Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Info page]

INFORMATIONAL
Network Working Group                                          M. MatsuiRequest for Comments: 3713                                   J. NakajimaCategory: Informational                  Mitsubishi Electric Corporation                                                               S. Moriai                                        Sony Computer Entertainment Inc.                                                              April 2004A Description of the Camellia Encryption AlgorithmStatus of this Memo   This memo provides information for the Internet community.  It does   not specify an Internet standard of any kind.  Distribution of this   memo is unlimited.Copyright Notice   Copyright (C) The Internet Society (2004).  All Rights Reserved.Abstract   This document describes the Camellia encryption algorithm.  Camellia   is a block cipher with 128-bit block size and 128-, 192-, and 256-bit   keys.  The algorithm description is presented together with key   scheduling part and data randomizing part.1.  Introduction1.1.  Camellia   Camellia was jointly developed by Nippon Telegraph and Telephone   Corporation and Mitsubishi Electric Corporation in 2000   [CamelliaSpec].  Camellia specifies the 128-bit block size and 128-,   192-, and 256-bit key sizes, the same interface as the Advanced   Encryption Standard (AES).  Camellia is characterized by its   suitability for both software and hardware implementations as well as   its high level of security.  From a practical viewpoint, it is   designed to enable flexibility in software and hardware   implementations on 32-bit processors widely used over the Internet   and many applications, 8-bit processors used in smart cards,   cryptographic hardware, embedded systems, and so on [CamelliaTech].   Moreover, its key setup time is excellent, and its key agility is   superior to that of AES.Matsui, et al.               Informational                      [Page 1]

RFC 3713             Camellia Encryption Algorithm            April 2004   Camellia has been scrutinized by the wide cryptographic community   during several projects for evaluating crypto algorithms.  In   particular, Camellia was selected as a recommended cryptographic   primitive by the EU NESSIE (New European Schemes for Signatures,   Integrity and Encryption) project [NESSIE] and also included in the   list of cryptographic techniques for Japanese e-Government systems   which were selected by the Japan CRYPTREC (Cryptography Research and   Evaluation Committees) [CRYPTREC].2.  Algorithm Description   Camellia can be divided into "key scheduling part" and "data   randomizing part".2.1.  Terminology   The following operators are used in this document to describe the   algorithm.      &    bitwise AND operation.      |    bitwise OR operation.      ^    bitwise exclusive-OR operation.      <<   logical left shift operation.      >>   logical right shift operation.      <<<  left rotation operation.      ~y   bitwise complement of y.      0x   hexadecimal representation.   Note that the logical left shift operation is done with the infinite   data width.   The constant values of MASK8, MASK32, MASK64, and MASK128 are defined   as follows.      MASK8   = 0xff;      MASK32  = 0xffffffff;      MASK64  = 0xffffffffffffffff;      MASK128 = 0xffffffffffffffffffffffffffffffff;2.2.  Key Scheduling Part   In the key schedule part of Camellia, the 128-bit variables of KL and   KR are defined as follows.  For 128-bit keys, the 128-bit key K is   used as KL and KR is 0.  For 192-bit keys, the leftmost 128-bits of   key K are used as KL and the concatenation of the rightmost 64-bits   of K and the complement of the rightmost 64-bits of K are used as KR.   For 256-bit keys, the leftmost 128-bits of key K are used as KL and   the rightmost 128-bits of K are used as KR.Matsui, et al.               Informational                      [Page 2]

RFC 3713             Camellia Encryption Algorithm            April 2004   128-bit key K:       KL = K;    KR = 0;   192-bit key K:       KL = K >> 64;       KR = ((K & MASK64) << 64) | (~(K & MASK64));   256-bit key K:       KL = K >> 128;       KR = K & MASK128;   The 128-bit variables KA and KB are generated from KL and KR as   follows.  Note that KB is used only if the length of the secret key   is 192 or 256 bits.  D1 and D2 are 64-bit temporary variables.  F-   function is described inSection 2.4.   D1 = (KL ^ KR) >> 64;   D2 = (KL ^ KR) & MASK64;   D2 = D2 ^ F(D1, Sigma1);   D1 = D1 ^ F(D2, Sigma2);   D1 = D1 ^ (KL >> 64);   D2 = D2 ^ (KL & MASK64);   D2 = D2 ^ F(D1, Sigma3);   D1 = D1 ^ F(D2, Sigma4);   KA = (D1 << 64) | D2;   D1 = (KA ^ KR) >> 64;   D2 = (KA ^ KR) & MASK64;   D2 = D2 ^ F(D1, Sigma5);   D1 = D1 ^ F(D2, Sigma6);   KB = (D1 << 64) | D2;   The 64-bit constants Sigma1, Sigma2, ..., Sigma6 are used as "keys"   in the F-function.  These constant values are, in hexadecimal   notation, as follows.   Sigma1 = 0xA09E667F3BCC908B;   Sigma2 = 0xB67AE8584CAA73B2;   Sigma3 = 0xC6EF372FE94F82BE;   Sigma4 = 0x54FF53A5F1D36F1C;   Sigma5 = 0x10E527FADE682D1D;   Sigma6 = 0xB05688C2B3E6C1FD;   64-bit subkeys are generated by rotating KL, KR, KA, and KB and   taking the left- or right-half of them.Matsui, et al.               Informational                      [Page 3]

RFC 3713             Camellia Encryption Algorithm            April 2004   For 128-bit keys, 64-bit subkeys kw1, ..., kw4, k1, ..., k18,   ke1, ..., ke4 are generated as follows.   kw1 = (KL <<<   0) >> 64;   kw2 = (KL <<<   0) & MASK64;   k1  = (KA <<<   0) >> 64;   k2  = (KA <<<   0) & MASK64;   k3  = (KL <<<  15) >> 64;   k4  = (KL <<<  15) & MASK64;   k5  = (KA <<<  15) >> 64;   k6  = (KA <<<  15) & MASK64;   ke1 = (KA <<<  30) >> 64;   ke2 = (KA <<<  30) & MASK64;   k7  = (KL <<<  45) >> 64;   k8  = (KL <<<  45) & MASK64;   k9  = (KA <<<  45) >> 64;   k10 = (KL <<<  60) & MASK64;   k11 = (KA <<<  60) >> 64;   k12 = (KA <<<  60) & MASK64;   ke3 = (KL <<<  77) >> 64;   ke4 = (KL <<<  77) & MASK64;   k13 = (KL <<<  94) >> 64;   k14 = (KL <<<  94) & MASK64;   k15 = (KA <<<  94) >> 64;   k16 = (KA <<<  94) & MASK64;   k17 = (KL <<< 111) >> 64;   k18 = (KL <<< 111) & MASK64;   kw3 = (KA <<< 111) >> 64;   kw4 = (KA <<< 111) & MASK64;   For 192- and 256-bit keys, 64-bit subkeys kw1, ..., kw4, k1, ...,   k24, ke1, ..., ke6 are generated as follows.   kw1 = (KL <<<   0) >> 64;   kw2 = (KL <<<   0) & MASK64;   k1  = (KB <<<   0) >> 64;   k2  = (KB <<<   0) & MASK64;   k3  = (KR <<<  15) >> 64;   k4  = (KR <<<  15) & MASK64;   k5  = (KA <<<  15) >> 64;   k6  = (KA <<<  15) & MASK64;   ke1 = (KR <<<  30) >> 64;   ke2 = (KR <<<  30) & MASK64;   k7  = (KB <<<  30) >> 64;   k8  = (KB <<<  30) & MASK64;   k9  = (KL <<<  45) >> 64;   k10 = (KL <<<  45) & MASK64;   k11 = (KA <<<  45) >> 64;Matsui, et al.               Informational                      [Page 4]

RFC 3713             Camellia Encryption Algorithm            April 2004   k12 = (KA <<<  45) & MASK64;   ke3 = (KL <<<  60) >> 64;   ke4 = (KL <<<  60) & MASK64;   k13 = (KR <<<  60) >> 64;   k14 = (KR <<<  60) & MASK64;   k15 = (KB <<<  60) >> 64;   k16 = (KB <<<  60) & MASK64;   k17 = (KL <<<  77) >> 64;   k18 = (KL <<<  77) & MASK64;   ke5 = (KA <<<  77) >> 64;   ke6 = (KA <<<  77) & MASK64;   k19 = (KR <<<  94) >> 64;   k20 = (KR <<<  94) & MASK64;   k21 = (KA <<<  94) >> 64;   k22 = (KA <<<  94) & MASK64;   k23 = (KL <<< 111) >> 64;   k24 = (KL <<< 111) & MASK64;   kw3 = (KB <<< 111) >> 64;   kw4 = (KB <<< 111) & MASK64;2.3.  Data Randomizing Part2.3.1.  Encryption for 128-bit keys   128-bit plaintext M is divided into the left 64-bit D1 and the right   64-bit D2.   D1 = M >> 64;   D2 = M & MASK64;   Encryption is performed using an 18-round Feistel structure with FL-   and FLINV-functions inserted every 6 rounds. F-function, FL-function,   and FLINV-function are described inSection 2.4.   D1 = D1 ^ kw1;           // Prewhitening   D2 = D2 ^ kw2;   D2 = D2 ^ F(D1, k1);     // Round 1   D1 = D1 ^ F(D2, k2);     // Round 2   D2 = D2 ^ F(D1, k3);     // Round 3   D1 = D1 ^ F(D2, k4);     // Round 4   D2 = D2 ^ F(D1, k5);     // Round 5   D1 = D1 ^ F(D2, k6);     // Round 6   D1 = FL   (D1, ke1);     // FL   D2 = FLINV(D2, ke2);     // FLINV   D2 = D2 ^ F(D1, k7);     // Round 7   D1 = D1 ^ F(D2, k8);     // Round 8   D2 = D2 ^ F(D1, k9);     // Round 9   D1 = D1 ^ F(D2, k10);    // Round 10Matsui, et al.               Informational                      [Page 5]

RFC 3713             Camellia Encryption Algorithm            April 2004   D2 = D2 ^ F(D1, k11);    // Round 11   D1 = D1 ^ F(D2, k12);    // Round 12   D1 = FL   (D1, ke3);     // FL   D2 = FLINV(D2, ke4);     // FLINV   D2 = D2 ^ F(D1, k13);    // Round 13   D1 = D1 ^ F(D2, k14);    // Round 14   D2 = D2 ^ F(D1, k15);    // Round 15   D1 = D1 ^ F(D2, k16);    // Round 16   D2 = D2 ^ F(D1, k17);    // Round 17   D1 = D1 ^ F(D2, k18);    // Round 18   D2 = D2 ^ kw3;           // Postwhitening   D1 = D1 ^ kw4;   128-bit ciphertext C is constructed from D1 and D2 as follows.   C = (D2 << 64) | D1;2.3.2.  Encryption for 192- and 256-bit keys   128-bit plaintext M is divided into the left 64-bit D1 and the right   64-bit D2.   D1 = M >> 64;   D2 = M & MASK64;   Encryption is performed using a 24-round Feistel structure with FL-   and FLINV-functions inserted every 6 rounds. F-function, FL-function,   and FLINV-function are described inSection 2.4.   D1 = D1 ^ kw1;           // Prewhitening   D2 = D2 ^ kw2;   D2 = D2 ^ F(D1, k1);     // Round 1   D1 = D1 ^ F(D2, k2);     // Round 2   D2 = D2 ^ F(D1, k3);     // Round 3   D1 = D1 ^ F(D2, k4);     // Round 4   D2 = D2 ^ F(D1, k5);     // Round 5   D1 = D1 ^ F(D2, k6);     // Round 6   D1 = FL   (D1, ke1);     // FL   D2 = FLINV(D2, ke2);     // FLINV   D2 = D2 ^ F(D1, k7);     // Round 7   D1 = D1 ^ F(D2, k8);     // Round 8   D2 = D2 ^ F(D1, k9);     // Round 9   D1 = D1 ^ F(D2, k10);    // Round 10   D2 = D2 ^ F(D1, k11);    // Round 11   D1 = D1 ^ F(D2, k12);    // Round 12   D1 = FL   (D1, ke3);     // FL   D2 = FLINV(D2, ke4);     // FLINV   D2 = D2 ^ F(D1, k13);    // Round 13Matsui, et al.               Informational                      [Page 6]

RFC 3713             Camellia Encryption Algorithm            April 2004   D1 = D1 ^ F(D2, k14);    // Round 14   D2 = D2 ^ F(D1, k15);    // Round 15   D1 = D1 ^ F(D2, k16);    // Round 16   D2 = D2 ^ F(D1, k17);    // Round 17   D1 = D1 ^ F(D2, k18);    // Round 18   D1 = FL   (D1, ke5);     // FL   D2 = FLINV(D2, ke6);     // FLINV   D2 = D2 ^ F(D1, k19);    // Round 19   D1 = D1 ^ F(D2, k20);    // Round 20   D2 = D2 ^ F(D1, k21);    // Round 21   D1 = D1 ^ F(D2, k22);    // Round 22   D2 = D2 ^ F(D1, k23);    // Round 23   D1 = D1 ^ F(D2, k24);    // Round 24   D2 = D2 ^ kw3;           // Postwhitening   D1 = D1 ^ kw4;   128-bit ciphertext C is constructed from D1 and D2 as follows.   C = (D2 << 64) | D1;2.3.3.  Decryption   The decryption procedure of Camellia can be done in the same way as   the encryption procedure by reversing the order of the subkeys.   That is to say:   128-bit key:       kw1 <-> kw3       kw2 <-> kw4       k1  <-> k18       k2  <-> k17       k3  <-> k16       k4  <-> k15       k5  <-> k14       k6  <-> k13       k7  <-> k12       k8  <-> k11       k9  <-> k10       ke1 <-> ke4       ke2 <-> ke3   192- or 256-bit key:       kw1 <-> kw3       kw2 <-> kw4       k1  <-> k24       k2  <-> k23       k3  <-> k22Matsui, et al.               Informational                      [Page 7]

RFC 3713             Camellia Encryption Algorithm            April 2004       k4  <-> k21       k5  <-> k20       k6  <-> k19       k7  <-> k18       k8  <-> k17       k9  <-> k16       k10 <-> k15       k11 <-> k14       k12 <-> k13       ke1 <-> ke6       ke2 <-> ke5       ke3 <-> ke42.4.  Components of Camellia2.4.1.  F-function   F-function takes two parameters.  One is 64-bit input data F_IN.  The   other is 64-bit subkey KE.  F-function returns 64-bit data F_OUT.   F(F_IN, KE)   begin       var x as 64-bit unsigned integer;       var t1, t2, t3, t4, t5, t6, t7, t8 as 8-bit unsigned integer;       var y1, y2, y3, y4, y5, y6, y7, y8 as 8-bit unsigned integer;       x  = F_IN ^ KE;       t1 =  x >> 56;       t2 = (x >> 48) & MASK8;       t3 = (x >> 40) & MASK8;       t4 = (x >> 32) & MASK8;       t5 = (x >> 24) & MASK8;       t6 = (x >> 16) & MASK8;       t7 = (x >>  8) & MASK8;       t8 =  x        & MASK8;       t1 = SBOX1[t1];       t2 = SBOX2[t2];       t3 = SBOX3[t3];       t4 = SBOX4[t4];       t5 = SBOX2[t5];       t6 = SBOX3[t6];       t7 = SBOX4[t7];       t8 = SBOX1[t8];       y1 = t1 ^ t3 ^ t4 ^ t6 ^ t7 ^ t8;       y2 = t1 ^ t2 ^ t4 ^ t5 ^ t7 ^ t8;       y3 = t1 ^ t2 ^ t3 ^ t5 ^ t6 ^ t8;       y4 = t2 ^ t3 ^ t4 ^ t5 ^ t6 ^ t7;       y5 = t1 ^ t2 ^ t6 ^ t7 ^ t8;       y6 = t2 ^ t3 ^ t5 ^ t7 ^ t8;Matsui, et al.               Informational                      [Page 8]

RFC 3713             Camellia Encryption Algorithm            April 2004       y7 = t3 ^ t4 ^ t5 ^ t6 ^ t8;       y8 = t1 ^ t4 ^ t5 ^ t6 ^ t7;       F_OUT = (y1 << 56) | (y2 << 48) | (y3 << 40) | (y4 << 32)       | (y5 << 24) | (y6 << 16) | (y7 <<  8) | y8;       return FO_OUT;   end.   SBOX1, SBOX2, SBOX3, and SBOX4 are lookup tables with 8-bit input/   output data.  SBOX2, SBOX3, and SBOX4 are defined using SBOX1 as   follows:       SBOX2[x] = SBOX1[x] <<< 1;       SBOX3[x] = SBOX1[x] <<< 7;       SBOX4[x] = SBOX1[x <<< 1];   SBOX1 is defined by the following table.  For example, SBOX1[0x3d]   equals 86.   SBOX1:         0   1   2   3   4   5   6   7   8   9   a   b   c   d   e   f   00: 112 130  44 236 179  39 192 229 228 133  87  53 234  12 174  65   10:  35 239 107 147  69  25 165  33 237  14  79  78  29 101 146 189   20: 134 184 175 143 124 235  31 206  62  48 220  95  94 197  11  26   30: 166 225  57 202 213  71  93  61 217   1  90 214  81  86 108  77   40: 139  13 154 102 251 204 176  45 116  18  43  32 240 177 132 153   50: 223  76 203 194  52 126 118   5 109 183 169  49 209  23   4 215   60:  20  88  58  97 222  27  17  28  50  15 156  22  83  24 242  34   70: 254  68 207 178 195 181 122 145  36   8 232 168  96 252 105  80   80: 170 208 160 125 161 137  98 151  84  91  30 149 224 255 100 210   90:  16 196   0  72 163 247 117 219 138   3 230 218   9  63 221 148   a0: 135  92 131   2 205  74 144  51 115 103 246 243 157 127 191 226   b0:  82 155 216  38 200  55 198  59 129 150 111  75  19 190  99  46   c0: 233 121 167 140 159 110 188 142  41 245 249 182  47 253 180  89   d0: 120 152   6 106 231  70 113 186 212  37 171  66 136 162 141 250   e0: 114   7 185  85 248 238 172  10  54  73  42 104  60  56 241 164   f0:  64  40 211 123 187 201  67 193  21 227 173 244 119 199 128 1582.4.2.  FL- and FLINV-functions   FL-function takes two parameters.  One is 64-bit input data FL_IN.   The other is 64-bit subkey KE.  FL-function returns 64-bit data   FL_OUT.   FL(FL_IN, KE)   begin       var x1, x2 as 32-bit unsigned integer;       var k1, k2 as 32-bit unsigned integer;       x1 = FL_IN >> 32;Matsui, et al.               Informational                      [Page 9]

RFC 3713             Camellia Encryption Algorithm            April 2004       x2 = FL_IN & MASK32;       k1 = KE >> 32;       k2 = KE & MASK32;       x2 = x2 ^ ((x1 & k1) <<< 1);       x1 = x1 ^ (x2 | k2);       FL_OUT = (x1 << 32) | x2;   end.   FLINV-function is the inverse function of the FL-function.   FLINV(FLINV_IN, KE)   begin       var y1, y2 as 32-bit unsigned integer;       var k1, k2 as 32-bit unsigned integer;       y1 = FLINV_IN >> 32;       y2 = FLINV_IN & MASK32;       k1 = KE >> 32;       k2 = KE & MASK32;       y1 = y1 ^ (y2 | k2);       y2 = y2 ^ ((y1 & k1) <<< 1);       FLINV_OUT = (y1 << 32) | y2;   end.3.  Object Identifiers   The Object Identifier for Camellia with 128-bit key in Cipher Block   Chaining (CBC) mode is as follows:      id-camellia128-cbc OBJECT IDENTIFIER ::=          { iso(1) member-body(2) 392 200011 61 security(1)            algorithm(1) symmetric-encryption-algorithm(1)            camellia128-cbc(2) }   The Object Identifier for Camellia with 192-bit key in Cipher Block   Chaining (CBC) mode is as follows:      id-camellia192-cbc OBJECT IDENTIFIER ::=          { iso(1) member-body(2) 392 200011 61 security(1)            algorithm(1) symmetric-encryption-algorithm(1)            camellia192-cbc(3) }   The Object Identifier for Camellia with 256-bit key in Cipher Block   Chaining (CBC) mode is as follows:      id-camellia256-cbc OBJECT IDENTIFIER ::=          { iso(1) member-body(2) 392 200011 61 security(1)            algorithm(1) symmetric-encryption-algorithm(1)            camellia256-cbc(4) }Matsui, et al.               Informational                     [Page 10]

RFC 3713             Camellia Encryption Algorithm            April 2004   The above algorithms need Initialization Vector (IV).  To determine   the value of IV, the above algorithms take parameters as follows:      CamelliaCBCParameter ::= CamelliaIV  --  Initialization Vector      CamelliaIV ::= OCTET STRING (SIZE(16))   When these object identifiers are used, plaintext is padded before   encryption according toRFC2315 [RFC2315].4.  Security Considerations   The recent advances in cryptanalytic techniques are remarkable.  A   quantitative evaluation of security against powerful cryptanalytic   techniques such as differential cryptanalysis and linear   cryptanalysis is considered to be essential in designing any new   block cipher.  We evaluated the security of Camellia by utilizing   state-of-the-art cryptanalytic techniques.  We confirmed that   Camellia has no differential and linear characteristics that hold   with probability more than 2^(-128), which means that it is extremely   unlikely that differential and linear attacks will succeed against   the full 18-round Camellia.  Moreover, Camellia was designed to offer   security against other advanced cryptanalytic attacks including   higher order differential attacks, interpolation attacks, related-key   attacks, truncated differential attacks, and so on [Camellia].5.  Informative References   [CamelliaSpec] Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai,                  S., Nakajima, J. and T. Tokita, "Specification of                  Camellia --- a 128-bit Block Cipher".http://info.isl.ntt.co.jp/camellia/   [CamelliaTech] Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai,                  S., Nakajima, J. and T. Tokita, "Camellia: A 128-Bit                  Block Cipher Suitable for Multiple Platforms".http://info.isl.ntt.co.jp/camellia/   [Camellia]     Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai,                  S., Nakajima, J. and T. Tokita, "Camellia: A 128-Bit                  Block Cipher Suitable for Multiple Platforms - Design                  and Analysis -", In Selected Areas in Cryptography,                  7th Annual International Workshop, SAC 2000, Waterloo,                  Ontario, Canada, August 2000, Proceedings, Lecture                  Notes in Computer Science 2012, pp.39-56, Springer-                  Verlag, 2001.Matsui, et al.               Informational                     [Page 11]

RFC 3713             Camellia Encryption Algorithm            April 2004   [CRYPTREC]     "CRYPTREC Advisory Committee Report FY2002", Ministry                  of Public Management, Home Affairs, Posts and                  Telecommunications, and Ministry of Economy, Trade and                  Industry, March 2003.http://www.soumu.go.jp/joho_tsusin/security/cryptrec.html,                  CRYPTREC home page by Information-technology Promotion                  Agency, Japan (IPA)http://www.ipa.go.jp/security/enc/CRYPTREC/index-e.html   [NESSIE]       New European Schemes for Signatures, Integrity and                  Encryption (NESSIE) project.http://www.cryptonessie.org   [RFC2315]      Kaliski, B., "PKCS #7: Cryptographic Message Syntax                  Version 1.5",RFC 2315, March 1998.Matsui, et al.               Informational                     [Page 12]

RFC 3713             Camellia Encryption Algorithm            April 2004Appendix A.  Example Data of Camellia   Here are test data for Camellia in hexadecimal form.   128-bit key       Key       : 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10       Plaintext : 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10       Ciphertext: 67 67 31 38 54 96 69 73 08 57 06 56 48 ea be 43   192-bit key       Key       : 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10                 : 00 11 22 33 44 55 66 77       Plaintext : 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10       Ciphertext: b4 99 34 01 b3 e9 96 f8 4e e5 ce e7 d7 9b 09 b9   256-bit key       Key       : 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10                 : 00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff       Plaintext : 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10       Ciphertext: 9a cc 23 7d ff 16 d7 6c 20 ef 7c 91 9e 3a 75 09Matsui, et al.               Informational                     [Page 13]

RFC 3713             Camellia Encryption Algorithm            April 2004Acknowledgements   Shiho Moriai worked for NTT when this document was developed.Authors' Addresses   Mitsuru Matsui   Mitsubishi Electric Corporation   Information Technology R&D Center   5-1-1 Ofuna, Kamakura   Kanagawa 247-8501, Japan   Phone: +81-467-41-2190   Fax:   +81-467-41-2185   EMail: matsui@iss.isl.melco.co.jp   Junko Nakajima   Mitsubishi Electric Corporation   Information Technology R&D Center   5-1-1 Ofuna, Kamakura   Kanagawa 247-8501, Japan   Phone: +81-467-41-2190   Fax:   +81-467-41-2185   EMail: june15@iss.isl.melco.co.jp   Shiho Moriai   Sony Computer Entertainment Inc.   Phone: +81-3-6438-7523   Fax:   +81-3-6438-8629   EMail: shiho@rd.scei.sony.co.jp          camellia@isl.ntt.co.jp (Camellia team)Matsui, et al.               Informational                     [Page 14]

RFC 3713             Camellia Encryption Algorithm            April 2004Full Copyright Statement   Copyright (C) The Internet Society (2004).  This document is subject   to the rights, licenses and restrictions contained inBCP 78 and   except as set forth therein, the authors retain all their rights.   This document and the information contained herein are provided on an   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE   REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE   INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR   IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF   THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.Intellectual Property   The IETF takes no position regarding the validity or scope of any   Intellectual Property Rights or other rights that might be claimed   to pertain to the implementation or use of the technology   described in this document or the extent to which any license   under such rights might or might not be available; nor does it   represent that it has made any independent effort to identify any   such rights.  Information on the procedures with respect to   rights in RFC documents can be found inBCP 78 andBCP 79.   Copies of IPR disclosures made to the IETF Secretariat and any   assurances of licenses to be made available, or the result of an   attempt made to obtain a general license or permission for the use   of such proprietary rights by implementers or users of this   specification can be obtained from the IETF on-line IPR repository   athttp://www.ietf.org/ipr.   The IETF invites any interested party to bring to its attention   any copyrights, patents or patent applications, or other   proprietary rights that may cover technology that may be required   to implement this standard.  Please address the information to the   IETF at ietf-ipr@ietf.org.Acknowledgement   Funding for the RFC Editor function is currently provided by the   Internet Society.Matsui, et al.               Informational                     [Page 15]

[8]ページ先頭

©2009-2025 Movatter.jp