,G)     ||      |       |           |           |       |       |   +----------++------+-------+-----------+-----------+-------+-------+   +---------------++--------------+----------------+------------+   |               ||Join (*,*,RP) | Prune (*,*,RP) | all others |   +---------------++--------------+----------------+------------+   |Join (*,*,RP)  ||-             | no             | yes        |   +---------------++--------------+----------------+------------+   |Prune (*,*,RP) ||no            | -              | yes        |   +---------------++--------------+----------------+------------+   |all others     ||yes           | yes            | see above  |   +---------------++--------------+----------------+------------+   yes  Allowed and expected.   no   Combination is not allowed by the protocol and MUST NOT be        generated by a router.  A router MAY accept these messages, but        the result is undefined.  An error message MAY be logged to the        administrator in a rate-limited manner.   ?    Combination not expected by the protocol, but well-defined.  A        router MAY accept it but SHOULD NOT generate it.   The order of source list entries in a group set source list is not   important, except where limited by the packet format itself.Fenner, et al.              Standards Track                   [Page 125]

RFC 4601                  PIM-SM Specification               August 20064.9.5.2.  Group Set Fragmentation   When building a Join/Prune for a particular neighbor, a router should   try to include in the message as much of the information it needs to   convey to the neighbor as possible.  This implies adding one group   set for each multicast group that has information pending   transmission and within each set including all relevant source list   entries.   On a router with a large amount of multicast state, the number of   entries that must be included may result in packets that are larger   than the maximum IP packet size.  In most such cases, the information   may be split into multiple messages.   There is an exception with group sets that contain a (*,G) Joined   source list entry.  The group set expresses the router's interest in   receiving all traffic for the specified group on the shared tree, and   it MUST include an (S,G,rpt) Pruned source list entry for every   source that the router does not wish to receive.  This list of   (S,G,rpt) Pruned source-list entries MUST not be split in multiple   messages.   If only N (S,G,rpt) Prune entries fit into a maximum-sized Join/Prune   message, but the router has more than N (S,G,rpt) Prunes to add, then   the router MUST choose to include the first N (numerically smallest   in network byte order) IP addresses.4.9.6.  Assert Message Format   The Assert message is used to resolve forwarder conflicts between   routers on a link.  It is sent when a router receives a multicast   data packet on an interface on which the router would normally have   forwarded that packet.  Assert messages may also be sent in response   to an Assert message from another router.Fenner, et al.              Standards Track                   [Page 126]

RFC 4601                  PIM-SM Specification               August 2006    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |PIM Ver| Type  |   Reserved    |           Checksum            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |              Group Address (Encoded-Group format)             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |            Source Address (Encoded-Unicast format)            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |R|                      Metric Preference                      |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                             Metric                            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   PIM Version, Type, Reserved, Checksum        Described inSection 4.9.   Group Address        The group address for which the router wishes to resolve the        forwarding conflict.  This is an Encoded-Group address, as        specified inSection 4.9.1.   Source Address        Source address for which the router wishes to resolve the        forwarding conflict.  The source address MAY be set to zero for        (*,G) asserts (see below).  The format for this address is given        in Encoded-Unicast-Address inSection 4.9.1.   R    RPT-bit is a 1-bit value.  The RPT-bit is set to 1 for        Assert(*,G) messages and 0 for Assert(S,G) messages.   Metric Preference        Preference value assigned to the unicast routing protocol that        provided the route to the multicast source or Rendezvous-Point.   Metric        The unicast routing table metric associated with the route used        to reach the multicast source or Rendezvous-Point.  The metric        is in units applicable to the unicast routing protocol used.   Assert messages can be sent to resolve a forwarding conflict for all   traffic to a given group or for a specific source and group.Fenner, et al.              Standards Track                   [Page 127]

RFC 4601                  PIM-SM Specification               August 2006   Assert(S,G)        Source-specific asserts are sent by routers forwarding a        specific source on the shortest-path tree (SPTbit is TRUE).        (S,G) Asserts have the Group-Address field set to the group G        and the Source-Address field set to the source S.  The RPT-bit        is set to 0, the Metric-Preference is set to MRIB.pref(S) and        the Metric is set to MRIB.metric(S).   Assert(*,G)        Group-specific asserts are sent by routers forwarding data for        the group and source(s) under contention on the shared tree.        (*,G) asserts have the Group-Address field set to the group G.        For data-triggered Asserts, the Source-Address field MAY be set        to the IP source address of the data packet that triggered the        Assert and is set to zero otherwise.  The RPT-bit is set to 1,        the Metric-Preference is set to MRIB.pref(RP(G)), and the Metric        is set to MRIB.metric(RP(G)).4.10.  PIM Timers   PIM-SM maintains the following timers, as discussed inSection 4.1.   All timers are countdown timers; they are set to a value and count   down to zero, at which point they typically trigger an action.  Of   course they can just as easily be implemented as count-up timers,   where the absolute expiry time is stored and compared against a   real-time clock, but the language in this specification assumes that   they count downwards to zero.   Global Timers   Per interface (I):        Hello Timer: HT(I)        Per neighbor (N):             Neighbor Liveness Timer: NLT(N,I)        Per active RP (RP):             (*,*,RP) Join Expiry Timer: ET(*,*,RP,I)             (*,*,RP) Prune-Pending Timer: PPT(*,*,RP,I)        Per Group (G):             (*,G) Join Expiry Timer: ET(*,G,I)Fenner, et al.              Standards Track                   [Page 128]

RFC 4601                  PIM-SM Specification               August 2006             (*,G) Prune-Pending Timer: PPT(*,G,I)             (*,G) Assert Timer: AT(*,G,I)             Per Source (S):                  (S,G) Join Expiry Timer: ET(S,G,I)                  (S,G) Prune-Pending Timer: PPT(S,G,I)                  (S,G) Assert Timer: AT(S,G,I)                  (S,G,rpt) Prune Expiry Timer: ET(S,G,rpt,I)                  (S,G,rpt) Prune-Pending Timer: PPT(S,G,rpt,I)   Per active RP (RP):        (*,*,RP) Upstream Join Timer: JT(*,*,RP)   Per Group (G):        (*,G) Upstream Join Timer: JT(*,G)        Per Source (S):             (S,G) Upstream Join Timer: JT(S,G)             (S,G) Keepalive Timer: KAT(S,G)             (S,G,rpt) Upstream Override Timer: OT(S,G,rpt)   At the DRs or relevant Assert Winners only:        Per Source,Group pair (S,G):             Register-Stop Timer: RST(S,G)4.11.  Timer Values   When timers are started or restarted, they are set to default values.   This section summarizes those default values.   Note that protocol events or configuration may change the default   value of a timer on a specific interface.  When timers are   initialized in this document, the value specific to the interface in   context must be used.Fenner, et al.              Standards Track                   [Page 129]

RFC 4601                  PIM-SM Specification               August 2006   Some of the timers listed below (Prune-Pending, Upstream Join,   Upstream Override) can be set to values that depend on the settings   of the Propagation_Delay and Override_Interval of the corresponding   interface.  The default values for these are given below.   Variable Name: Propagation_Delay(I)+-------------------------------+--------------+----------------------+|  Value Name                   |  Value       |  Explanation         |+-------------------------------+--------------+----------------------+|  Propagation_delay_default    |  0.5 secs    |  Expected            ||                               |              |  propagation delay   ||                               |              |  over the local      ||                               |              |  link.               |+-------------------------------+--------------+----------------------+   The default value of the Propagation_delay_default is chosen to be   relatively large to provide compatibility with older PIM   implementations.   Variable Name: Override_Interval(I)+--------------------------+-----------------+-------------------------+|  Value Name              |    Value        |    Explanation          |+--------------------------+-----------------+-------------------------+|  t_override_default      |    2.5 secs     |    Default delay        ||                          |                 |    interval over        ||                          |                 |    which to randomize   ||                          |                 |    when scheduling a    ||                          |                 |    delayed Join         ||                          |                 |    message.             |+--------------------------+-----------------+-------------------------+   Timer Name: Hello Timer (HT(I))+---------------------+--------+---------------------------------------+|Value Name           | Value  | Explanation                           |+---------------------+--------+---------------------------------------+|Hello_Period         | 30 secs| Periodic interval for Hello messages. |+---------------------+--------+---------------------------------------+|Triggered_Hello_Delay| 5 secs | Randomized interval for initial Hello ||                     |        | message on bootup or triggered Hello  ||                     |        | message to a rebooting neighbor.      |+---------------------+--------+---------------------------------------+Fenner, et al.              Standards Track                   [Page 130]

RFC 4601                  PIM-SM Specification               August 2006   At system power-up, the timer is initialized to rand(0,   Triggered_Hello_Delay) to prevent synchronization.  When a new or   rebooting neighbor is detected, a responding Hello is sent within   rand(0, Triggered_Hello_Delay).   Timer Name: Neighbor Liveness Timer (NLT(N,I))+--------------------------+----------------------+--------------------+| Value Name               |  Value               |  Explanation       |+--------------------------+----------------------+--------------------+| Default_Hello_Holdtime   |  3.5 * Hello_Period  |  Default holdtime  ||                          |                      |  to keep neighbor  ||                          |                      |  state alive       |+--------------------------+----------------------+--------------------+| Hello_Holdtime           |  from message        |  Holdtime from     ||                          |                      |  Hello Message     ||                          |                      |  Holdtime option.  |+--------------------------+----------------------+--------------------+   The Holdtime in a Hello Message should be set to (3.5 *   Hello_Period), giving a default value of 105 seconds.   Timer Names: Expiry Timer (ET(*,*,RP,I), ET(*,G,I), ET(S,G,I),   ET(S,G,rpt,I))+----------------+----------------+------------------------------------+| Value Name     |  Value         |  Explanation                       |+----------------+----------------+------------------------------------+| J/P_HoldTime   |  from message  |  Holdtime from Join/Prune Message  |+----------------+----------------+------------------------------------+   See details of JT(*,G) for the Holdtime that is included in   Join/Prune Messages.Fenner, et al.              Standards Track                   [Page 131]

RFC 4601                  PIM-SM Specification               August 2006   Timer Names: Prune-Pending Timer (PPT(*,*,RP,I), PPT(*,G,I),   PPT(S,G,I), PPT(S,G,rpt,I))+--------------------------+---------------------+---------------------+|Value Name                | Value               | Explanation         |+--------------------------+---------------------+---------------------+|J/P_Override_Interval(I)  | Default:            | Short period after  ||                          | Effective_          | a join or prune to  ||                          | Propagation_        | allow other         ||                          | Delay(I) +          | routers on the LAN  ||                          | EffectiveOverride_  | to override the     ||                          | Interval(I)         | join or prune       |+--------------------------+---------------------+---------------------+   Note that both the Effective_Propagation_Delay(I) and the   Effective_Override_Interval(I) are interface-specific values that may   change when Hello messages are received (seeSection 4.3.3).   Timer Names: Assert Timer (AT(*,G,I), AT(S,G,I))+---------------------------+---------------------+--------------------+| Value Name                | Value               | Explanation        |+---------------------------+---------------------+--------------------+| Assert_Override_Interval  | Default: 3 secs     | Short interval     ||                           |                     | before an assert   ||                           |                     | times out where    ||                           |                     | the assert winner  ||                           |                     | resends an Assert  ||                           |                     | message            |+---------------------------+---------------------+--------------------+| Assert_Time               | Default: 180 secs   | Period after last  ||                           |                     | assert before      ||                           |                     | assert state is    ||                           |                     | timed out          |+---------------------------+---------------------+--------------------+   Note that for historical reasons, the Assert message lacks a Holdtime   field.  Thus, changing the Assert Time from the default value is not   recommended.Fenner, et al.              Standards Track                   [Page 132]

RFC 4601                  PIM-SM Specification               August 2006   Timer Names: Upstream Join Timer (JT(*,*,RP), JT(*,G), JT(S,G))+-------------+--------------------+-----------------------------------+|Value Name   | Value              | Explanation                       |+-------------+--------------------+-----------------------------------+|t_periodic   | Default: 60 secs   | Period between Join/Prune Messages|+-------------+--------------------+-----------------------------------+|t_suppressed | rand(1.1 *         | Suppression period when someone   ||             | t_periodic, 1.4 *  | else sends a J/P message so we    ||             | t_periodic) when   | don't need to do so.              ||             | Suppression_       |                                   ||             | Enabled(I) is      |                                   ||             | true, 0 otherwise  |                                   |+-------------+--------------------+-----------------------------------+|t_override   | rand(0, Effective_ | Randomized delay to prevent       ||             | Override_          | response implosion when sending a ||             | Interval(I))       | join message to override someone  ||             |                    | else's Prune message.             |+-------------+--------------------+-----------------------------------+   t_periodic may be set to take into account such things as the   configured bandwidth and expected average number of multicast route   entries for the attached network or link (e.g., the period would be   longer for lower-speed links, or for routers in the center of the   network that expect to have a larger number of entries).  If the   Join/Prune-Period is modified during operation, these changes should   be made relatively infrequently, and the router should continue to   refresh at its previous Join/Prune-Period for at least Join/Prune-   Holdtime, in order to allow the upstream router to adapt.   The holdtime specified in a Join/Prune message should be set to (3.5   * t_periodic).   t_override depends on the Effective_Override_Interval of the upstream   interface, which may change when Hello messages are received.   t_suppressed depends on the Suppression State of the upstream   interface (Section 4.3.3) and becomes zero when suppression is   disabled.Fenner, et al.              Standards Track                   [Page 133]

RFC 4601                  PIM-SM Specification               August 2006   Timer Name: Upstream Override Timer (OT(S,G,rpt))+---------------+--------------------------+---------------------------+| Value Name    | Value                    |  Explanation              |+---------------+--------------------------+---------------------------+| t_override    | see Upstream Join Timer  |  see Upstream Join Timer  |+---------------+--------------------------+---------------------------+   The upstream Override Timer is only ever set to t_override; this   value is defined in the section on Upstream Join Timers.   Timer Name: Keepalive Timer (KAT(S,G))+-----------------------+-----------------------+----------------------+| Value Name            |  Value                |  Explanation         |+-----------------------+-----------------------+----------------------+| Keepalive_Period      |  Default: 210 secs    |  Period after last   ||                       |                       |  (S,G) data packet   ||                       |                       |  during which (S,G)  ||                       |                       |  Join state will be  ||                       |                       |  maintained even in  ||                       |                       |  the absence of      ||                       |                       |  (S,G) Join          ||                       |                       |  messages.           |+-----------------------+-----------------------+----------------------+| RP_Keepalive_Period   |  ( 3 * Register_      |  As                  ||                       |  Suppression_Time )   |  Keepalive_Period,   ||                       |  + Register_          |  but at the RP when  ||                       |  Probe_Time           |  a Register-Stop is  ||                       |                       |  sent.               |+-----------------------+-----------------------+----------------------+   The normal keepalive period for the KAT(S,G) defaults to 210 seconds.   However, at the RP, the keepalive period must be at least the   Register_Suppression_Time, or the RP may time out the (S,G) state   before the next Null-Register arrives.  Thus, the KAT(S,G) is set to   max(Keepalive_Period, RP_Keepalive_Period) when a Register-Stop is   sent.Fenner, et al.              Standards Track                   [Page 134]

RFC 4601                  PIM-SM Specification               August 2006   Timer Name: Register-Stop Timer (RST(S,G))+---------------------------+--------------------+---------------------+|Value Name                 | Value              | Explanation         |+---------------------------+--------------------+---------------------+|Register_Suppression_Time  | Default: 60 secs   | Period during       ||                           |                    | which a DR stops    ||                           |                    | sending Register-   ||                           |                    | encapsulated data   ||                           |                    | to the RP after     ||                           |                    | receiving a         ||                           |                    | Register-Stop       ||                           |                    | message.            |+---------------------------+--------------------+---------------------+|Register_Probe_Time        | Default: 5 secs    | Time before RST     ||                           |                    | expires when a DR   ||                           |                    | may send a Null-    ||                           |                    | Register to the RP  ||                           |                    | to cause it to      ||                           |                    | resend a Register-  ||                           |                    | Stop message.       |+---------------------------+--------------------+---------------------+   If the Register_Suppression_Time or the Register_Probe_Time are   configured to values other than the defaults, it MUST be ensured that   the value of the Register_Probe_Time is less than half the value of   the Register_Suppression_Time to prevent a possible negative value in   the setting of the Register-Stop Timer.5.  IANA Considerations5.1.  PIM Address Family   The PIM Address Family field was chosen to be 8 bits as a tradeoff   between packet format and use of the IANA assigned numbers.  Because   when the PIM packet format was designed only 15 values were assigned   for Address Families, and large numbers of new Address Family values   were not envisioned, 8 bits seemed large enough.  However, the IANA   assigns Address Families in a 16-bit field.  Therefore, the PIM   Address Family is allocated as follows:     Values 0 through 127 are designated to have the same meaning as     IANA-assigned Address Family Numbers [7].     Values 128 through 250 are designated to be assigned for PIM by the     IANA based upon IESG Approval, as defined in [9].     Values 251 through 255 are designated for Private Use, as definedFenner, et al.              Standards Track                   [Page 135]

RFC 4601                  PIM-SM Specification               August 2006     in [9].5.2.  PIM Hello Options   Values 17 through 65000 are to be assigned by the IANA.  Since the   space is large, they may be assigned as First Come First Served as   defined in [9].  Such assignments are valid for one year and may be   renewed.  Permanent assignments require a specification (see   "Specification Required" in [9].)6.  Security Considerations   This section describes various possible security concerns related to   the PIM-SM protocol, including a description of how to use IPsec to   secure the protocol.  The reader is referred to [15] and [16] for   further discussion of PIM-SM and multicast security.  The IPsec   authentication header [8] MAY be used to provide data integrity   protection and groupwise data origin authentication of PIM protocol   messages.  Authentication of PIM messages can protect against   unwanted behaviors caused by unauthorized or altered PIM messages.6.1.  Attacks Based on Forged Messages   The extent of possible damage depends on the type of counterfeit   messages accepted.  We next consider the impact of possible   forgeries, including forged link-local (Join/Prune, Hello, and   Assert) and forged unicast (Register and Register-Stop) messages.6.1.1.  Forged Link-Local Messages   Join/Prune, Hello, and Assert messages are all sent to the link-local   ALL_PIM_ROUTERS multicast addresses and thus are not forwarded by a   compliant router.  A forged message of this type can only reach a LAN   if it was sent by a local host or if it was allowed onto the LAN by a   compromised or non-compliant router.   1.  A forged Join/Prune message can cause multicast traffic to be       delivered to links where there are no legitimate requesters,       potentially wasting bandwidth on that link.  A forged leave       message on a multi-access LAN is generally not a significant       attack in PIM, because any legitimately joined router on the LAN       would override the leave with a join before the upstream router       stops forwarding data to the LAN.   2.  By forging a Hello message, an unauthorized router can cause       itself to be elected as the designated router on a LAN.  The       designated router on a LAN is (in the absence of asserts)       responsible for forwarding traffic to that LAN on behalf of anyFenner, et al.              Standards Track                   [Page 136]

RFC 4601                  PIM-SM Specification               August 2006       local members.  The designated router is also responsible for       register-encapsulating to the RP any packets that are originated       by hosts on the LAN.  Thus, the ability of local hosts to send       and receive multicast traffic may be compromised by a forged       Hello message.   3.  By forging an Assert message on a multi-access LAN, an attacker       could cause the legitimate designated forwarder to stop       forwarding traffic to the LAN.  Such a forgery would prevent any       hosts downstream of that LAN from receiving traffic.6.1.2.  Forged Unicast Messages   Register messages and Register-Stop messages are forwarded by   intermediate routers to their destination using normal IP forwarding.   Without data origin authentication, an attacker who is located   anywhere in the network may be able to forge a Register or Register-   Stop message.  We consider the effect of a forgery of each of these   messages next.   1.  By forging a Register message, an attacker can cause the RP to       inject forged traffic onto the shared multicast tree.   2.  By forging a Register-stop message, an attacker can prevent a       legitimate DR from Registering packets to the RP.  This can       prevent local hosts on that LAN from sending multicast packets.   The above two PIM messages are not changed by intermediate routers   and need only be examined by the intended receiver.  Thus, these   messages can be authenticated end-to-end, using AH.  Attacks on   Register and Register-Stop messages do not apply to a PIM-SSM-only   implementation, as these messages are not required for PIM-SSM.6.2.  Non-Cryptographic Authentication Mechanisms   A PIM router SHOULD provide an option to limit the set of neighbors   from which it will accept Join/Prune, Assert, and Hello messages.   Either static configuration of IP addresses or an IPsec security   association may be used.  Furthermore, a PIM router SHOULD NOT accept   protocol messages from a router from which it has not yet received a   valid Hello message.   A Designated Router MUST NOT register-encapsulate a packet and send   it to the RP unless the source address of the packet is a legal   address for the subnet on which the packet was received.  Similarly,   a Designated Router SHOULD NOT accept a Register-Stop packet whose IP   source address is not a valid RP address for the local domain.Fenner, et al.              Standards Track                   [Page 137]

RFC 4601                  PIM-SM Specification               August 2006   An implementation SHOULD provide a mechanism to allow an RP to   restrict the range of source addresses from which it accepts   Register-encapsulated packets.   All options that restrict the range of addresses from which packets   are accepted MUST default to allowing all packets.6.3.  Authentication Using IPsec   The IPsec [8] transport mode using the Authentication Header (AH) is   the recommended method to prevent the above attacks against PIM.  The   specific AH authentication algorithm and parameters, including the   choice of authentication algorithm and the choice of key, are   configured by the network administrator.  When IPsec authentication   is used, a PIM router should reject (drop without processing) any   unauthorized PIM protocol messages.   To use IPsec, the administrator of a PIM network configures each PIM   router with one or more security associations (SAs) and associated   Security Parameter Indexes (SPIs) that are used by senders to   authenticate PIM protocol messages and are used by receivers to   authenticate received PIM protocol messages.  This document does not   describe protocols for establishing SAs.  It assumes that manual   configuration of SAs is performed, but it does not preclude the use   of a negotiation protocol such as the Internet Key Exchange [14] to   establish SAs.   IPsec [8] provides protection against replayed unicast and multicast   messages.  The anti-replay option for IPsec SHOULD be enabled on all   SAs.   The following sections describe the SAs required to protect PIM   protocol messages.6.3.1.  Protecting Link-Local Multicast Messages   The network administrator defines an SA and SPI that are to be used   to authenticate all link-local PIM protocol messages (Hello,   Join/Prune, and Assert) on each link in a PIM domain.   IPsec [8] allows (but does not require) different Security Policy   Databases (SPD) for each router interface.  If available, it may be   desirable to configure the Security Policy Database at a PIM router   such that all incoming and outgoing Join/Prune, Assert, and Hello   packets use a different SA for each incoming or outgoing interface.Fenner, et al.              Standards Track                   [Page 138]

RFC 4601                  PIM-SM Specification               August 20066.3.2.  Protecting Unicast Messages   IPsec can also be used to provide data origin authentication and data   integrity protection for the Register and Register-Stop unicast   messages.6.3.2.1.  Register Messages   The Security Policy Database at every PIM router is configured to   select an SA to use when sending PIM Register packets to each   rendezvous point.   In the most general mode of operation, the Security Policy Database   at each DR is configured to select a unique SA and SPI for traffic   sent to each RP.  This allows each DR to have a different   authentication algorithm and key to talk to the RP.  However, this   creates a daunting key management and distribution problem for the   network administrator.  Therefore, it may be preferable in PIM   domains where all Designated Routers are under a single   administrative control that the same authentication algorithm   parameters (including the key) be used for all Registered packets in   a domain, regardless of who are the RP and the DR.   In this "single shared key" mode of operation, the network   administrator must choose an SPI for each DR that will be used to   send it PIM protocol packets.  The Security Policy Database at every   DR is configured to select an SA (including the authentication   algorithm, authentication parameters, and this SPI) when sending   Register messages to this RP.   By using a single authentication algorithm and associated parameters,   the key distribution problem is simplified.  Note, however, that this   method has the property that, in order to change the authentication   method or authentication key used, all routers in the domain must be   updated.6.3.2.2.  Register-Stop Messages   Similarly, the Security Policy Database at each Rendezvous Point   should be configured to choose an SA to use when sending Register-   Stop messages.  Because Register-Stop messages are unicast to the   destination DR, a different SA and a potentially unique SPI are   required for each DR.   In order to simplify the management problem, it may be acceptable to   use the same authentication algorithm and authentication parameters,   regardless of the sending RP and regardless of the destination DR.   Although a unique SA is needed for each DR, the same authenticationFenner, et al.              Standards Track                   [Page 139]

RFC 4601                  PIM-SM Specification               August 2006   algorithm and authentication algorithm parameters (secret key) can be   shared by all DRs and by all RPs.6.4.  Denial-of-Service Attacks   There are a number of possible denial-of-service attacks against PIM   that can be caused by generating false PIM protocol messages or even   by generating data false traffic.  Authenticating PIM protocol   traffic prevents some, but not all, of these attacks.  Three of the   possible attacks include:   -  Sending packets to many different group addresses quickly can be a      denial-of-service attack in and of itself.  This will cause many      register-encapsulated packets, loading the DR, the RP, and the      routers between the DR and the RP.   -  Forging Join messages can cause a multicast tree to get set up.  A      large number of forged joins can consume router resources and      result in denial of service.   -  Forging a (*,*,RP) join presents a possibility for a denial-of-      service attack by causing all traffic in the domain to flow to the      PMBR issuing the join.  (*,*,RP) behavior is included here      primarily for backwards compatibility with prior revisions of the      spec.  However, the implementation of (*,*,RP) and PMBR is      optional.  When using (*,*,RP), the security concerns should be      carefully considered.7.  Acknowledgements   PIM-SM was designed over many years by a large group of people,   including ideas, comments, and corrections from Deborah Estrin, Dino   Farinacci, Ahmed Helmy, David Thaler, Steve Deering, Van Jacobson, C.   Liu, Puneet Sharma, Liming Wei, Tom Pusateri, Tony Ballardie, Scott   Brim, Jon Crowcroft, Paul Francis, Joel Halpern, Horst Hodel, Polly   Huang, Stephen Ostrowski, Lixia Zhang, Girish Chandranmenon, Brian   Haberman, Hal Sandick, Mike Mroz, Garry Kump, Pavlin Radoslavov, Mike   Davison, James Huang, Christopher Thomas Brown, and James Lingard.   Thanks are due to the American Licorice Company, for its obscure but   possibly essential role in the creation of this document.Fenner, et al.              Standards Track                   [Page 140]

RFC 4601                  PIM-SM Specification               August 20068.  Normative References   [1]  Bradner, S., "Key words for use in RFCs to Indicate Requirement        Levels",BCP 14,RFC 2119, March 1997.   [2]  Cain, B., Deering, S., Kouvelas, I., Fenner, B., and A.        Thyagarajan, "Internet Group Management Protocol, Version 3",RFC 3376, October 2002.   [3]  Deering, S., "Host extensions for IP multicasting", STD 5,RFC1112, August 1989.   [4]  Deering, S., Fenner, W., and B. Haberman, "Multicast Listener        Discovery (MLD) for IPv6",RFC 2710, October 1999.   [5]  Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6)        Specification",RFC 2460, December 1998.   [6]  Holbrook, H. and B. Cain, "Source-Specific Multicast for IP",RFC 4507, August 2006.   [7]  IANA, "Address Family Numbers",        <http://www.iana.org/assignments/address-family-numbers>.   [8]  Kent, S. and K. Seo, "Security Architecture for the Internet        Protocol",RFC 4301, December 2005.   [9]  Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA        Considerations Section in RFCs",BCP 26,RFC 2434, October 1998.9.  Informative References   [10] Bates, T., Rekhter, Y., Chandra, R., and D. Katz, "Multiprotocol        Extensions for BGP-4",RFC 2858, June 2000.   [11] Bhaskar, N., Gall, A., Lingard, J., and S. Venaas, "Bootstrap        Router (BSR) Mechanism for PIM Sparse Mode", Work in Progress,        May 2006.   [12] Black, D., "Differentiated Services and Tunnels",RFC 2983,        October 2000.   [13] Handley, M., Kouvelas, I., Speakman, T., and L. Vicisano, "Bi-        directional Protocol Independent Multicast", Work in Progress,        October 2005.   [14] Kaufman, C., "Internet Key Exchange (IKEv2) Protocol",RFC 4306,        December 2005.Fenner, et al.              Standards Track                   [Page 141]

RFC 4601                  PIM-SM Specification               August 2006   [15] Savola, P., Lehtonen, R., and D. Meyer, "Protocol Independent        Multicast - Sparse Mode (PIM-SM) Multicast Routing Security        Issues and Enhancements",RFC 4609, August 2006.   [16] Savola, P. and J. Lingard, "Last-hop Threats to Protocol        Independent Multicast (PIM)", Work in Progress, January 2005.   [17] Savola, P. and B. Haberman, "Embedding the Rendezvous Point (RP)        Address in an IPv6 Multicast Address",RFC 3956, November 2004.   [18] Thaler, D., "Interoperability Rules for Multicast Routing        Protocols",RFC 2715, October 1999.Fenner, et al.              Standards Track                   [Page 142]

RFC 4601                  PIM-SM Specification               August 2006Appendix A.  PIM Multicast Border Router Behavior   In some cases, PIM-SM domains will interconnect with non-PIM   multicast domains.  In these cases, the border routers of the PIM   domain speak PIM-SM on some interfaces and speak other multicast   routing protocols on other interfaces.  Such routers are termed PIM   Multicast Border Routers (PMBRs).  In general,RFC 2715 [18] provides   rules for interoperability between different multicast routing   protocols.  In this appendix, we specify how PMBRs differ from   regular PIM-SM routers.   From the point of view of PIM-SM, a PMBR has two tasks:   o To ensure that traffic from sources outside the PIM-SM domain     reaches receivers inside the domain.   o To ensure that traffic from sources inside the PIM-SM domain     reaches receivers outside the domain.   We note that multiple PIM-SM domains are sometimes connected together   using protocols such as Multicast Source Discovery Protocol (MSDP),   which provides information about active external sources, but does   not followRFC 2715.  In such cases, the domains are not connected   via PMBRs because Join(S,G) messages traverse the border between   domains.  A PMBR is required when no PIM messages can traverse the   border.A.1.  Sources External to the PIM-SM Domain   A PMBR needs to ensure that traffic from multicast sources external   to the PIM-SM domain reaches receivers inside the domain.  The PMBR   will follow the rules inRFC 2715, such that traffic from external   sources reaches the PMBR itself.   According toRFC 2715, the PIM-SM component of the PMBR will receive   an (S,G) Creation event when data from an (S,G) data packet from an   external source first reaches the PMBR.  If RPF_interface(S) is an   interface in the PIM-SM domain, the packet cannot be originated into   the PIM domain at this router, and the PIM-SM component of the PMBR   will not process the packet.  Otherwise, the PMBR will then act   exactly as if it were the DR for this source (seeSection 4.4.1),   with the following modifications:   o The Border-bit is set in all PIM Register messages sent for these     sources.   o DirectlyConnected(S) is treated as being TRUE for these sources.Fenner, et al.              Standards Track                   [Page 143]

RFC 4601                  PIM-SM Specification               August 2006   o The PIM-SM forwarding rule "iif == RPF_interface(S)" is relaxed to     be TRUE if iif is any interface that is not part of the PIM-SM     component of the PMBR (seeSection 4.2).A.2.  Sources Internal to the PIM-SM Domain   A PMBR needs to ensure that traffic from sources inside the PIM-SM   domain reaches receivers outside the domain.  Using terminology fromRFC 2715, there are two possible scenarios for this:   o Another component of the PMBR is a wildcard receiver.  In this     case, the PIM-SM component of the PMBR must ensure that traffic     from all internal sources reaches the PMBR until it is informed     otherwise.     Note that certain profiles of PIM-SM (e.g., PIM-SSM, PIM-SM with     Embedded RP) cannot interoperate with a neighboring wildcard     receiver domain.   o No other component of the PMBR is a wildcard receiver.  In this     case the PMBR will receive explicit information as to which groups     or (source,group) pairs the external domains wish to receive.   In the former case, the PMBR will need to send a Join(*,*,RP) to all   the active RPs in the PIM-SM domain.  It may also send a Join(*,*,RP)   to all the candidate RPs in the PIM-SM domain.  This will cause all   traffic in the domain to reach the PMBR.  The PMBR may then act as if   it were a DR with directly connected receivers and trigger the   transition to a shortest path tree (seeSection 4.2.1).   In the latter case, the PMBR will not need to send Join(*,*,RP)   messages.  However, the PMBR will still need to act as a DR with   directly connected receivers on behalf of the external receivers in   terms of being able to switch to the shortest-path tree for   internally-reached sources.   According toRFC 2715, the PIM-SM component of the PMBR may receive a   number of alerts generated by events in the external routing   components.  To implement the above behavior, one reasonable way to   map these alerts into PIM-SM state is as follows:   o When a PIM-SM component receives an (S,G) Prune alert, it sets     local_receiver_include(S,G,I) to FALSE for the discard interface.   o When a PIM-SM component receives a (*,G) Prune alert, it sets     local_receiver_include(*,G,I) to FALSE for the discard interface.Fenner, et al.              Standards Track                   [Page 144]

RFC 4601                  PIM-SM Specification               August 2006   o When a PIM-SM component receives an (S,G) Join alert, it sets     local_receiver_include(S,G,I) to TRUE for the discard interface.   o When a PIM-SM component receives a (*,G) Join alert, it sets     local_receiver_include(*,G,I) to TRUE for the discard interface.   o When a PIM-SM component receives a (*,*) Join alert, it sets     DownstreamJPState(*,*,RP,I) to Join state on the discard interface     for all RPs in the PIM-SM domain.   o When a PIM-SM component receives a (*,*) Prune alert, it sets     DownstreamJPState(*,*,RP,I) to NoInfo state on the discard     interface for all RPs in the PIM-SM domain.   We refer above to the discard interface because the macros and state   machines are interface specific, but we need to have PIM state that   is not associated with any actual PIM-SM interface.  Implementers are   free to implement this in any reasonable manner.   Note that these state changes will then cause additional PIM-SM state   machine transitions in the normal way.   These rules are, however, not sufficient to allow pruning off the   (*,*,RP) tree.  Some additional rules provide guidance as to one way   this may be done:   o If the PMBR has joined on the (*,*,RP) tree, then it should set     DownstreamJPState(*,G,I) to JOIN on the discard interface for all     active groups.   o If the router receives a (S,G) prune alert, it will need to set     DownstreamJPState(S,G,rpt,I) to PRUNE on the discard interface.   o If the router receives a (*,G) prune alert, it will need to set     DownstreamJPState(S,G,rpt,I) to PRUNE on the discard interface for     all active sources sending to G.   The rationale for this is that there is no way in PIM-SM to prune   traffic off the (*,*,RP) tree, except by Joining the (*,G) tree and   then pruning each source individually.Fenner, et al.              Standards Track                   [Page 145]

RFC 4601                  PIM-SM Specification               August 2006Appendix B.  Index   Address_List. . . . . . . . . . . . . . . . . . . . . . . . . . .31   Assert(*,G) . . . . . . . . . . . . . . . . . . . . . . . . . .27,128   Assert(S,G) . . . . . . . . . . . . . . . . . . . . . . . . . .27,128   AssertCancel(*,G) . . . . . . . . . . . . . . . . . . . . . . . 97,99   AssertCancel(S,G) . . . . . . . . . . . . . . . . . . . . . .80,90,99   AssertTimer(*,G,I). . . . . . . . . . . . . . . . . . . .16,24,91,132   AssertTimer(S,G,I). . . . . . . . . . . . . . . . . . . .18,24,84,132   AssertTrackingDesired(*,G,I). . . . . . . . . . . . . . . . .93,94,96   AssertTrackingDesired(S,G,I). . . . . . . . . . . . . . . 85,86,87,89   AssertWinner(*,G,I) . . . . . . . . . . . . . . . .16,22,24,93,97,100   AssertWinner(S,G,I) . . . . . . . . . . . . . .18,22,24,86,90,100,100   AssertWinnerMetric(*,G,I) . . . . . . . . . . . . . . . . . 16,97,101   AssertWinnerMetric(S,G,I) . . . . . . . . . . . . . . . . . 18,90,101   assert_metric . . . . . . . . . . . . . . . . . . . . . . . . . .98   Assert_Override_Interval. . . . . . . . . . . . . . . . . . 90,97,132   Assert_Time . . . . . . . . . . . . . . . . . . . . . . . . 90,97,132   AT(*,G,I) . . . . . . . . . . . . . . . . . . . . . .16,24,91,129,132   AT(S,G,I) . . . . . . . . . . . . . . . . . . . . . .18,24,84,129,132   CheckSwitchToSpt(S,G) . . . . . . . . . . . . . . . . . . . . . 27,28   CouldAssert(*,G,I). . . . . . . . . . . . . . . . . . .92,93,94,95,98   CouldAssert(S,G,I). . . . . . . . . . . . . . . . . 84,86,87,88,89,98   CouldRegister(S,G). . . . . . . . . . . . . . . . . . . . . . . 39,41   Default_Hello_Holdtime. . . . . . . . . . . . . . . . . . . . . .33   DirectlyConnected(S). . . . . . . . . . . . . . . . . 27,27,29,41,143   DownstreamJPState(*,*,RP,I) . . . . . . . . . . . . . . . . . .23,145   DownstreamJPState(*,G,I). . . . . . . . . . . . . . . . . . . . .23   DownstreamJPState(S,G,I). . . . . . . . . . . . . . . . . . . . 23,40   DownstreamJPState(S,G,rpt,I). . . . . . . . . . . . . . . . . . .23   DR(I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33   dr_is_better(a,b,I) . . . . . . . . . . . . . . . . . . . . . . 33,33   DR_Priority . . . . . . . . . . . . . . . . . . . . . . . . .31,32,33   Effective_Override_Interval(I). . . . . . . . . . . . . . .36,114,132   Effective_Propagation_Delay(I). . . . . . . . . . . . . . . . .35,132   ET(*,*,RP,I). . . . . . . . . . . . . . . . . . . . . . 15,46,128,131   ET(*,G,I) . . . . . . . . . . . . . . . . . . . . . . . 16,50,128,131   ET(S,G,I) . . . . . . . . . . . . . . . . . . . . . . . 18,53,129,131   ET(S,G,rpt,I) . . . . . . . . . . . . . . . . . . . .20,57,59,129,131   GenID . . . . . . . . . . . . . . . . . 15,17,19,31,64,68,70,73,85,93   Hash_Function . . . . . . . . . . . . . . . . . . . . . . . . .12,105   Hello_Holdtime. . . . . . . . . . . . . . . . . . . . . . . . .33,131   Hello_Period. . . . . . . . . . . . . . . . . . . . . . . . . .31,130   HT(I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31,130   IGMP. . . . . . . . . . . . . . . . . . . . . . . . 6,8,17,23,101,105   immediate_olist(*,*,RP) . . . . . . . . . . . . . . . . . . . . 22,64   immediate_olist(*,G). . . . . . . . . . . . . . . . . . . . . . 22,68   immediate_olist(S,G). . . . . . . . . . . . . . . . . . . . .22,40,73Fenner, et al.              Standards Track                   [Page 146]

RFC 4601                  PIM-SM Specification               August 2006   infinite_assert_metric(). . . . . . . . . . . . . . . . . . . . .99   inherited_olist(S,G). . . . . . . . . . . . . . 22,27,40,43,73,86,108   inherited_olist(S,G,rpt). . . . . . . . . . . . . . 22,27,29,76,79,81   I_Am_Assert_Loser(*,G,I). . . . . . . . . . . . . . . . . . . . .24   I_Am_Assert_Loser(S,G,I). . . . . . . . . . . . . . . . . . . . .24   I_am_DR(I). . . . . . . . . . . . . . . . . . . . . . .22,33,41,86,93   I_am_RP(G). . . . . . . . . . . . . . . . . . . . . . . . . . . 43,44   J/P_Holdtime. . . . . . . . . . . . .47,51,55,59,65,69,74,121,131,133   J/P_Override_Interval(I). . . . . . . . . . . . . 48,51,55,59,121,132   JoinDesired(*,*,RP) . . . . . . . . . . . . . . . . . . . . . . 64,79   JoinDesired(*,G). . . . . . . . . . . . . . . . . . . .17,68,79,86,97   JoinDesired(S,G). . . . . . . . . . . . . . . . . . 19,29,73,86,88,90   joins(*,*,RP(G)). . . . . . . . . . . . . . . . . . . . . . . . .22   joins(*,*,RP) . . . . . . . . . . . . . . . . . . . . . . 22,23,86,93   joins(*,G). . . . . . . . . . . . . . . . . . . . . . . . 22,23,86,93   joins(S,G). . . . . . . . . . . . . . . . . . . . . . . . . .22,23,86   JT(*,*,RP). . . . . . . . . . . . . . . . . . . . . . . 15,62,129,133   JT(*,G) . . . . . . . . . . . . . . . . . . . . . . . . 16,67,129,133   JT(S,G) . . . . . . . . . . . . . . . . . . . . . . . . 18,71,129,133   KAT(S,G). . . . . . . . . . . . . . .18,26,27,28,41,43,73,108,129,134   KeepaliveTimer(S,G) . . . . . . . 18,26,27,27,28,41,43,73,108,129,134   Keepalive_Period. . . . . . . . . . . . . . . . . . . . . . . .27,134   lan_delay_enabled(I). . . . . . . . . . . . . . . . . . . . . . 35,36   LAN_Prune_Delay . . . . . . . . . . . . . . . . . . . . . . . . .31   local_receiver_exclude(S,G,I) . . . . . . . . . . . . . . . . . .23   local_receiver_include(*,G,I) . . . . . . . . . . . . . . . 23,93,144   local_receiver_include(S,G,I) . . . . . . . . . . . . . . . . . 23,86   local_receiver_include(S,G,I).. . . . . . . . . . . . . . . . . .144   lost_assert(*,G). . . . . . . . . . . . . . . . . . . . . . .22,24,86   lost_assert(*,G,I). . . . . . . . . . . . . . . . . . . . . 22,24,100   lost_assert(S,G). . . . . . . . . . . . . . . . . . . . . . . . 22,24   lost_assert(S,G,I). . . . . . . . . . . . . . . . . . . . . 22,24,100   lost_assert(S,G,rpt). . . . . . . . . . . . . . . . . . . . . . .24   lost_assert(S,G,rpt,I). . . . . . . . . . . . . . . . . . . . .24,100   MBGP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6,7   MFIB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6,13   MLD . . . . . . . . . . . . . . . . . . . . . . . . 6,8,17,23,101,105   MRIB. . . . . . . . . . . . . .6,7,11,15,19,25,62,66,66,75,98,103,128   MRIB.next_hop(host) . . . . . . . . . . . . . . . . . . . 24,25,62,64   my_assert_metric(*,G,I) . . . . . . . . . . . . . . . . . . . . .94   my_assert_metric(S,G,I) . . . . . . . . . . . . . . . . . 85,89,92,98   NBR(Interface,IP_address) . . . . . . . . . . . . . . .25,37,62,64,66   NLT(N,I). . . . . . . . . . . . . . . . . . . . . . . . 14,33,128,131   OT(S,G,rpt) . . . . . . . . . . . . . . . . . . . . . . 20,77,129,134   Override_Interval(I). . . . . . . . . . . . . 14,31,34,36,114,130,132   packet_arrives_on_rp_tunnel(pkt). . . . . . . . . . . . . . . . .43   pim_exclude(S,G). . . . . . . . . . . . . . . . . . . . . 22,22,28,86   pim_include(*,G). . . . . . . . . . . . . . . . . . 17,22,22,28,86,93Fenner, et al.              Standards Track                   [Page 147]

RFC 4601                  PIM-SM Specification               August 2006   pim_include(S,G). . . . . . . . . . . . . . . . . . . .19,22,22,28,86   PPT(*,*,RP,I) . . . . . . . . . . . . . . . . . . . . . 15,46,128,132   PPT(*,G,I). . . . . . . . . . . . . . . . . . . . . . . 16,50,129,132   PPT(S,G,I). . . . . . . . . . . . . . . . . . . . . . . 18,53,129,132   PPT(S,G,rpt,I). . . . . . . . . . . . . . . . . . . .20,57,59,129,132   Propagation_Delay(I). . . . . . . . . . . . . . . . . . 31,35,130,132   Propagation_delay_default . . . . . . . . . . . . . . . . . . .35,130   PruneDesired(S,G,rpt) . . . . . . . . . . . . . . . . . . 79,80,88,90   prunes(S,G,rpt) . . . . . . . . . . . . . . . . . . . . . . .22,23,86   Register-Stop(*,G). . . . . . . . . . . . . . . . . . . . . . . .42   Register-Stop(S,G). . . . . . . . . . . . . . . . . . . . . . . .43   Register-StopTimer(S,G) . . . . . . . . . . . . . . . . 38,39,129,135   Register_Probe_Time . . . . . . . . . . . . . . . . . . . . 39,44,135   Register_Suppression_Time . . . . . . . . . . . . . . . . . 39,44,135   RP(G) . . . . . . . . . . . . 5,22,24,40,43,49,68,77,86,93,99,102,128   RPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6   RPF'(*,G) . . . . . . . . . . . . . . . . 24,29,67,68,70,76,79,97,101   RPF'(S,G) . . . . . . . . . . . . . . . . . . . 25,29,71,76,79,90,101   RPF'(S,G,rpt) . . . . . . . . . . . . . . . . . . . . . .24,76,79,102   RPF_interface . . . . . . . . . . . . . . . . . . . . . . . . . .93   RPF_interface(host) . . . . . .24,27,29,41,68,69,74,86,93,100,108,143   RPTJoinDesired(G) . . . . . . . . . . . . . . . . . . . . . .79,81,93   rpt_assert_metric(G,I). . . . . . . . . . . . . . . . . . . .96,97,99   RST(S,G). . . . . . . . . . . . . . . . . . . . . . . . 38,39,129,135   SPTbit(S,G) . . . . . . . 19,27,29,43,53,74,76,79,86,86,89,90,100,108   spt_assert_metric(S,I). . . . . . . . . . . . . . . . . . . 90,98,100   SSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10,106   Suppression_Enabled(I). . . . . . . . . . . . . . . . . . . . .36,133   SwitchToSptDesired(S,G) . . . . . . . . . . . . . . . . . . .28,28,43   TIB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6,13,26   Triggered_Hello_Delay . . . . . . . . . . . . . . . . . . . 31,32,130   t_joinsuppress. . . . . . . . . . . . . . . . . . . . .64,65,68,69,74   t_override. . . . . . . . . . . . . . . . . . . . 64,68,73,78,133,134   t_override_default. . . . . . . . . . . . . . . . . . . . . . .36,130   t_periodic. . . . . . . . . . . . . . . . . . . . . . . .64,68,73,133   t_suppressed. . . . . . . . . . . . . . . . . . . .36,65,69,73,74,133   Update_SPTbit(S,G,iif). . . . . . . . . . . . . . . . . . . . . 27,29   UpstreamJPState(S,G). . . . . . . . . . . . . . . . . . . . . .27,108Fenner, et al.              Standards Track                   [Page 148]

RFC 4601                  PIM-SM Specification               August 2006Authors' Addresses   Bill Fenner   AT&T Labs - Research   1 River Oaks Place   San Jose, CA 95134   EMail: fenner@research.att.com   Mark Handley   Department of Computer Science   University College London   Gower Street   London WC1E 6BT   United Kingdom   EMail: M.Handley@cs.ucl.ac.uk   Hugh Holbrook   Arastra, Inc.   P.O. Box 10905   Palo Alto, CA 94303   EMail: holbrook@arastra.com   Isidor Kouvelas   Cisco Systems   170 W. Tasman Drive   San Jose, CA 95134   EMail: kouvelas@cisco.comFenner, et al.              Standards Track                   [Page 149]

RFC 4601                  PIM-SM Specification               August 2006Full Copyright Statement   Copyright (C) The Internet Society (2006).   This document is subject to the rights, licenses and restrictions   contained inBCP 78, and except as set forth therein, the authors   retain all their rights.   This document and the information contained herein are provided on an   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET   ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,   INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE   INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.Intellectual Property   The IETF takes no position regarding the validity or scope of any   Intellectual Property Rights or other rights that might be claimed to   pertain to the implementation or use of the technology described in   this document or the extent to which any license under such rights   might or might not be available; nor does it represent that it has   made any independent effort to identify any such rights.  Information   on the procedures with respect to rights in RFC documents can be   found inBCP 78 andBCP 79.   Copies of IPR disclosures made to the IETF Secretariat and any   assurances of licenses to be made available, or the result of an   attempt made to obtain a general license or permission for the use of   such proprietary rights by implementers or users of this   specification can be obtained from the IETF on-line IPR repository athttp://www.ietf.org/ipr.   The IETF invites any interested party to bring to its attention any   copyrights, patents or patent applications, or other proprietary   rights that may cover technology that may be required to implement   this standard.  Please address the information to the IETF at   ietf-ipr@ietf.org.Acknowledgement   Funding for the RFC Editor function is provided by the IETF   Administrative Support Activity (IASA).Fenner, et al.              Standards Track                   [Page 150]

[8]ページ先頭

©2009-2025 Movatter.jp