Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Errata] [Info page]

PROPOSED STANDARD
Updated by:6157,8843,9143Errata Exist
Network Working Group                                       J. RosenbergRequest for Comments: 3264                                   dynamicsoftObsoletes:2543                                           H. SchulzrinneCategory: Standards Track                                    Columbia U.                                                               June 2002An Offer/Answer Model with the Session Description Protocol (SDP)Status of this Memo   This document specifies an Internet standards track protocol for the   Internet community, and requests discussion and suggestions for   improvements.  Please refer to the current edition of the "Internet   Official Protocol Standards" (STD 1) for the standardization state   and status of this protocol.  Distribution of this memo is unlimited.Copyright Notice   Copyright (C) The Internet Society (2002).  All Rights Reserved.Abstract   This document defines a mechanism by which two entities can make use   of the Session Description Protocol (SDP) to arrive at a common view   of a multimedia session between them.  In the model, one participant   offers the other a description of the desired session from their   perspective, and the other participant answers with the desired   session from their perspective.  This offer/answer model is most   useful in unicast sessions where information from both participants   is needed for the complete view of the session.  The offer/answer   model is used by protocols like the Session Initiation Protocol   (SIP).Table of Contents1          Introduction ........................................22          Terminology .........................................33          Definitions .........................................34          Protocol Operation ..................................45          Generating the Initial Offer ........................55.1        Unicast Streams .....................................55.2        Multicast Streams ...................................86          Generating the Answer ...............................96.1        Unicast Streams .....................................96.2        Multicast Streams ...................................127          Offerer Processing of the Answer ....................128          Modifying the Session ...............................13Rosenberg & Schulzrinne     Standards Track                     [Page 1]

RFC 3264  An Offer/Answer Model Session Description Protocol   June 20028.1        Adding a Media Stream ...............................138.2        Removing a Media Stream .............................148.3        Modifying a Media Stream ............................148.3.1      Modifying Address, Port or Transport ................148.3.2      Changing the Set of Media Formats ...................158.3.3      Changing Media Types ................................178.3.4      Changing Attributes .................................178.4        Putting a Unicast Media Stream on Hold ..............179          Indicating Capabilities .............................1810         Example Offer/Answer Exchanges ......................1910.1       Basic Exchange ......................................1910.2       One of N Codec Selection ............................2111         Security Considerations .............................2312         IANA Considerations .................................2313         Acknowledgements ....................................2314         Normative References ................................2315         Informative References ..............................2416         Authors' Addresses ..................................2417         Full Copyright Statement.............................251 Introduction   The Session Description Protocol (SDP) [1] was originally conceived   as a way to describe multicast sessions carried on the Mbone.  The   Session Announcement Protocol (SAP) [6] was devised as a multicast   mechanism to carry SDP messages.  Although the SDP specification   allows for unicast operation, it is not complete.  Unlike multicast,   where there is a global view of the session that is used by all   participants, unicast sessions involve two participants, and a   complete view of the session requires information from both   participants, and agreement on parameters between them.   As an example, a multicast session requires conveying a single   multicast address for a particular media stream.  However, for a   unicast session, two addresses are needed - one for each participant.   As another example, a multicast session requires an indication of   which codecs will be used in the session.  However, for unicast, the   set of codecs needs to be determined by finding an overlap in the set   supported by each participant.   As a result, even though SDP has the expressiveness to describe   unicast sessions, it is missing the semantics and operational details   of how it is actually done.  In this document, we remedy that by   defining a simple offer/answer model based on SDP.  In this model,   one participant in the session generates an SDP message that   constitutes the offer - the set of media streams and codecs the   offerer wishes to use, along with the IP addresses and ports the   offerer would like to use to receive the media.  The offer isRosenberg & Schulzrinne     Standards Track                     [Page 2]

RFC 3264  An Offer/Answer Model Session Description Protocol   June 2002   conveyed to the other participant, called the answerer.  The answerer   generates an answer, which is an SDP message that responds to the   offer provided by the offerer.  The answer has a matching media   stream for each stream in the offer, indicating whether the stream is   accepted or not, along with the codecs that will be used and the IP   addresses and ports that the answerer wants to use to receive media.   It is also possible for a multicast session to work similar to a   unicast one; its parameters are negotiated between a pair of users as   in the unicast case, but both sides send packets to the same   multicast address, rather than unicast ones.  This document also   discusses the application of the offer/answer model to multicast   streams.   We also define guidelines for how the offer/answer model is used to   update a session after an initial offer/answer exchange.   The means by which the offers and answers are conveyed are outside   the scope of this document.  The offer/answer model defined here is   the mandatory baseline mechanism used by the Session Initiation   Protocol (SIP) [7].2 Terminology   In this document, the key words "MUST", "MUST NOT", "REQUIRED",   "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",   and "OPTIONAL" are to be interpreted as described inRFC 2119 [2] and   indicate requirement levels for compliant implementations.3 Definitions   The following terms are used throughout this document:      Agent: An agent is the protocol implementation involved in the         offer/answer exchange.  There are two agents involved in an         offer/answer exchange.      Answer: An SDP message sent by an answerer in response to an offer         received from an offerer.      Answerer: An agent which receives a session description from         another agent describing aspects of desired media         communication, and then responds to that with its own session         description.Rosenberg & Schulzrinne     Standards Track                     [Page 3]

RFC 3264  An Offer/Answer Model Session Description Protocol   June 2002      Media Stream: From RTSP [8], a media stream is a single media         instance, e.g., an audio stream or a video stream as well as a         single whiteboard or shared application group.  In SDP, a media         stream is described by an "m=" line and its associated         attributes.      Offer: An SDP message sent by an offerer.      Offerer: An agent which generates a session description in order         to create or modify a session.4 Protocol Operation   The offer/answer exchange assumes the existence of a higher layer   protocol (such as SIP) which is capable of exchanging SDP for the   purposes of session establishment between agents.   Protocol operation begins when one agent sends an initial offer to   another agent.  An offer is initial if it is outside of any context   that may have already been established through the higher layer   protocol.  It is assumed that the higher layer protocol provides   maintenance of some kind of context which allows the various SDP   exchanges to be associated together.   The agent receiving the offer MAY generate an answer, or it MAY   reject the offer.  The means for rejecting an offer are dependent on   the higher layer protocol.  The offer/answer exchange is atomic; if   the answer is rejected, the session reverts to the state prior to the   offer (which may be absence of a session).   At any time, either agent MAY generate a new offer that updates the   session.  However, it MUST NOT generate a new offer if it has   received an offer which it has not yet answered or rejected.   Furthermore, it MUST NOT generate a new offer if it has generated a   prior offer for which it has not yet received an answer or a   rejection.  If an agent receives an offer after having sent one, but   before receiving an answer to it, this is considered a "glare"   condition.      The term glare was originally used in circuit switched      telecommunications networks to describe the condition where two      switches both attempt to seize the same available circuit on the      same trunk at the same time.  Here, it means both agents have      attempted to send an updated offer at the same time.Rosenberg & Schulzrinne     Standards Track                     [Page 4]

RFC 3264  An Offer/Answer Model Session Description Protocol   June 2002   The higher layer protocol needs to provide a means for resolving such   conditions.  The higher layer protocol will need to provide a means   for ordering of messages in each direction.  SIP meets these   requirements [7].5 Generating the Initial Offer   The offer (and answer) MUST be a valid SDP message, as defined byRFC2327 [1], with one exception.RFC 2327 mandates that either an e or   a p line is present in the SDP message.  This specification relaxes   that constraint; an SDP formulated for an offer/answer application   MAY omit both the e and p lines.  The numeric value of the session id   and version in the o line MUST be representable with a 64 bit signed   integer.  The initial value of the version MUST be less than   (2**62)-1, to avoid rollovers.  Although the SDP specification allows   for multiple session descriptions to be concatenated together into a   large SDP message, an SDP message used in the offer/answer model MUST   contain exactly one session description.   The SDP "s=" line conveys the subject of the session, which is   reasonably defined for multicast, but ill defined for unicast.  For   unicast sessions, it is RECOMMENDED that it consist of a single space   character (0x20) or a dash (-).      Unfortunately, SDP does not allow the "s=" line to be empty.   The SDP "t=" line conveys the time of the session.  Generally,   streams for unicast sessions are created and destroyed through   external signaling means, such as SIP.  In that case, the "t=" line   SHOULD have a value of "0 0".   The offer will contain zero or more media streams (each media stream   is described by an "m=" line and its associated attributes).  Zero   media streams implies that the offerer wishes to communicate, but   that the streams for the session will be added at a later time   through a modified offer.  The streams MAY be for a mix of unicast   and multicast; the latter obviously implies a multicast address in   the relevant "c=" line(s).   Construction of each offered stream depends on whether the stream is   multicast or unicast.5.1 Unicast Streams   If the offerer wishes to only send media on a stream to its peer, it   MUST mark the stream as sendonly with the "a=sendonly" attribute.  We   refer to a stream as being marked with a certain direction if a   direction attribute was present as either a media stream attribute orRosenberg & Schulzrinne     Standards Track                     [Page 5]

RFC 3264  An Offer/Answer Model Session Description Protocol   June 2002   a session attribute.  If the offerer wishes to only receive media   from its peer, it MUST mark the stream as recvonly.  If the offerer   wishes to communicate, but wishes to neither send nor receive media   at this time, it MUST mark the stream with an "a=inactive" attribute.   The inactive direction attribute is specified inRFC 3108 [3].  Note   that in the case of the Real Time Transport Protocol (RTP) [4], RTCP   is still sent and received for sendonly, recvonly, and inactive   streams.  That is, the directionality of the media stream has no   impact on the RTCP usage.  If the offerer wishes to both send and   receive media with its peer, it MAY include an "a=sendrecv"   attribute, or it MAY omit it, since sendrecv is the default.   For recvonly and sendrecv streams, the port number and address in the   offer indicate where the offerer would like to receive the media   stream.  For sendonly RTP streams, the address and port number   indirectly indicate where the offerer wants to receive RTCP reports.   Unless there is an explicit indication otherwise, reports are sent to   the port number one higher than the number indicated.  The IP address   and port present in the offer indicate nothing about the source IP   address and source port of RTP and RTCP packets that will be sent by   the offerer.  A port number of zero in the offer indicates that the   stream is offered but MUST NOT be used.  This has no useful semantics   in an initial offer, but is allowed for reasons of completeness,   since the answer can contain a zero port indicating a rejected stream   (Section 6).  Furthermore, existing streams can be terminated by   setting the port to zero (Section 8).  In general, a port number of   zero indicates that the media stream is not wanted.   The list of media formats for each media stream conveys two pieces of   information, namely the set of formats (codecs and any parameters   associated with the codec, in the case of RTP) that the offerer is   capable of sending and/or receiving (depending on the direction   attributes), and, in the case of RTP, the RTP payload type numbers   used to identify those formats.  If multiple formats are listed, it   means that the offerer is capable of making use of any of those   formats during the session.  In other words, the answerer MAY change   formats in the middle of the session, making use of any of the   formats listed, without sending a new offer.  For a sendonly stream,   the offer SHOULD indicate those formats the offerer is willing to   send for this stream.  For a recvonly stream, the offer SHOULD   indicate those formats the offerer is willing to receive for this   stream.  For a sendrecv stream, the offer SHOULD indicate those   codecs that the offerer is willing to send and receive with.   For recvonly RTP streams, the payload type numbers indicate the value   of the payload type field in RTP packets the offerer is expecting to   receive for that codec.  For sendonly RTP streams, the payload type   numbers indicate the value of the payload type field in RTP packetsRosenberg & Schulzrinne     Standards Track                     [Page 6]

RFC 3264  An Offer/Answer Model Session Description Protocol   June 2002   the offerer is planning to send for that codec.  For sendrecv RTP   streams, the payload type numbers indicate the value of the payload   type field the offerer expects to receive, and would prefer to send.   However, for sendonly and sendrecv streams, the answer might indicate   different payload type numbers for the same codecs, in which case,   the offerer MUST send with the payload type numbers from the answer.      Different payload type numbers may be needed in each direction      because of interoperability concerns with H.323.   As perRFC 2327, fmtp parameters MAY be present to provide additional   parameters of the media format.   In the case of RTP streams, all media descriptions SHOULD contain   "a=rtpmap" mappings from RTP payload types to encodings.  If there is   no "a=rtpmap", the default payload type mapping, as defined by the   current profile in use (for example,RFC 1890 [5]) is to be used.      This allows easier migration away from static payload types.   In all cases, the formats in the "m=" line MUST be listed in order of   preference, with the first format listed being preferred.  In this   case, preferred means that the recipient of the offer SHOULD use the   format with the highest preference that is acceptable to it.   If the ptime attribute is present for a stream, it indicates the   desired packetization interval that the offerer would like to   receive.  The ptime attribute MUST be greater than zero.   If the bandwidth attribute is present for a stream, it indicates the   desired bandwidth that the offerer would like to receive.  A value of   zero is allowed, but discouraged.  It indicates that no media should   be sent.  In the case of RTP, it would also disable all RTCP.   If multiple media streams of different types are present, it means   that the offerer wishes to use those streams at the same time.  A   typical case is an audio and a video stream as part of a   videoconference.   If multiple media streams of the same type are present in an offer,   it means that the offerer wishes to send (and/or receive) multiple   streams of that type at the same time.  When sending multiple streams   of the same type, it is a matter of local policy as to how each media   source of that type (for example, a video camera and VCR in the case   of video) is mapped to each stream.  When a user has a single source   for a particular media type, only one policy makes sense: the source   is sent to each stream of the same type.  Each stream MAY use   different encodings.  When receiving multiple streams of the sameRosenberg & Schulzrinne     Standards Track                     [Page 7]

RFC 3264  An Offer/Answer Model Session Description Protocol   June 2002   type, it is a matter of local policy as to how each stream is mapped   to the various media sinks for that particular type (for example,   speakers or a recording device in the case of audio).  There are a   few constraints on the policies, however.  First, when receiving   multiple streams of the same type, each stream MUST be mapped to at   least one sink for the purpose of presentation to the user.  In other   words, the intent of receiving multiple streams of the same type is   that they should all be presented in parallel, rather than choosing   just one.  Another constraint is that when multiple streams are   received and sent to the same sink, they MUST be combined in some   media specific way.  For example, in the case of two audio streams,   the received media from each might be mapped to the speakers.  In   that case, the combining operation would be to mix them.  In the case   of multiple instant messaging streams, where the sink is the screen,   the combining operation would be to present all of them to the user   interface.  The third constraint is that if multiple sources are   mapped to the same stream, those sources MUST be combined in some   media specific way before they are sent on the stream.  Although   policies beyond these constraints are flexible, an agent won't   generally want a policy that will copy media from its sinks to its   sources unless it is a conference server (i.e., don't copy received   media on one stream to another stream).   A typical usage example for multiple media streams of the same type   is a pre-paid calling card application, where the user can press and   hold the pound ("#") key at any time during a call to hangup and make   a new call on the same card.  This requires media from the user to   two destinations - the remote gateway, and the DTMF processing   application which looks for the pound.  This could be accomplished   with two media streams, one sendrecv to the gateway, and the other   sendonly (from the perspective of the user) to the DTMF application.   Once the offerer has sent the offer, it MUST be prepared to receive   media for any recvonly streams described by that offer.  It MUST be   prepared to send and receive media for any sendrecv streams in the   offer, and send media for any sendonly streams in the offer (of   course, it cannot actually send until the peer provides an answer   with the needed address and port information).  In the case of RTP,   even though it may receive media before the answer arrives, it will   not be able to send RTCP receiver reports until the answer arrives.5.2 Multicast Streams   If a session description contains a multicast media stream which is   listed as receive (send) only, it means that the participants,   including the offerer and answerer, can only receive (send) on that   stream.  This differs from the unicast view, where the directionality   refers to the flow of media between offerer and answerer.Rosenberg & Schulzrinne     Standards Track                     [Page 8]

RFC 3264  An Offer/Answer Model Session Description Protocol   June 2002   Beyond that clarification, the semantics of an offered multicast   stream are exactly as described inRFC 2327 [1].6 Generating the Answer   The answer to an offered session description is based on the offered   session description.  If the answer is different from the offer in   any way (different IP addresses, ports, etc.), the origin line MUST   be different in the answer, since the answer is generated by a   different entity.  In that case, the version number in the "o=" line   of the answer is unrelated to the version number in the o line of the   offer.   For each "m=" line in the offer, there MUST be a corresponding "m="   line in the answer.  The answer MUST contain exactly the same number   of "m=" lines as the offer.  This allows for streams to be matched up   based on their order.  This implies that if the offer contained zero   "m=" lines, the answer MUST contain zero "m=" lines.   The "t=" line in the answer MUST equal that of the offer.  The time   of the session cannot be negotiated.   An offered stream MAY be rejected in the answer, for any reason.  If   a stream is rejected, the offerer and answerer MUST NOT generate   media (or RTCP packets) for that stream.  To reject an offered   stream, the port number in the corresponding stream in the answer   MUST be set to zero.  Any media formats listed are ignored.  At least   one MUST be present, as specified by SDP.   Constructing an answer for each offered stream differs for unicast   and multicast.6.1 Unicast Streams   If a stream is offered with a unicast address, the answer for that   stream MUST contain a unicast address.  The media type of the stream   in the answer MUST match that of the offer.   If a stream is offered as sendonly, the corresponding stream MUST be   marked as recvonly or inactive in the answer.  If a media stream is   listed as recvonly in the offer, the answer MUST be marked as   sendonly or inactive in the answer.  If an offered media stream is   listed as sendrecv (or if there is no direction attribute at the   media or session level, in which case the stream is sendrecv by   default), the corresponding stream in the answer MAY be marked as   sendonly, recvonly, sendrecv, or inactive.  If an offered media   stream is listed as inactive, it MUST be marked as inactive in the   answer.Rosenberg & Schulzrinne     Standards Track                     [Page 9]

RFC 3264  An Offer/Answer Model Session Description Protocol   June 2002   For streams marked as recvonly in the answer, the "m=" line MUST   contain at least one media format the answerer is willing to receive   with from amongst those listed in the offer.  The stream MAY indicate   additional media formats, not listed in the corresponding stream in   the offer, that the answerer is willing to receive.  For streams   marked as sendonly in the answer, the "m=" line MUST contain at least   one media format the answerer is willing to send from amongst those   listed in the offer.  For streams marked as sendrecv in the answer,   the "m=" line MUST contain at least one codec the answerer is willing   to both send and receive, from amongst those listed in the offer.   The stream MAY indicate additional media formats, not listed in the   corresponding stream in the offer, that the answerer is willing to   send or receive (of course, it will not be able to send them at this   time, since it was not listed in the offer).  For streams marked as   inactive in the answer, the list of media formats is constructed   based on the offer.  If the offer was sendonly, the list is   constructed as if the answer were recvonly.  Similarly, if the offer   was recvonly, the list is constructed as if the answer were sendonly,   and if the offer was sendrecv, the list is constructed as if the   answer were sendrecv.  If the offer was inactive, the list is   constructed as if the offer were actually sendrecv and the answer   were sendrecv.   The connection address and port in the answer indicate the address   where the answerer wishes to receive media (in the case of RTP, RTCP   will be received on the port which is one higher unless there is an   explicit indication otherwise).  This address and port MUST be   present even for sendonly streams; in the case of RTP, the port one   higher is still used to receive RTCP.   In the case of RTP, if a particular codec was referenced with a   specific payload type number in the offer, that same payload type   number SHOULD be used for that codec in the answer.  Even if the same   payload type number is used, the answer MUST contain rtpmap   attributes to define the payload type mappings for dynamic payload   types, and SHOULD contain mappings for static payload types.  The   media formats in the "m=" line MUST be listed in order of preference,   with the first format listed being preferred.  In this case,   preferred means that the offerer SHOULD use the format with the   highest preference from the answer.   Although the answerer MAY list the formats in their desired order of   preference, it is RECOMMENDED that unless there is a specific reason,   the answerer list formats in the same relative order they were   present in the offer.  In other words, if a stream in the offer lists   audio codecs 8, 22 and 48, in that order, and the answerer only   supports codecs 8 and 48, it is RECOMMENDED that, if the answerer hasRosenberg & Schulzrinne     Standards Track                    [Page 10]

RFC 3264  An Offer/Answer Model Session Description Protocol   June 2002   no reason to change it, the ordering of codecs in the answer be 8,   48, and not 48, 8.  This helps assure that the same codec is used in   both directions.   The interpretation of fmtp parameters in an offer depends on the   parameters.  In many cases, those parameters describe specific   configurations of the media format, and should therefore be processed   as the media format value itself would be.  This means that the same   fmtp parameters with the same values MUST be present in the answer if   the media format they describe is present in the answer.  Other fmtp   parameters are more like parameters, for which it is perfectly   acceptable for each agent to use different values.  In that case, the   answer MAY contain fmtp parameters, and those MAY have the same   values as those in the offer, or they MAY be different.  SDP   extensions that define new parameters SHOULD specify the proper   interpretation in offer/answer.   The answerer MAY include a non-zero ptime attribute for any media   stream; this indicates the packetization interval that the answerer   would like to receive.  There is no requirement that the   packetization interval be the same in each direction for a particular   stream.   The answerer MAY include a bandwidth attribute for any media stream;   this indicates the bandwidth that the answerer would like the offerer   to use when sending media.  The value of zero is allowed, interpreted   as described inSection 5.   If the answerer has no media formats in common for a particular   offered stream, the answerer MUST reject that media stream by setting   the port to zero.   If there are no media formats in common for all streams, the entire   offered session is rejected.   Once the answerer has sent the answer, it MUST be prepared to receive   media for any recvonly streams described by that answer.  It MUST be   prepared to send and receive media for any sendrecv streams in the   answer, and it MAY send media immediately.  The answerer MUST be   prepared to receive media for recvonly or sendrecv streams using any   media formats listed for those streams in the answer, and it MAY send   media immediately.  When sending media, it SHOULD use a packetization   interval equal to the value of the ptime attribute in the offer, if   any was present.  It SHOULD send media using a bandwidth no higher   than the value of the bandwidth attribute in the offer, if any was   present.  The answerer MUST send using a media format in the offer   that is also listed in the answer, and SHOULD send using the most   preferred media format in the offer that is also listed in theRosenberg & Schulzrinne     Standards Track                    [Page 11]

RFC 3264  An Offer/Answer Model Session Description Protocol   June 2002   answer.  In the case of RTP, it MUST use the payload type numbers   from the offer, even if they differ from those in the answer.6.2 Multicast Streams   Unlike unicast, where there is a two-sided view of the stream, there   is only a single view of the stream for multicast.  As such,   generating an answer to a multicast offer generally involves   modifying a limited set of aspects of the stream.   If a multicast stream is accepted, the address and port information   in the answer MUST match that of the offer.  Similarly, the   directionality information in the answer (sendonly, recvonly, or   sendrecv) MUST equal that of the offer.  This is because all   participants in a multicast session need to have equivalent views of   the parameters of the session, an underlying assumption of the   multicast bias ofRFC 2327.   The set of media formats in the answer MUST be equal to or be a   subset of those in the offer.  Removing a format is a way for the   answerer to indicate that the format is not supported.   The ptime and bandwidth attributes in the answer MUST equal the ones   in the offer, if present.  If not present, a non-zero ptime MAY be   added to the answer.7 Offerer Processing of the Answer   When the offerer receives the answer, it MAY send media on the   accepted stream(s) (assuming it is listed as sendrecv or recvonly in   the answer).  It MUST send using a media format listed in the answer,   and it SHOULD use the first media format listed in the answer when it   does send.      The reason this is a SHOULD, and not a MUST (its also a SHOULD,      and not a MUST, for the answerer), is because there will      oftentimes be a need to change codecs on the fly.  For example,      during silence periods, an agent might like to switch to a comfort      noise codec.  Or, if the user presses a number on the keypad, the      agent might like to send that usingRFC 2833 [9].  Congestion      control might necessitate changing to a lower rate codec based on      feedback.   The offerer SHOULD send media according to the value of any ptime and   bandwidth attribute in the answer.   The offerer MAY immediately cease listening for media formats that   were listed in the initial offer, but not present in the answer.Rosenberg & Schulzrinne     Standards Track                    [Page 12]

RFC 3264  An Offer/Answer Model Session Description Protocol   June 20028 Modifying the Session   At any point during the session, either participant MAY issue a new   offer to modify characteristics of the session.  It is fundamental to   the operation of the offer/answer model that the exact same   offer/answer procedure defined above is used for modifying parameters   of an existing session.   The offer MAY be identical to the last SDP provided to the other   party (which may have been provided in an offer or an answer), or it   MAY be different.  We refer to the last SDP provided as the "previous   SDP".  If the offer is the same, the answer MAY be the same as the   previous SDP from the answerer, or it MAY be different.  If the   offered SDP is different from the previous SDP, some constraints are   placed on its construction, discussed below.   Nearly all aspects of the session can be modified.  New streams can   be added, existing streams can be deleted, and parameters of existing   streams can change.  When issuing an offer that modifies the session,   the "o=" line of the new SDP MUST be identical to that in the   previous SDP, except that the version in the origin field MUST   increment by one from the previous SDP.  If the version in the origin   line does not increment, the SDP MUST be identical to the SDP with   that version number.  The answerer MUST be prepared to receive an   offer that contains SDP with a version that has not changed; this is   effectively a no-op.  However, the answerer MUST generate a valid   answer (which MAY be the same as the previous SDP from the answerer,   or MAY be different), according to the procedures defined inSection6.   If an SDP is offered, which is different from the previous SDP, the   new SDP MUST have a matching media stream for each media stream in   the previous SDP.  In other words, if the previous SDP had N "m="   lines, the new SDP MUST have at least N "m=" lines.  The i-th media   stream in the previous SDP, counting from the top, matches the i-th   media stream in the new SDP, counting from the top.  This matching is   necessary in order for the answerer to determine which stream in the   new SDP corresponds to a stream in the previous SDP.  Because of   these requirements, the number of "m=" lines in a stream never   decreases, but either stays the same or increases.  Deleted media   streams from a previous SDP MUST NOT be removed in a new SDP;   however, attributes for these streams need not be present.8.1 Adding a Media Stream   New media streams are created by new additional media descriptions   below the existing ones, or by reusing the "slot" used by an old   media stream which had been disabled by setting its port to zero.Rosenberg & Schulzrinne     Standards Track                    [Page 13]

RFC 3264  An Offer/Answer Model Session Description Protocol   June 2002   Reusing its slot means that the new media description replaces the   old one, but retains its positioning relative to other media   descriptions in  the SDP.  New media descriptions MUST appear below   any existing media sections.  The rules for formatting these media   descriptions are identical to those described inSection 5.   When the answerer receives an SDP with more media descriptions than   the previous SDP from the offerer, or it receives an SDP with a media   stream in a slot where the port was previously zero, the answerer   knows that new media streams are being added.  These can be rejected   or accepted by placing an appropriately structured media description   in the answer.  The procedures for constructing the new media   description in the answer are described inSection 6.8.2 Removing a Media Stream   Existing media streams are removed by creating a new SDP with the   port number for that stream set to zero.  The stream description MAY   omit all attributes present previously, and MAY list just a single   media format.   A stream that is offered with a port of zero MUST be marked with port   zero in the answer.  Like the offer, the answer MAY omit all   attributes present previously, and MAY list just a single media   format from amongst those in the offer.   Removal of a media stream implies that media is no longer sent for   that stream, and any media that is received is discarded.  In the   case of RTP, RTCP transmission also ceases, as does processing of any   received RTCP packets.  Any resources associated with it can be   released.  The user interface might indicate that the stream has   terminated, by closing the associated window on a PC, for example.8.3 Modifying a Media Stream   Nearly all characteristics of a media stream can be modified.8.3.1 Modifying Address, Port or Transport   The port number for a stream MAY be changed.  To do this, the offerer   creates a new media description, with the port number in the m line   different from the corresponding stream in the previous SDP.  If only   the port number is to be changed, the rest of the media stream   description SHOULD remain unchanged.  The offerer MUST be prepared to   receive media on both the old and new ports as soon as the offer is   sent.  The offerer SHOULD NOT cease listening for media on the old   port until the answer is received and media arrives on the new port.   Doing so could result in loss of media during the transition.Rosenberg & Schulzrinne     Standards Track                    [Page 14]

RFC 3264  An Offer/Answer Model Session Description Protocol   June 2002   Received, in this case, means that the media is passed to a media   sink.  This means that if there is a playout buffer, the agent would   continue to listen on the old port until the media on the new port   reached the top of the playout buffer.  At that time, it MAY cease   listening for media on the old port.   The corresponding media stream in the answer MAY be the same as the   stream in the previous SDP from the answerer, or it MAY be different.   If the updated stream is accepted by the answerer, the answerer   SHOULD begin sending traffic for that stream to the new port   immediately.  If the answerer changes the port from the previous SDP,   it MUST be prepared to receive media on both the old and new ports as   soon as the answer is sent.  The answerer MUST NOT cease listening   for media on the old port until media arrives on the new port.  At   that time, it MAY cease listening for media on the old port.  The   same is true for an offerer that sends an updated offer with a new   port; it MUST NOT cease listening for media on the old port until   media arrives on the new port.   Of course, if the offered stream is rejected, the offerer can cease   being prepared to receive using the new port as soon as the rejection   is received.   To change the IP address where media is sent to, the same procedure   is followed for changing the port number.  The only difference is   that the connection line is updated, not the port number.   The transport for a stream MAY be changed.  The process for doing   this is identical to changing the port, except the transport is   updated, not the port.8.3.2 Changing the Set of Media Formats   The list of media formats used in the session MAY be changed.  To do   this, the offerer creates a new media description, with the list of   media formats in the "m=" line different from the corresponding media   stream in the previous SDP.  This list MAY include new formats, and   MAY remove formats present from the previous SDP.  However, in the   case of RTP, the mapping from a particular dynamic payload type   number to a particular codec within that media stream MUST NOT change   for the duration of a session.  For example, if A generates an offer   with G.711 assigned to dynamic payload type number 46, payload type   number 46 MUST refer to G.711 from that point forward in any offers   or answers for that media stream within the session.  However, it is   acceptable for multiple payload type numbers to be mapped to the same   codec, so that an updated offer could also use payload type number 72   for G.711.Rosenberg & Schulzrinne     Standards Track                    [Page 15]

RFC 3264  An Offer/Answer Model Session Description Protocol   June 2002      The mappings need to remain fixed for the duration of the session      because of the loose synchronization between signaling exchanges      of SDP and the media stream.   The corresponding media stream in the answer is formulated as   described inSection 6, and may result in a change in media formats   as well.  Similarly, as described inSection 6, as soon as it sends   its answer, the answerer MUST begin sending media using any formats   in the offer that were also present in the answer, and SHOULD use the   most preferred format in the offer that was also listed in the answer   (assuming the stream allows for sending), and MUST NOT send using any   formats that are not in the offer, even if they were present in a   previous SDP from the peer.  Similarly, when the offerer receives the   answer, it MUST begin sending media using any formats in the answer,   and SHOULD use the most preferred one (assuming the stream allows for   sending), and MUST NOT send using any formats that are not in the   answer, even if they were present in a previous SDP from the peer.   When an agent ceases using a media format (by not listing that format   in an offer or answer, even though it was in a previous SDP) the   agent will still need to be prepared to receive media with that   format for a brief time.  How does it know when it can be prepared to   stop receiving with that format? If it needs to know, there are three   techniques that can be applied.  First, the agent can change ports in   addition to changing formats.  When media arrives on the new port, it   knows that the peer has ceased sending with the old format, and it   can cease being prepared to receive with it.  This approach has the   benefit of being media format independent.  However, changes in ports   may require changes in resource reservation or rekeying of security   protocols.  The second approach is to use a totally new set of   dynamic payload types for all codecs when one is discarded.  When   media is received with one of the new payload types, the agent knows   that the peer has ceased sending with the old format.  This approach   doesn't affect reservations or security contexts, but it is RTP   specific and wasteful of a very small payload type space.  A third   approach is to use a timer.  When the SDP from the peer is received,   the timer is set.  When it fires, the agent can cease being prepared   to receive with the old format.  A value of one minute would   typically be more than sufficient.  In some cases, an agent may not   care, and thus continually be prepared to receive with the old   formats.  Nothing need be done in this case.   Of course, if the offered stream is rejected, the offer can cease   being prepared to receive using any new formats as soon as the   rejection is received.Rosenberg & Schulzrinne     Standards Track                    [Page 16]

RFC 3264  An Offer/Answer Model Session Description Protocol   June 20028.3.3 Changing Media Types   The media type (audio, video, etc.) for a stream MAY be changed.  It   is RECOMMENDED that the media type be changed (as opposed to adding a   new stream), when the same logical data is being conveyed, but just   in a different media format.  This is particularly useful for   changing between voiceband fax and fax in a single stream, which are   both separate media types.  To do this, the offerer creates a new   media description, with a new media type, in place of the description   in the previous SDP which is to be changed.   The corresponding media stream in the answer is formulated as   described inSection 6.  Assuming the stream is acceptable, the   answerer SHOULD begin sending with the new media type and formats as   soon as it receives the offer. The offerer MUST be prepared to   receive media with both the old and new types until the answer is   received, and media with the new type is received and reaches the top   of the playout buffer.8.3.4 Changing Attributes   Any other attributes in a media description MAY be updated in an   offer or answer.  Generally, an agent MUST send media (if the   directionality of the stream allows) using the new parameters once   the SDP with the change is received.8.4 Putting a Unicast Media Stream on Hold   If a party in a call wants to put the other party "on hold", i.e.,   request that it temporarily stops sending one or more unicast media   streams, a party offers the other an updated SDP.   If the stream to be placed on hold was previously a sendrecv media   stream, it is placed on hold by marking it as sendonly.  If the   stream to be placed on hold was previously a recvonly media stream,   it is placed on hold by marking it inactive.   This means that a stream is placed "on hold" separately in each   direction.  Each stream is placed "on hold" independently.  The   recipient of an offer for a stream on-hold SHOULD NOT automatically   return an answer with the corresponding stream on hold.  An SDP with   all streams "on hold" is referred to as held SDP.      Certain third party call control scenarios do not work when an      answerer responds to held SDP with held SDP.Rosenberg & Schulzrinne     Standards Track                    [Page 17]

RFC 3264  An Offer/Answer Model Session Description Protocol   June 2002   Typically, when a user "presses" hold, the agent will generate an   offer with all streams in the SDP indicating a direction of sendonly,   and it will also locally mute, so that no media is sent to the far   end, and no media is played out.RFC 2543 [10] specified that placing a user on hold was accomplished   by setting the connection address to 0.0.0.0.  Its usage for putting   a call on hold is no longer recommended, since it doesn't allow for   RTCP to be used with held streams, doesn't work with IPv6, and breaks   with connection oriented media.  However, it can be useful in an   initial offer when the offerer knows it wants to use a particular set   of media streams and formats, but doesn't know the addresses and   ports at the time of the offer.  Of course, when used, the port   number MUST NOT be zero, which would specify that the stream has been   disabled.  An agent MUST be capable of receiving SDP with a   connection address of 0.0.0.0, in which case it means that neither   RTP nor RTCP should be sent to the peer.9 Indicating Capabilities   Before an agent sends an offer, it is helpful to know if the media   formats in that offer would be acceptable to the answerer.  Certain   protocols, like SIP, provide a means to query for such capabilities.   SDP can be used in responses to such queries to indicate   capabilities.  This section describes how such an SDP message is   formatted.  Since SDP has no way to indicate that the message is for   the purpose of capability indication, this is determined from the   context of the higher layer protocol.  The ability of baseline SDP to   indicate capabilities is very limited.  It cannot express allowed   parameter ranges or values, and can not be done in parallel with an   offer/answer itself.  Extensions might address such limitations in   the future.   An SDP constructed to indicate media capabilities is structured as   follows.  It MUST be a valid SDP, except that it MAY omit both "e="   and "p=" lines.  The "t=" line MUST be equal to "0 0".  For each   media type supported by the agent, there MUST be a corresponding   media description of that type.  The session ID in the origin field   MUST be unique for each SDP constructed to indicate media   capabilities.  The port MUST be set to zero, but the connection   address is arbitrary.  The usage of port zero makes sure that an SDP   formatted for capabilities does not cause media streams to be   established if it is interpreted as an offer or answer.   The transport component of the "m=" line indicates the transport for   that media type.  For each media format of that type supported by the   agent, there SHOULD be a media format listed in the "m=" line.  In   the case of RTP, if dynamic payload types are used, an rtpmapRosenberg & Schulzrinne     Standards Track                    [Page 18]

RFC 3264  An Offer/Answer Model Session Description Protocol   June 2002   attribute MUST be present to bind the type to a specific format.   There is no way to indicate constraints, such as how many   simultaneous streams can be supported for a particular codec, and so   on.   v=0   o=carol 28908764872 28908764872 IN IP4 100.3.6.6   s=-   t=0 0   c=IN IP4 192.0.2.4   m=audio 0 RTP/AVP 0 1 3   a=rtpmap:0 PCMU/8000   a=rtpmap:1 1016/8000   a=rtpmap:3 GSM/8000   m=video 0 RTP/AVP 31 34   a=rtpmap:31 H261/90000   a=rtpmap:34 H263/90000   Figure 1: SDP Indicating Capabilities   The SDP of Figure 1 indicates that the agent can support three audio   codecs (PCMU, 1016, and GSM) and two video codecs (H.261 and H.263).10 Example Offer/Answer Exchanges   This section provides example offer/answer exchanges.10.1 Basic Exchange   Assume that the caller, Alice, has included the following description   in her offer.  It includes a bidirectional audio stream and two   bidirectional video streams, using H.261 (payload type 31) and MPEG   (payload type 32).  The offered SDP is:   v=0   o=alice 2890844526 2890844526 IN IP4 host.anywhere.com   s=   c=IN IP4 host.anywhere.com   t=0 0   m=audio 49170 RTP/AVP 0   a=rtpmap:0 PCMU/8000   m=video 51372 RTP/AVP 31   a=rtpmap:31 H261/90000   m=video 53000 RTP/AVP 32   a=rtpmap:32 MPV/90000Rosenberg & Schulzrinne     Standards Track                    [Page 19]

RFC 3264  An Offer/Answer Model Session Description Protocol   June 2002   The callee, Bob, does not want to receive or send the first video   stream, so he returns the SDP below as the answer:   v=0   o=bob 2890844730 2890844730 IN IP4 host.example.com   s=   c=IN IP4 host.example.com   t=0 0   m=audio 49920 RTP/AVP 0   a=rtpmap:0 PCMU/8000   m=video 0 RTP/AVP 31   m=video 53000 RTP/AVP 32   a=rtpmap:32 MPV/90000   At some point later, Bob decides to change the port where he will   receive the audio stream (from 49920 to 65422), and at the same time,   add an additional audio stream as receive only, using the RTP payload   format for events [9].  Bob offers the following SDP in the offer:   v=0   o=bob 2890844730 2890844731 IN IP4 host.example.com   s=   c=IN IP4 host.example.com   t=0 0   m=audio 65422 RTP/AVP 0   a=rtpmap:0 PCMU/8000   m=video 0 RTP/AVP 31   m=video 53000 RTP/AVP 32   a=rtpmap:32 MPV/90000   m=audio 51434 RTP/AVP 110   a=rtpmap:110 telephone-events/8000   a=recvonlyRosenberg & Schulzrinne     Standards Track                    [Page 20]

RFC 3264  An Offer/Answer Model Session Description Protocol   June 2002   Alice accepts the additional media stream, and so generates the   following answer:   v=0   o=alice 2890844526 2890844527 IN IP4 host.anywhere.com   s=   c=IN IP4 host.anywhere.com   t=0 0   m=audio 49170 RTP/AVP 0   a=rtpmap:0 PCMU/8000   m=video 0 RTP/AVP 31   a=rtpmap:31 H261/90000   m=video 53000 RTP/AVP 32   a=rtpmap:32 MPV/90000   m=audio 53122 RTP/AVP 110   a=rtpmap:110 telephone-events/8000   a=sendonly10.2 One of N Codec Selection   A common occurrence in embedded phones is that the Digital Signal   Processor (DSP) used for compression can support multiple codecs at a   time, but once that codec is selected, it cannot be readily changed   on the fly.  This example shows how a session can be set up using an   initial offer/answer exchange, followed immediately by a second one   to lock down the set of codecs.   The initial offer from Alice to Bob indicates a single audio stream   with the three audio codecs that are available in the DSP.  The   stream is marked as inactive, since media cannot be received until a   codec is locked down:   v=0   o=alice 2890844526 2890844526 IN IP4 host.anywhere.com   s=   c=IN IP4 host.anywhere.com   t=0 0   m=audio 62986 RTP/AVP 0 4 18   a=rtpmap:0 PCMU/8000   a=rtpmap:4 G723/8000   a=rtpmap:18 G729/8000   a=inactiveRosenberg & Schulzrinne     Standards Track                    [Page 21]

RFC 3264  An Offer/Answer Model Session Description Protocol   June 2002   Bob can support dynamic switching between PCMU and G.723.  So, he   sends the following answer:   v=0   o=bob 2890844730 2890844731 IN IP4 host.example.com   s=   c=IN IP4 host.example.com   t=0 0   m=audio 54344 RTP/AVP 0 4   a=rtpmap:0 PCMU/8000   a=rtpmap:4 G723/8000   a=inactive   Alice can then select any one of these two codecs.  So, she sends an   updated offer with a sendrecv stream:   v=0   o=alice 2890844526 2890844527 IN IP4 host.anywhere.com   s=   c=IN IP4 host.anywhere.com   t=0 0   m=audio 62986 RTP/AVP 4   a=rtpmap:4 G723/8000   a=sendrecv   Bob accepts the single codec:   v=0   o=bob 2890844730 2890844732 IN IP4 host.example.com   s=   c=IN IP4 host.example.com   t=0 0   m=audio 54344 RTP/AVP 4   a=rtpmap:4 G723/8000   a=sendrecv   If the answerer (Bob), was only capable of supporting one-of-N   codecs, Bob would select one of the codecs from the offer, and place   that in his answer. In this case, Alice would do a re-INVITE to   activate that stream with that codec.   As an alternative to using "a=inactive" in the first exchange, Alice   can list all codecs, and as soon as she receives media from Bob,   generate an updated offer locking down the codec to the one just   received. Of course, if Bob only supports one-of-N codecs, there   would only be one codec in his answer, and in this case, there is no   need for a re-INVITE to lock down to a single codec.Rosenberg & Schulzrinne     Standards Track                    [Page 22]

RFC 3264  An Offer/Answer Model Session Description Protocol   June 200211 Security Considerations   There are numerous attacks possible if an attacker can modify offers   or answers in transit.  Generally, these include diversion of media   streams (enabling eavesdropping), disabling of calls, and injection   of unwanted media streams.  If a passive listener can construct fake   offers, and inject those into an exchange, similar attacks are   possible.  Even if an attacker can simply observe offers and answers,   they can inject media streams into an existing conversation.   Offer/answer relies on transport within an application signaling   protocol, such as SIP.  It also relies on that protocol for security   capabilities.  Because of the attacks described above, that protocol   MUST provide a means for end-to-end authentication and integrity   protection of offers and answers.  It SHOULD offer encryption of   bodies to prevent eavesdropping.  However, media injection attacks   can alternatively be resolved through authenticated media exchange,   and therefore the encryption requirement is a SHOULD instead of a   MUST.   Replay attacks are also problematic.  An attacker can replay an old   offer, perhaps one that had put media on hold, and thus disable media   streams in a conversation.  Therefore, the application protocol MUST   provide a secure way to sequence offers and answers, and to detect   and reject old offers or answers.   SIP [7] meets all of these requirements.12 IANA Considerations   There are no IANA considerations with this specification.13 Acknowledgements   The authors would like to thank Allison Mankin, Rohan Mahy, Joerg   Ott, and Flemming Andreasen for their detailed comments.14 Normative References   [1]   Handley, M. and V. Jacobson, "SDP: Session Description         Protocol",RFC 2327, April 1998.   [2]   Bradner, S., "Key Words for Use in RFCs to Indicate Requirement         Levels",BCP 14,RFC 2119, March 1997.   [3]   Kumar, R. and M. Mostafa, "Conventions For the Use of The         Session Description Protocol (SDP) for ATM Bearer Connections",RFC 3108, May 2001.Rosenberg & Schulzrinne     Standards Track                    [Page 23]

RFC 3264  An Offer/Answer Model Session Description Protocol   June 2002   [4]   Schulzrinne, H., Casner, S, Frederick, R. and V. Jacobson,         "RTP: A Transport Protocol for Real-Time Applications",RFC1889, January 1996.   [5]   Schulzrinne, H., "RTP Profile for Audio and Video Conferences         with Minimal Control",RFC 1890, January 1996.15 Informative References   [6]   Handley, M., Perkins, C. and E. Whelan, "Session Announcement         Protocol",RFC 2974, October 2000.   [7]   Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,         Peterson, J., Sparks, R., Handley, M. and E. Schooler, "SIP:         Session Initiation Protocol",RFC 3261, June 2002.   [8]   Schulzrinne, H., Rao, A. and R. Lanphier, "Real Time Streaming         Protocol (RTSP)",RFC 2326, April 1998.   [9]   Schulzrinne, H. and S. Petrack, "RTP Payload for DTMF Digits,         Telephony Tones and Telephony Signals",RFC 2833, May 2000.   [10]  Handley, M., Schulzrinne, H., Schooler, E. and J. Rosenberg,         "SIP: Session Initiation Protocol",RFC 2543, March 1999.16 Authors' Addresses   Jonathan Rosenberg   dynamicsoft   72 Eagle Rock Avenue   First Floor   East Hanover, NJ 07936   EMail: jdrosen@dynamicsoft.com   Henning Schulzrinne   Dept. of Computer Science   Columbia University   1214 Amsterdam Avenue   New York, NY 10027   USA   EMail: schulzrinne@cs.columbia.eduRosenberg & Schulzrinne     Standards Track                    [Page 24]

RFC 3264  An Offer/Answer Model Session Description Protocol   June 200217.  Full Copyright Statement   Copyright (C) The Internet Society (2002).  All Rights Reserved.   This document and translations of it may be copied and furnished to   others, and derivative works that comment on or otherwise explain it   or assist in its implementation may be prepared, copied, published   and distributed, in whole or in part, without restriction of any   kind, provided that the above copyright notice and this paragraph are   included on all such copies and derivative works.  However, this   document itself may not be modified in any way, such as by removing   the copyright notice or references to the Internet Society or other   Internet organizations, except as needed for the purpose of   developing Internet standards in which case the procedures for   copyrights defined in the Internet Standards process must be   followed, or as required to translate it into languages other than   English.   The limited permissions granted above are perpetual and will not be   revoked by the Internet Society or its successors or assigns.   This document and the information contained herein is provided on an   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.Acknowledgement   Funding for the RFC Editor function is currently provided by the   Internet Society.Rosenberg & Schulzrinne     Standards Track                    [Page 25]

[8]ページ先頭

©2009-2025 Movatter.jp