Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Info page]

Obsoleted by:4233 PROPOSED STANDARD
Updated by:3807
Network Working Group                                       K. MorneaultRequest for Comments: 3057                                 Cisco SystemsCategory: Standards Track                                   S. Rengasami                                                                M. Kalla                                                  Telcordia Technologies                                                           G. Sidebottom                                                         Nortel Networks                                                           February 2001ISDN Q.921-User Adaptation LayerStatus of this Memo   This document specifies an Internet standards track protocol for the   Internet community, and requests discussion and suggestions for   improvements.  Please refer to the current edition of the "Internet   Official Protocol Standards" (STD 1) for the standardization state   and status of this protocol.  Distribution of this memo is unlimited.Copyright Notice   Copyright (C) The Internet Society (2001).  All Rights Reserved.Abstract   This document defines a protocol for backhauling of ISDN Q.921 User   messages over IP using the Stream Control Transmission Protocol   (SCTP).  This protocol would be used between a Signaling Gateway (SG)   and Media Gateway Controller (MGC).  It is assumed that the SG   receives ISDN signaling over a standard ISDN interface.Morneault, et al.           Standards Track                     [Page 1]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001Table of Contents1.  Introduction.................................................21.1  Scope.....................................................21.2  Terminology...............................................31.3  IUA Overview..............................................41.4  Services Provided by the IUA Layer........................91.5  Functions Implemented by the IUA Layer....................121.6  Definition of IUA Boundaries..............................142.  Conventions..................................................163.  Protocol Elements............................................173.1  Common Message Header.....................................173.2  IUA Message Header........................................203.3  Description of Messages...................................224.  Procedures...................................................454.1  Procedures to Support Service inSection 1.4.1............454.2  Procedures to Support Service inSection 1.4.2............464.3  Procedures to Support Service inSection 1.4.3............475. Examples......................................................565.1 Establishment of associations between SG and MGC examples..565.2 ASP Traffic Fail-over Examples.............................585.3 Q.921/Q.931 primitives backhaul Examples...................595.4 Layer Management Communication Examples....................616.  Security.....................................................616.1 Threats....................................................616.2 Protecting Confidentiality ................................627.  IANA Considerations..........................................627.1 SCTP Payload Protocol Identifier...........................627.2 IUA Protocol Extensions....................................628.  Acknowledgements.............................................649.  References...................................................6410. Authors' Addresses...........................................6511. Full Copyright Statement.....................................661.  Introduction   In this document, the term Q.921-User refers to an upper layer which   uses the services of Q.921, not the user side of ISDN interface [1].   Examples of the upper layer would be Q.931 and QSIG.   This section describes the need for ISDN Q.921-User Adaptation (IUA)   layer protocol as well as how this protocol shall be implemented.1.1 Scope   There is a need for Switched Circuit Network (SCN) signaling protocol   delivery from an ISDN Signaling Gateway (SG) to a Media Gateway   Controller (MGC) as described in the Framework Architecture forMorneault, et al.           Standards Track                     [Page 2]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001   Signaling Transport [4].  The delivery mechanism SHOULD meet the   following criteria:   *  Support for transport of the Q.921 / Q.931 boundary primitives   *  Support for communication between Layer Management modules on SG      and MGC   *  Support for management of active associations between SG and MGC   This document supports both ISDN Primary Rate Access (PRA) as well as   Basic Rate Access (BRA) including the support for both point-to-point   and point-to-multipoint modes of communication.  This support   includes Facility Associated Signaling (FAS), Non-Facility Associated   Signaling (NFAS) and NFAS with backup D channel.  QSIG adaptation   layer requirements do not differ from Q.931 adaptation layer, hence;   the procedures described in this document are also applicable for a   QSIG adaptation layer.  For simplicity, only Q.931 will be mentioned   in the rest of this document.1.2 Terminology   Interface - For the purposes of this document an interface supports   the relevant ISDN signaling channel.  This signaling channel MAY be a   16 kbps D channel for an ISDN BRA as well as 64 kbps primary or   backup D channel for an ISDN PRA.  For QSIG, the signaling channel is   a Qc channel.   Q.921-User - Any protocol normally using the services of the ISDN   Q.921 (e.g., Q.931, QSIG, etc.).   Backhaul - A SG terminates the lower layers of an SCN protocol and   backhauls the upper layer(s) to MGC for call processing.  For the   purposes of this document the SG terminates Q.921 and backhauls Q.931   to MGC.   Association - An association refers to a SCTP association.  The   association will provide the transport for the delivery of Q.921-User   protocol data units and IUA adaptation layer peer messages.   Stream - A stream refers to an SCTP stream; a uni-directional logical   channel established from one SCTP endpoint to another associated SCTP   endpoint, within which all user messages are delivered in-sequence   except for those submitted to the un-ordered delivery service.   Interface Identifier - The Interface Identifier identifies the   physical interface at the SG for which the signaling messages are   sent/received. The format of the Interface Identifier parameter can   be text or integer, the values of which are assigned according toMorneault, et al.           Standards Track                     [Page 3]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001   network operator policy. The values used are of local significance   only, coordinated between the SG and ASP.  Significance is not   implied across SGs served by an AS.   Application Server (AS) - A logical entity serving a specific   application instance.  An example of an Application Server is a MGC   handling the Q.931 and call processing for D channels terminated by   the Signaling Gateways.  Practically speaking, an AS is modeled at   the SG as an ordered list of one or more related Application Server   Processes (e.g., primary, secondary, tertiary).   Application Server Process (ASP) - A process instance of an   Application Server.  Examples of Application Server Processes are   primary or backup MGC instances.   Fail-over - The capability to re-route signaling traffic as required   between related ASPs in the event of failure or unavailability of the   currently used ASP (e.g., from primary MGC to back-up MGC).  Fail-   over also applies upon the return to service of a previously   unavailable process.   Layer Management - Layer Management is a nodal function that handles   the inputs and outputs between the IUA layer and a local management   entity.   Network Byte Order - Most significant byte first, a.k.a Big Endian.   Host - The computing platform that the ASP process is running on.1.3 IUA Overview   The architecture that has been defined [4] for SCN signaling   transport over IP uses multiple components, including an IP transport   protocol, a signaling common transport protocol and an adaptation   module to support the services expected by a particular SCN signaling   protocol from its underlying protocol layer.   This document defines an adaptation module that is suitable for the   transport of ISDN Q.921-User (e.g., Q.931) messages.1.3.1  Example - SG to MGC   In a Signaling Gateway, it is expected that the ISDN signaling is   received over a standard ISDN network termination.  The SG then   provides interworking of transport functions with IP Signaling   Transport, in order to transport the Q.931 signaling messages to the   MGC where the peer Q.931 protocol layer exists, as shown below:Morneault, et al.           Standards Track                     [Page 4]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001            ******   ISDN        ******      IP      *******            * EP *---------------* SG *--------------* MGC *            ******               ******              *******            +-----+                                  +-----+            |Q.931|              (NIF)               |Q.931|            +-----+           +----------+           +-----+            |     |           |     | IUA|           | IUA |            |     |           |     +----+           +-----+            |Q.921|           |Q.921|SCTP|           |SCTP |            |     |           |     +----+           +-----+            |     |           |     | IP |           | IP  |            +-----+           +-----+----+           +-----+            NIF  - Nodal Interworking Function            EP   - ISDN End Point            SCTP - Stream Control Transmission Protocol (Refer to [3])            IUA  - ISDN User Adaptation Layer Protocol   It is recommended that the IUA use the services of the Stream Control   Transmission Protocol (SCTP) as the underlying reliable common   signaling transport protocol.  The use of SCTP provides the following   features:      -  explicit packet-oriented delivery (not stream-oriented)      -  sequenced delivery of user messages within multiple streams,         with an option for order-of-arrival delivery of individual user         messages,      -  optional multiplexing of user messages into SCTP datagrams,      -  network-level fault tolerance through support of multi-homing         at either or both ends of an association,      -  resistance to flooding and masquerade attacks, and      -  data segmentation to conform to discovered path MTU size   There are scenarios without redundancy requirements and scenarios in   which redundancy is supported below the transport layer.  In these   cases, the SCTP functions above MAY NOT be a requirement and TCP can   be used as the underlying common transport protocol.1.3.2  Support for the management of SCTP associations between the SG       and ASPs   The IUA layer at the SG maintains the availability state of all   dynamically registered remote ASPs, in order to manage the SCTP   Associations and the traffic between the SG and ASPs.  As well, the   active/inactive state of remote ASP(s) are also maintained.  Active   ASPs are those currently receiving traffic from the SG.Morneault, et al.           Standards Track                     [Page 5]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001   The IUA layer MAY be instructed by local management to establish an   SCTP association to a peer IUA node.  This can be achieved using the   M-SCTP ESTABLISH primitive to request, indicate and confirm the   establishment of an SCTP association with a peer IUA node.   The IUA layer MAY also need to inform local management of the status   of the underlying SCTP associations using the M-SCTP STATUS request   and indication primitive.  For example, the IUA MAY inform local   management of the reason for the release of an SCTP association,   determined either locally within the IUA layer or by a primitive from   the SCTP.1.3.3  Signaling Network Architecture   A Signaling Gateway is used to support the transport of Q.921-User   signaling traffic to one or more distributed ASPs (e.g., MGCs).   Clearly, the IUA protocol is not designed to meet the performance and   reliability requirements for such transport by itself.  However, the   conjunction of distributed architecture and redundant networks does   allow for a sufficiently reliable transport of signaling traffic over   IP.  The IUA protocol is flexible enough to allow its operation and   management in a variety of physical configurations, enabling Network   Operators to meet their performance and reliability requirements.   To meet the ISDN signaling reliability and performance requirements   for carrier grade networks, Network Operators SHOULD ensure that   there is no single point of failure provisioned in the end-to-end   network architecture between an ISDN node and an IP ASP.   Depending of course on the reliability of the SG and ASP functional   elements, this can typically be met by the provision of redundant   QOS-bounded IP network paths for SCTP Associations between SCTP End   Points, and redundant Hosts, and redundant SGs.  The distribution of   ASPs within the available Hosts is also important.  For a particular   Application Server, the related ASPs SHOULD be distributed over at   least two Hosts.   An example logical network architecture relevant to carrier-grade   operation in the IP network domain is shown in Figure 1 below:Morneault, et al.           Standards Track                     [Page 6]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001                                                          Host1     ********                                         **************     *      *_________________________________________*  ********  *     *      *                                _________*  * ASP1 *  *     *  SG1 *   SCTP Associations           |         *  ********  *     *      *_______________________        |         *            *     ********                       |       |         **************                                    |       |     ********                       |       |     *      *_______________________________|     *      *                       |     *  SG2 *    SCTP Associations  |     *      *____________           |     *      *            |          |                     Host2     ********            |          |                 **************                         |          |_________________*  ********  *                         |____________________________*  * ASP1 *  *                                                      *  ********  *                                                      *            *                                                      **************                                                              .                                                              .                                                              .                       Figure 2 - Logical Model Example   For carrier grade networks, the failure or isolation of a particular   ASP SHOULD NOT cause stable calls to be dropped.  This implies that   ASPs need, in some cases, to share the call state or be able to pass   the call state between each other.  However, this sharing or   communication of call state information is outside the scope of this   document.1.3.4 ASP Fail-over Model and Terminology   The IUA layer supports ASP fail-over functions in order to support a   high availability of call processing capability.  All Q.921-User   messages incoming to an SG are assigned to a unique Application   Server, based on the Interface Identifier of the message.   The Application Server is, in practical terms, a list of all ASPs   configured to process Q.921-User messages from certain Interface   Identifiers.  One or more ASPs in the list are normally active (i.e.,   handling traffic) while any others MAY be unavailable or inactive, to   be possibly used in the event of failure or unavailability of the   active ASP(s).Morneault, et al.           Standards Track                     [Page 7]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001   The fail-over model supports an n+k redundancy model, where n ASP(s)   are the minimum number of redundant ASPs required to handle traffic   and k ASPs are available to take over for a failed or unavailable   ASP.  Note that 1+1 active/standby redundancy is a subset of this   model.  A simplex 1+0 model is also supported as a subset, with no   ASP redundancy.   To avoid a single point of failure, it is recommended that a minimum   of two ASPs be in the list, resident in separate hosts and therefore   available over different SCTP Associations.  For example, in the   network shown in Figure 2, all messages from a particular D Channel   (Interface Identifier) could be sent to ASP1 in Host1 or ASP1 in   Host2. The AS list at SG1 might look like the following:      Interface Identifier(s) - Application Server #1          ASP1/Host1  - State=Up, Active          ASP1/Host2  - State=Up, Inactive   In this 1+1 redundancy case, ASP1 in Host1 would be sent any incoming   message for the Interface Identifiers registered.  ASP1 in Host2   would normally be brought to the active state upon failure of, or   loss of connectivity to, ASP1/Host1.  In this example, both ASPs are   Up, meaning that the related SCTP association and far-end IUA peer is   ready.   The AS List at SG1 might also be set up in load-share mode as shown   below:      Interface Identifier(s) - Application Server #1          ASP1/Host1 - State=Up, Active          ASP1/Host2 - State=Up, Active   In this case, both the ASPs would be sent a portion of the traffic.   In the process of fail-over, it is recommended that in the case of   ASPs supporting call processing, stable calls do not get released.   It is possible that calls in transition MAY fail, although measures   of communication between the ASPs involved can be used to mitigate   this problem.  For example, the two ASPs MAY share call state via   shared memory, or MAY use an ASP to ASP protocol to pass call state   information.  The ASP to ASP protocol is outside the scope of this   document.1.3.5  Client/Server Model   It is recommended that the SG and ASP be able to support both client   and server operation.  The peer endpoints using IUA SHOULD be   configured so that one always takes on the role of client and theMorneault, et al.           Standards Track                     [Page 8]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001   other the role of server for initiating SCTP associations.  The   default orientation would be for the SG to take on the role of server   while the ASP is the client.  In this case, ASPs SHOULD initiate the   SCTP association to the SG.   The SCTP (and UDP/TCP) Registered User Port Number Assignment for IUA   is 9900.1.4  Services Provided by the IUA Layer1.4.1  Support for transport of Q.921/Q.931 boundary primitives   In the backhaul scenario, the Q.921/Q.931 boundary primitives are   exposed.  IUA layer needs to support all of the primitives of this   boundary to successfully backhaul Q.931.   This includes the following primitives [1]:   DL-ESTABLISH   The DL-ESTABLISH primitives are used to request, indicate and confirm   the outcome of the procedures for establishing multiple frame   operation.   DL-RELEASE   DL-RELEASE primitives are used to request, indicate, and confirm the   outcome of the procedures for terminating a previously established   multiple frame operation, or for reporting an unsuccessful   establishment attempt.   DL-DATA   The DL-DATA primitives are used to request and indicate layer 3   (Q.931) messages which are to be transmitted, or have been received,   by the Q.921 layer using the acknowledged information transfer   service.   DL-UNIT DATA   The DL-UNIT DATA primitives are used to request and indicate layer 3   (Q.931) messages which are to be transmitted, by the Q.921 layer   using the unacknowledged information transfer service.Morneault, et al.           Standards Track                     [Page 9]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 20011.4.2  Support for communication between Layer Management modules on SG       and MGC   It is envisioned that the IUA layer needs to provide some services   that will facilitate communication between Layer Management modules   on the SG and MGC.  These primitives are pointed out in [2], which   are shown below:   M-TEI STATUS   The M-TEI STATUS primitives are used to request, confirm and indicate   the status (assigned/unassigned) of a TEI.   M-ERROR   The M-ERROR primitive is used to indicate an error with a received   IUA message (e.g., interface identifier value is not known to the   SG).1.4.3 Support for management of active associations between SG and MGC   A set of primitives between the IUA layer and the Layer Management   are defined below to help the Layer Management manage the SCTP   association(s) between the SG and MGC.  The IUA layer can be   instructed by the Layer Management to establish an SCTP association   to a peer IUA node.  This procedure can be achieved using the M-SCTP   ESTABLISH primitive.   M-SCTP ESTABLISH   The M-SCTP ESTABLISH primitives are used to request, indicate, and   confirm the establishment of an SCTP association to a peer IUA node.   M-SCTP RELEASE   The M-SCTP RELEASE primitives are used to request, indicate, and   confirm the release of an SCTP association to a peer IUA node.   The IUA layer MAY also need to inform the status of the SCTP   associations to the Layer Management.  This can be achieved using the   M-SCTP STATUS primitive.   M-SCTP STATUS   The M-SCTP STATUS primitives are used to request and indicate the   status of the underlying SCTP association(s).Morneault, et al.           Standards Track                    [Page 10]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001   The Layer Management MAY need to inform the IUA layer of an AS/ASP   status (i.e., failure, active, etc.), so that messages can be   exchanged between IUA layer peers to stop traffic to the local IUA   user.  This can be achieved using the M-ASP STATUS primitive.   M-ASP STATUS   The ASP status is stored inside IUA layer on both the SG and MGC   sides.  The M-ASP STATUS primitive can be used by Layer Management to   request the status of the Application Server Process from the IUA   layer.  This primitive can also be used to indicate the status of the   Application Server Process.   M-ASP-UP   The M-ASP-UP primitive can be used by Layer Management to send a ASP   Up message for the Application Server Process.  It can also be used   to generate an ASP Up Acknowledgement.   M-ASP-DOWN   The M-ASP-DOWN primitive can be used by Layer Management to send a   ASP Down message for the Application Server Process.  It can also be   used to generate an ASP Down Acknowledgement.   M-ASP-ACTIVE   The M-ASP-UP primitive can be used by Layer Management to send a ASP   Active message for the Application Server Process.  It can also be   used to generate an ASP Active Acknowledgement.   M-ASP-INACTIVE   The M-ASP-UP primitive can be used by Layer Management to send a ASP   Inactive message for the Application Server Process.  It can also be   used to generate an ASP Inactive Acknowledgement.   M-AS STATUS   The M-AS STATUS primitive can be used by Layer Management to request   the status of the Application Server.  This primitive can also be   used to indicate the status of the Application Server.Morneault, et al.           Standards Track                    [Page 11]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 20011.5 Functions Implemented by the IUA Layer1.5.1 Mapping   The IUA layer MUST maintain a map of the Interface Identifier to a   physical interface on the Signaling Gateway.  A physical interface   would be a T1 line, E1 line, etc., and could include the TDM   timeslot. In addition, for a given interface the SG MUST be able to   identify the associated signaling channel.  IUA layers on both SG and   MGC MAY maintain the status of TEIs and SAPIs.   The SG maps an Interface Identifier to an SCTP association/stream   only when an ASP sends an ASP Active message for a particular   Interface Identifier.  It MUST be noted, however, that this mapping   is dynamic and could change at any time due to a change of ASP state.   This mapping could even temporarily be invalid, for example during   failover of one ASP to another.  Therefore, the SG MUST maintain the   states of AS/ASP and reference them during the routing of an messages   to an AS/ASP.   One example of the logical view of relationship between D channel,   Interface Identifier, AS and ASP in the SG is shown below:          /---------------------------------------------------+         /   /------------------------------------------------|--+        /   /                                                 v  |       /   /    +----+             act+-----+    +-------+ -+--+-|+--+-D chan1-------->|IID |-+          +-->| ASP |--->| Assoc |       v         /      +----+ |  +----+  |   +-----+    +-------+ -+--+--+--+-        /              +->| AS |--+                        Streams       /        +----+ |  +----+   stb+-----+D chan2-------->|IID |-+              | ASP |                +----+                +-----+   where IID = Interface Identifier   Note that an ASP can be in more than one AS.1.5.2 Status of ASPs   The IUA layer on the SG MUST maintain the state of the ASPs it is   supporting.  The state of an ASP changes because of reception of   peer-to-peer messages (ASPM messages as described inSection 3.3.2)   or reception of indications from the local SCTP association.  ASP   state transition procedures are described inSection 4.3.1.Morneault, et al.           Standards Track                    [Page 12]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001   At a SG, an Application Server list MAY contain active and inactive   ASPs to support ASP load-sharing and fail-over procedures.  When, for   example, both a primary and a back-up ASP are available, IUA peer   protocol is required to control which ASP is currently active.  The   ordered list of ASPs within a logical Application Server is kept   updated in the SG to reflect the active Application Server   Process(es).   Also the IUA layer MAY need to inform the local management of the   change in status of an ASP or AS.  This can be achieved using the M-   ASP STATUS or M-AS STATUS primitives.1.5.3 SCTP Stream Management   SCTP allows a user specified number of streams to be opened during   the initialization.  It is the responsibility of the IUA layer to   ensure proper management of these streams.  Because of the   unidirectional nature of streams, an IUA layer is not aware of the   stream number to Interface Identifier mapping of its peer IUA layer.   Instead, the Interface Identifier is in the IUA message header.   The use of SCTP streams within IUA is recommended in order to   minimize transmission and buffering delay, therefore improving the   overall performance and reliability of the signaling elements.  It is   recommended that a separate SCTP stream is used for each D channel.1.5.4 Seamless Network Management Interworking   The IUA layer on the SG SHOULD pass an indication of unavailability   of the IUA-User (Q.931) to the local Layer Management, if the   currently active ASP moves from the ACTIVE state.  The Layer   Management could instruct Q.921 to take some action, if it deems   appropriate.   Likewise, if an SCTP association fails, the IUA layer on both the SG   and ASP sides MAY generate Release primitives to take the data links   out-of-service.1.5.5 Congestion Management   If the IUA layer becomes congested (implementation dependent), it MAY   stop reading from the SCTP association to flow control from the peer   IUA.Morneault, et al.           Standards Track                    [Page 13]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 20011.6 Definition of IUA Boundaries1.6.1 Definition of IUA/Q.921 boundary   DL-ESTABLISH   DL-RELEASE   DL-DATA   DL-UNIT DATA1.6.2 Definition of IUA/Q.931 boundary   DL-ESTABLISH   DL-RELEASE   DL-DATA   DL-UNIT DATA1.6.3 Definition of SCTP/IUA Boundary   An example of the upper layer primitives provided by SCTP are   available in Reference [3]section 10.1.6.4 Definition of IUA/Layer-Management Boundary   M-SCTP ESTABLISH request   Direction: LM -> IUA   Purpose: LM requests ASP to establish an SCTP association with an SG.   M-STCP ESTABLISH confirm   Direction: IUA -> LM   Purpose: ASP confirms to LM that it has established an SCTP            association with an SG.   M-SCTP ESTABLISH indication   Direction: IUA -> LM   Purpose: SG informs LM that an ASP has established an SCTP            association.   M-SCTP RELEASE request   Direction: LM -> IUA   Purpose: LM requests ASP to release an SCTP association with SG.   M-SCTP RELEASE confirm   Direction: IUA -> LM   Purpose: ASP confirms to LM that it has released SCTP association            with SG.Morneault, et al.           Standards Track                    [Page 14]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001   M-SCTP RELEASE indication   Direction: IUA -> LM   Purpose: SG informs LM that ASP has released an SCTP association.   M-SCTP STATUS request   Direction: LM -> IUA   Purpose: LM requests IUA to report status of SCTP association.   M-SCTP STATUS indication   Direction: IUA -> LM   Purpose: IUA reports status of SCTP association.   M-ASP STATUS request   Direction: LM -> IUA   Purpose: LM requests SG to report status of remote ASP.   M-ASP STATUS indication   Direction: IUA -> LM   Purpose: SG reports status of remote ASP.   M-AS-STATUS request   Direction: LM -> IUA   Purpose: LM requests SG to report status of AS.   M-AS-STATUS indication   Direction: IUA -> LM   Purpose: SG reports status of AS.   M-NOTIFY indication   Direction: IUA -> LM   Purpose: ASP reports that it has received a NOTIFY message            from its peer.   M-ERROR indication   Direction: IUA -> LM   Purpose: ASP or SG reports that it has received an ERROR            message from its peer.   M-ASP-UP request   Direction: LM -> IUA   Purpose: LM requests ASP to start its operation and send an ASP UP            message to the SG.   M-ASP-UP confirm   Direction: IUA -> LM   Purpose: ASP reports that is has received an ASP UP Acknowledgement            message from the SG.Morneault, et al.           Standards Track                    [Page 15]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001   M-ASP-DOWN request   Direction: LM -> IUA   Purpose: LM requests ASP to stop its operation and send an ASP DOWN            message to the SG.   M-ASP-DOWN confirm   Direction: IUA -> LM   Purpose: ASP reports that is has received an ASP DOWN            Acknowledgement message from the SG.   M-ASP-ACTIVE request   Direction: LM -> IUA   Purpose: LM requests ASP to send an ASP ACTIVE message to the SG.   M-ASP-ACTIVE confirm   Direction: IUA -> LM   Purpose: ASP reports that is has received an ASP ACTIVE            Acknowledgement message from the SG.   M-ASP-INACTIVE request   Direction: LM -> IUA   Purpose: LM requests ASP to send an ASP INACTIVE message to the SG.   M-ASP-INACTIVE confirm   Direction: IUA -> LM   Purpose: ASP reports that is has received an ASP INACTIVE            Acknowledgement message from the SG.   M-TEI STATUS request   Direction: LM -> IUA   Purpose: LM requests ASP to send a TEI status request to the SG.   M-TEI STATUS indication   Direction: IUA -> LM   Purpose: ASP reports that is has received a TEI status indication            from the SG.   M-TEI STATUS confirm   Direction: IUA -> LM   Purpose: ASP reports that is has received a TEI status confirm from the            SG.2.0 Conventions   The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,   SHOULD NOT, RECOMMENDED, NOT RECOMMENDED, MAY, and OPTIONAL, when   they appear in this document, are to be interpreted as described in   [RFC2119].Morneault, et al.           Standards Track                    [Page 16]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 20013.0 Protocol Elements   This section describes the format of various messages used in this   protocol.3.1 Common Message Header   The protocol messages for Q.921-User Adaptation require a message   header which contains the adaptation layer version, the message type,   and message length.    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |    Version    |   Reserved    | Message Class | Message Type  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                        Message Length                         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                  Figure 3 Common Header Format   All fields in an IUA message MUST be transmitted in the network byte   order, unless otherwise stated.3.1.1 Version   The version field contains the version of the IUA adaptation layer.   The supported versions are the following:      Value    Version      -----    -------        1      Release 1.03.1.2  Message Classes and Types   The following List contains the valid Message Classes:   Message Class: 8 bits (unsigned integer)     0      Management (MGMT) Message [IUA/M2UA/M3UA/SUA]     1      Transfer Messages [M3UA]     2      SS7 Signalling Network Management (SSNM) Messages [M3UA/SUA]     3      ASP State Maintenance (ASPSM) Messages [IUA/M2UA/M3UA/SUA]     4      ASP Traffic Maintenance (ASPTM) Messages [IUA/M2UA/M3UA/SUA]     5      Q.921/Q.931 Boundary Primitives Transport (QPTM)            Messages [IUA]     6      MTP2 User Adaptation (MAUP) Messages [M2UA]     7      Connectionless Messages [SUA]Morneault, et al.           Standards Track                    [Page 17]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001     8      Connection-Oriented Messages [SUA]  9 to 127  Reserved by the IETF128 to 255Reserved for IETF-Defined Message Class extensions   The following list contains the message names for the defined   messages.    Q.921/Q.931 Boundary Primitives Transport (QPTM) Messages       0        Reserved       1        Data Request Message       2        Data Indication Message       3        Unit Data Request Message       4        Unit Data Indication Message       5        Establish Request       6        Establish Confirm       7        Establish Indication       8        Release Request       9        Release Confirm      10        Release Indication    11 to 127   Reserved by the IETF   128 to 255   Reserved for IETF-Defined QPTM extensions    Application Server Process State Maintenance (ASPSM) messages       0        Reserved       1        ASP Up (UP)       2        ASP Down (DOWN)       3        Heartbeat (BEAT)       4        ASP Up Ack (UP ACK)       5        ASP Down Ack (DOWN ACK)       6        Heatbeat Ack (BEAT ACK)     7 to 127   Reserved by the IETF   128 to 255   Reserved for IETF-Defined ASPSM extensions    Application Server Process Traffic Maintenance (ASPTM) messages       0        Reserved       1        ASP Active (ACTIVE)       2        ASP Inactive (INACTIVE)       3        ASP Active Ack (ACTIVE ACK)       4        ASP Inactive Ack (INACTIVE ACK)     5 to 127   Reserved by the IETF   128 to 255   Reserved for IETF-Defined ASPTM extensionsMorneault, et al.           Standards Track                    [Page 18]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001    Management (MGMT) Messages       0        Error (ERR)       1        Notify (NTFY)       2        TEI Status Request       3        TEI Status Confirm       4        TEI Status Indication     5 to 127   Reserved by the IETF   128 to 255   Reserved for IETF-Defined MGMT extensions3.1.3  Reserved   The Reserved field is 8-bits.  It SHOULD be set to all '0's and   ignored by the receiver.3.1.4  Message Length   The Message length defines the length of the message in octets,   including the Common header.3.1.5  Variable-Length Parameter Format   IUA messages consist of a Common Header followed by zero or more   variable-length parameters, as defined by the message type.  The   variable-length parameters contained in a message are defined in a   Tag-Length-Value format as shown below.    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |          Parameter Tag        |       Parameter Length        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   \                                                               \   /                       Parameter Value                         /   \                                                               \   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   Mandatory parameters MUST be placed before optional parameters in a   message.   Parameter Tag: 16 bits (unsigned integer)   The Tag field is a 16 bit identifier of the type of parameter.  It   takes a value of 0 to 65534.   The value of 65535 is reserved for IETF-defined extensions.  Values   other than those defined in specific parameter description are   reserved for use by the IETF.Morneault, et al.           Standards Track                    [Page 19]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001   Parameter Length: 16 bits (unsigned integer)   The Parameter Length field contains the size of the parameter in   bytes, including the Parameter Tag, Parameter Length, and Parameter   Value fields.  The Parameter Length does not include any padding   bytes.   Parameter Value: variable-length   The Parameter Value field contains the actual information to be   transferred in the parameter.   The total length of a parameter (including Tag, Parameter Length and   Value fields) MUST be a multiple of 4 bytes.  If the length of the   parameter is not a multiple of 4 bytes, the sender pads the Parameter   at the end (i.e., after the Parameter Value field) with all zero   bytes. The length of the padding is NOT included in the parameter   length field.  A sender SHOULD NEVER pad with more than 3 bytes.  The   receiver MUST ignore the padding bytes.3.2 IUA Message Header   In addition to the common message header, there will be a specific   message header for QPTM and the TEI Status MGMT messages.  The IUA   message header will immediately follow the Common header in these   messages.   This message header will contain the Interface Identifier and Data   Link Connection Identifier (DLCI).  The Interface Identifier   identifies the physical interface terminating the signaling channel   at the SG for which the signaling messages are sent/received.  The   format of the Interface Identifier parameter can be text or integer.   The Interface Identifiers are assigned according to network operator   policy.  The integer values used are of local significance only,   coordinated between the SG and ASP.   The integer formatted Interface Identifier MUST be supported.  The   text formatted Interface Identifier MAY optionally be supported.Morneault, et al.           Standards Track                    [Page 20]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |           Tag (0x1)           |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                 Interface Identifier (integer)                |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |           Tag (0x5)           |             Length=8          |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |            DLCI               |              Spare            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    Figure 4 IUA Message Header (Integer-based Interface Identifier)   The Tag value for the Integer-based Interface Identifier is 0x1.  The   length is always set to a value of 8.    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |           Tag (0x3)           |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                   Interface Identifier (text)                 |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |           Tag (0x5)           |             Length=8          |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |            DLCI               |             Spare             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     Figure 5  IUA Message Header (Text-based Interface Identifier)   The Tag value for the Text-based Interface Identifier is 0x3.  The   length is variable.   The DLCI format is shown below in Figure 6.      0     1     2     3     4     5     6     7   +-----+-----+-----+-----+-----+-----+-----+-----+   |  0  | SPR |      SAPI                         |   +-----------------------------------------------+   |  1  |            TEI                          |   +-----------------------------------------------+              Figure 6  DLCI Format   SPR:  Spare 2nd bit in octet 1, (1 bit)Morneault, et al.           Standards Track                    [Page 21]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001   SAPI: Service Access Point Identifier, 3rd through 8th bits in octet      1 (6 bits)   TEI:  Terminal Endpoint Identifier, 2nd through 8th bits in octet 2      (7 bits)   The DLCI field (including the SAPI and TEI) is coded in accordance   with Q.921.3.3 IUAMessages   The following section defines the messages and parameter contents.   The IUA messages will use the common message header (Figure 3) and   the IUA message header (Figure 4 and Figure 5).3.3.1 Q.921/Q.931 Boundary Primitives Transport (QPTM) Messages3.3.1.1  Establish Messages (Request, Confirm, Indication)   The Establish Messages are used to establish a data link on the   signaling channel or to confirm that a data link on the signaling   channel has been established.  The MGC controls the state of the D   channel.  When the MGC desires the D channel to be in-service, it   will send the Establish Request message.   When the MGC sends an IUA Establish Request message, the MGC MAY   start a timer.  This timer would be stopped upon receipt of an IUA   Establish Confirm or Establish Indication.  If the timer expires, the   MGC would re-send the IUA Establish Request message and restart the   timer.  In other words, the MGC MAY continue to request the   establishment of the data link on periodic basis until the desired   state is achieved or take some other action (notify the Management   Layer).   When the SG receives an IUA Establish Request from the MGC, the SG   shall send the Q.921 Establish Request primitive to the its Q.921   entity.  In addition, the SG shall map any response received from the   Q.921 entity to the appropriate message to the MGC.  For example, if   the Q.921 entity responds with a Q.921 Establish Confirm primitive,   the IUA layer shall map this to an IUA Establish Confirm message.  As   another example, if the IUA Layer receives a Q.921 Release Confirm or   Release Indication as an apparent response to the Q.921 Establish   Request primitive, the IUA Layer shall map these to the corresponding   IUA Release Confirm or Release Indication messages.   The Establish messages contain the common message header followed by   IUA message header.  It does not contain any additional parameters.Morneault, et al.           Standards Track                    [Page 22]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 20013.3.1.2  Release Messages (Request, Indication, Confirmation)   The Release Request message is used to release the data link on the   signaling channel.  The Release Confirm and Indication messages are   used to indicate that the data link on the signaling channel has been   released.   If a response to the Release Request message is not received, the MGC   MAY resend the Release Request message.  If no response is received,   the MGC can consider the data link as being released.  In this case,   signaling traffic on that D channel is not expected from the SG and   signaling traffic will not be sent to the SG for that D channel.   The Release messages contain the common message header followed by   IUA message header.  The Release confirm message is in response to a   Release Request message and it does not contain any additional   parameters.  The Release Request and Indication messages contain the   following parameter:     REASON    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |           Tag (0xf)           |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                              Reason                           |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The valid values for Reason are shown in the following table.      Define     Value           Description   RELEASE_MGMT   0x0     Management layer generated release.   RELEASE_PHYS   0x1     Physical layer alarm generated release.   RELEASE_DM     0x2     Specific to a request.  Indicates Layer 2                          SHOULD release and deny all requests from                          far end to establish a data link on the                          signaling channel (i.e., if SABME is                          received send a DM)   RELEASE_OTHER  0x3     Other reasons   Note:  Only RELEASE_MGMT, RELEASE_DM and RELEASE_OTHER are valid   reason codes for a Release Request message.3.3.1.3 Data Messages (Request, Indication)   The Data message contains an ISDN Q.921-User Protocol Data Unit (PDU)   corresponding to acknowledged information transfer service.Morneault, et al.           Standards Track                    [Page 23]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001   The Data messages contain the common message header followed by IUA   message header.  The Data message contains the following parameters:     PROTOCOL DATA    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |           Tag (0xe)           |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                          Protocol Data                        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The protocol data contains upper layer signaling message e.g.  Q.931,   QSIG.3.3.1.4 Unit Data Messages (Request, Indication)   The Unit Data message contains an ISDN Q.921-User Protocol Data Unit   (PDU) corresponding to unacknowledged information transfer service.   The Unit Data messages contain the common message header followed by   IUA message header.  The Unit Data message contains the following   parameters     PROTOCOL DATA    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |           Tag (0xe)           |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                          Protocol Data                        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+3.3.2  Application Server Process Maintenance (ASPM) Messages   The ASPM messages will only use the common message header.3.3.2.1  ASP Up (ASPUP)   The ASP Up (ASPUP) message is sent by an ASP to indicate to an SG   that it is ready to receive traffic or maintenance messages.Morneault, et al.           Standards Track                    [Page 24]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001   The ASPUP message contains the following parameters:     Info String (optional)   The format for ASPUP Message parameters is as follows:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |           Tag (0x4)           |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                          INFO String*                         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The optional INFO String parameter can carry any meaningful 8-bit   ASCII character string along with the message.  Length of the INFO   String parameter is from 0 to 255 characters.  No procedures are   presently identified for its use but the INFO String MAY be used for   debugging purposes.3.3.2.2 ASP Up Ack   The ASP Up Ack message is used to acknowledge an ASP Up message   received from a remote IUA peer.   The ASPUP Ack message contains the following parameters:      INFO String (optional)   The format for ASPUP Ack Message parameters is as follows:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |           Tag (0x4)           |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                          INFO String*                         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The format and description of the optional Info String parameter is   the same as for the ASP Up message (SeeSection 3.3.3.1).Morneault, et al.           Standards Track                    [Page 25]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 20013.3.2.3  ASP Down (ASPDN)   The ASP Down (ASPDN) message is sent by an ASP to indicate to an SG   that it is NOT ready to receive traffic or maintenance messages.   The ASPDN message contains the following parameters:      Reason      INFO String (Optional)   The format for the ASPDN message parameters is as follows:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |           Tag (0xa)           |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                              Reason                           |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |           Tag (0x4)           |            Length             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                         INFO String*                          |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The format and description of the optional Info String parameter is   the same as for the ASP Up message (SeeSection 3.3.3.1.).   The Reason parameter indicates the reason that the remote IUA   adaptation layer is unavailable.  The valid values for Reason are   shown in the following table.      Value         Description      0x1          Management Inhibit   If a ASP is removed from Management Inhibit, the ASP will send an ASP   Up message.3.3.2.4  ASP Down Ack   The ASP Down Ack message is used to acknowledge an ASP Down message   received from a remote IUA peer.   The ASP Down Ack message contains the following parameters:      Reason      INFO String (Optional)Morneault, et al.           Standards Track                    [Page 26]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001   The format for the ASP Down Ack message parameters is as follows:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |           Tag (0xa)           |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                              Reason                           |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |           Tag (0x4)           |            Length             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                         INFO String*                          |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The format and description of the optional Info String parameter is   the same as for the ASP Up message (SeeSection 3.3.2.1.).   The format of the Reason parameter is the same as for the ASP Down   message (SeeSection 3.3.2.3).3.3.2.5  ASP Active (ASPAC)   The ASPAC message is sent by an ASP to indicate to an SG that it is   Active and ready to be used.   The ASPAC message contains the following parameters      Traffic Mode Type (Mandatory)      Interface Identifier (Optional)         - Combination of integer and integer ranges, OR         - string (text formatted)      INFO String (Optional)Morneault, et al.           Standards Track                    [Page 27]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001   The format for the ASPAC message using integer formatted Interface   Identifiers is as follows:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |           Tag (0xb)           |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                     Traffic Mode Type                         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |     Tag (0x1=integer)         |            Length             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                     Interface Identifiers*                    |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |    Tag (0x8=integer range)    |            Length             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                 Interface Identifier Start1*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Interface Identifier Stop1*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                 Interface Identifier Start2*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Interface Identifier Stop2*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+           .                                                           .           .                                                           .           .                                                           .   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                 Interface Identifier StartN*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Interface Identifier StopN*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |              Additional Interface Identifiers                 |   |                    of Tag Type 0x1 or 0x8                     |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |         Tag (0x4)             |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                          INFO String*                         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+Morneault, et al.           Standards Track                    [Page 28]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001   The format for the ASPAC message using text formatted (string)   Interface Identifiers is as follows:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |           Tag (0xb)           |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                     Traffic Mode Type                         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |       Tag (0x3=string)        |            Length             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                     Interface Identifier*                     |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |              Additional Interface Identifiers                 |   |                        of Tag Type 0x3                        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |         Tag (0x4)             |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                          INFO String*                         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The Traffic Mode Type parameter identifies the traffic mode of   operation of the ASP within an AS.  The valid values for Type are   shown in the following table:     Value          Description      0x1            Over-ride      0x2            Load-share   Within a particular Interface Identifier, only one Traffic Mode Type   can be used.  The Over-ride value indicates that the ASP is operating   in Over-ride mode, where the ASP takes over all traffic in an   Application Server (i.e., primary/back-up operation), over-riding any   currently active ASPs in the AS.  In Load-share mode, the ASP will   share in the traffic distribution with any other currently active   ASPs.   The optional Interface Identifiers parameter contains a list of   Interface Identifier integers (Type 0x1 or Type 0x8) or text strings   (Type 0x3) indexing the Application Server traffic that the sending   ASP is configured/registered to receive.  If integer formattedMorneault, et al.           Standards Track                    [Page 29]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001   Interface Identifiers are being used, the ASP can also send ranges of   Interface Identifiers (Type 0x8).  Interface Identifier types Integer   (0x1) and Integer Range (0x8) are allowed in the same message.  Text   formatted Interface Identifiers (0x3) cannot be used with either   Integer (0x1) or Integer Range (0x8) types.   If no Interface Identifiers are included, the message is for all   provisioned Interface Identifiers within the AS(s) in which the ASP   is provisioned.  If only a subset of Interface Identifiers are   included, the ASP is noted as Active for all the Interface   Identifiers provisioned for that AS.   Note:  If the optional Interface Identifier parameter is present, the   integer formatted Interface Identifier MUST be supported, while the   text formatted Interface Identifier MAY be supported.   The format and description of the optional Info String parameter is   the same as for the ASP Up message (SeeSection 3.3.2.1.).   An SG that receives an ASPAC with an incorrect Traffic Mode Type for   a particular Interface Identifier will respond with an Error Message   (Cause: Unsupported Traffic Handling Mode).3.3.2.6 ASP Active Ack   The ASPAC Ack message is used to acknowledge an ASP-Active message   received from a remote IUA peer.   The ASPAC Ack message contains the following parameters:      Traffic Mode Type (Mandatory)      Interface Identifier (Optional)         - Combination of integer and integer ranges, OR         - string (text formatted)      INFO String (Optional)Morneault, et al.           Standards Track                    [Page 30]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001   The format for the ASPAC Ack message with Integer-formatted Interface   Identifiers is as follows:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |           Tag (0xb)           |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                      Traffic Mode Type                        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |     Tag (0x1=integer)         |            Length             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                     Interface Identifiers*                    |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |    Tag (0x8=integer range)    |            Length             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                 Interface Identifier Start1*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Interface Identifier Stop1*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                 Interface Identifier Start2*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Interface Identifier Stop2*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+           .                                                           .           .                                                           .           .                                                           .   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                 Interface Identifier StartN*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Interface Identifier StopN*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |              Additional Interface Identifiers                 |   |                    of Tag Type 0x1 or 0x8                     |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |         Tag (0x4)             |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                          INFO String*                         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+Morneault, et al.           Standards Track                    [Page 31]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001   The format for the ASP Active Ack message using text formatted   (string) Interface Identifiers is as follows:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |           Tag (0xb)           |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                     Traffic Mode Type                         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |       Tag (0x3=string)        |            Length             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                     Interface Identifier*                     |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |              Additional Interface Identifiers                 |   |                        of Tag Type 0x3                        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |         Tag (0x4)             |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                          INFO String*                         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The format of the Traffic Mode Type and Interface Identifier   parameters is the same as for the ASP Active message (SeeSection3.3.2.5).   The format and description of the optional Info String parameter is   the same as for the ASP Up message (SeeSection 3.3.2.1.).3.3.2.7  ASP Inactive (ASPIA)   The ASPIA message is sent by an ASP to indicate to an SG that it is   no longer an active ASP to be used from within a list of ASPs.  The   SG will respond with an ASPIA Ack message and either discard incoming   messages or buffer for a timed period and then discard.   The ASPIA message contains the following parameters      Traffic Mode Type (Mandatory)      Interface Identifiers (Optional)         - Combination of integer and integer ranges, OR         - string (text formatted)Morneault, et al.           Standards Track                    [Page 32]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001      INFO String (Optional)   The format for the ASP Inactive message parameters using Integer   formatted Interface Identifiers is as follows:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |           Tag (0xb)           |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                     Traffic Mode Type                         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |     Tag (0x1=integer)         |            Length             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                     Interface Identifiers*                    |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |    Tag (0x8=integer range)    |            Length             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                 Interface Identifier Start1*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Interface Identifier Stop1*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                 Interface Identifier Start2*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Interface Identifier Stop2*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+           .                                                           .           .                                                           .           .                                                           .   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                 Interface Identifier StartN*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Interface Identifier StopN*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |              Additional Interface Identifiers                 |   |                    of Tag Type 0x1 or 0x8                     |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |           Tag (0x4)           |            Length             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                          INFO String*                         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+Morneault, et al.           Standards Track                    [Page 33]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001   The format for the ASP Inactive message using text formatted (string)   Interface Identifiers is as follows:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |           Tag (0xb)           |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                     Traffic Mode Type                         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |       Tag (0x3=string)        |            Length             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                     Interface Identifier*                     |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |              Additional Interface Identifiers                 |   |                        of Tag Type 0x3                        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |         Tag (0x4)             |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                          INFO String*                         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The Traffic Mode Type parameter identifies the traffic mode of   operation of the ASP within an AS.  The valid values for Traffic Mode   Type are shown in the following table:      Value          Description       0x1            Over-ride       0x2            Load-share   The format and description of the optional Interface Identifiers and   Info String parameters is the same as for the ASP Active message (SeeSection 3.3.2.3.).   The optional Interface Identifiers parameter contains a list of   Interface Identifier integers or text strings indexing the   Application Server traffic that the sending ASP is   configured/registered to receive, but does not want to receive at   this time.Morneault, et al.           Standards Track                    [Page 34]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 20013.3.2.8  ASP Inactive Ack   The ASP Inactive (ASPIA) Ack message is used to acknowledge an ASP   Inactive message received from a remote IUA peer.   The ASPIA Ack message contains the following parameters:      Traffic Mode Type (Mandatory)      Interface Identifiers (Optional)         - Combination of integer and integer ranges, OR         - string (text formatted)      INFO String (Optional)Morneault, et al.           Standards Track                    [Page 35]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |           Tag (0xb)           |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                     Traffic Mode Type                         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |     Tag (0x1=integer)         |            Length             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                     Interface Identifiers*                    |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |    Tag (0x8=integer range)    |            Length             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                 Interface Identifier Start1*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Interface Identifier Stop1*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                 Interface Identifier Start2*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Interface Identifier Stop2*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+           .                                                           .           .                                                           .           .                                                           .   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                 Interface Identifier StartN*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Interface Identifier StopN*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |              Additional Interface Identifiers                 |   |                    of Tag Type 0x1 or 0x8                     |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |         Tag (0x4)             |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                          INFO String*                         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+Morneault, et al.           Standards Track                    [Page 36]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001   The format for the ASP Inactive Ack message using text formatted   (string) Interface Identifiers is as follows:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |           Tag (0xb)           |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                     Traffic Mode Type                         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |       Tag (0x3=string)        |            Length             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                     Interface Identifier*                     |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |              Additional Interface Identifiers                 |   |                        of Tag Type 0x3                        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |         Tag (0x4)             |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                          INFO String*                         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The format of the Traffic Mode Type and Interface Identifier   parameters is the same as for the ASP Inactive message (SeeSection3.3.2.7).   The format and description of the optional Info String parameter is   the same as for the ASP Up message (SeeSection 3.3.2.1).3.3.2.9  Heartbeat (BEAT)   The Heartbeat message is optionally used to ensure that the IUA peers   are still available to each other.  It is recommended for use when   the IUA runs over a transport layer other than the SCTP, which has   its own heartbeat.   The BEAT message contains the following parameters:      Heartbeat Data         OptionalMorneault, et al.           Standards Track                    [Page 37]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001   The format for the BEAT message is as follows:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |            Tag = 9            |            Length             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   \                                                               \   |                       Heartbeat Data *                        |   \                                                               \   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The Heartbeat Data parameter contents are defined by the sending   node. The Heartbeat Data could include, for example, a Heartbeat   Sequence Number and, or Timestamp.  The receiver of a Heartbeat   message does not process this field as it is only of significance to   the sender. The receiver MUST respond with a Heartbeat Ack message.3.3.2.10  Heartbeat Ack (BEAT-Ack)   The Heartbeat Ack message is sent in response to a received Heartbeat   message.  It includes all the parameters of the received Heartbeat   message, without any change.3.3.3  Layer Management (MGMT) Messages3.3.3.1  Error (ERR)   The Error message is used to notify a peer of an error event   associated with an incoming message.  For example, the message type   might be unexpected given the current state, or a parameter value   might be invalid.   The Error message will only have the common message header.  The   Error message contains the following parameters:      Error Code      Diagnostic Information (optional)Morneault, et al.           Standards Track                    [Page 38]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |           Tag (0xc)           |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                          Error Code                           |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |           Tag (0x7)           |            Length             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                     Diagnostic Information*                   |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The Error Code parameter indicates the reason for the Error Message.   The Error parameter value can be one of the following values:      Invalid Version                               0x01      Invalid Interface Identifier                  0x02      Unsupported Message Class                     0x03      Unsupported Message Type                      0x04      Unsupported Traffic Handling Mode             0x05      Unexpected Message                            0x06      Protocol Error                                0x07      Unsupported Interface Identifier Type         0x08      Invalid Stream Identifier                     0x09      Unassigned TEI                                0x0a      Unrecognized SAPI                             0x0b      Invalid TEI, SAPI combination                 0x0c   The "Invalid Version" error would be sent if a message was received   with an invalid or unsupported version.  The Error message would   contain the supported version in the Common header.  The Error   message could optionally provide the supported version in the   Diagnostic Information area.   The "Invalid Interface Identifier" error would be sent by a SG if an   ASP sends a message with an invalid (unconfigured) Interface   Identifier value.   The "Unsupported Traffic Handling Mode" error would be sent by a SG   if an ASP sends an ASP Active with an unsupported Traffic Handling   Mode.  An example would be a case in which the SG did not support   load-sharing.   The "Unexpected Message" error would be sent by an ASP if it received   a QPTM message from an SG while it was in the Inactive state (the ASP   could optionally drop the message and not send an Error).  It wouldMorneault, et al.           Standards Track                    [Page 39]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001   also be sent by an ASP if it received a defined and recognized   message that the SG is not expected to send (e.g., if the MGC   receives an IUA Establish Request message).   The "Protocol Error" error would be sent for any protocol anomaly   (i.e., a bogus message).   The "Invalid Stream Identifier" error would be sent if a message was   received on an unexpected SCTP stream (i.e., a MGMT message was   received on a stream other than "0").   The "Unsupported Interface Identifier Type" error would be sent by a   SG if an ASP sends a Text formatted Interface Identifier and the SG   only supports Integer formatted Interface Identifiers.  When the ASP   receives this error, it will need to resend its message with an   Integer formatted Interface Identifier.   The "Unsupported Message Type" error would be sent if a message with   an unexpected or unsupported Message Type is received.   The "Unsupported Message Class" error would be sent if a message with   an unexpected or unsupported Message Class is received.   The "Unassigned TEI" error may be used when the SG receives an IUA   message that includes a TEI which has not been assigned or recognized   for use on the indicated ISDN D-channel.   The "Unrecognized SAPI" error would handle the case of using a SAPI   that is not recognized by the SG.  The "Invalid TEI, SAPI   combination" error identify errors where the TEI is assigned and the   the SAPI is recognized, but the combination is not valid for the   interface (e.g., on a BRI the MGC tries to send Q.921 Management   messages via IUA when Layer Management at the SG SHOULD be performing   this function).   The optional Diagnostic information can be any information germane to   the error condition, to assist in identification of the error   condition.  To enhance debugging, the Diagnostic information could   contain the first 40 bytes of the offending message.3.3.3.2  Notify (NTFY)   The Notify message used to provide an autonomous indication of IUA   events to an IUA peer.Morneault, et al.           Standards Track                    [Page 40]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001   The Notify message will only use the common message header.  The   Notify message contains the following parameters:      Status Type      Status Identification      Interface Identifiers (Optional)      INFO String (Optional)Morneault, et al.           Standards Track                    [Page 41]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001   The format for the Notify message with Integer-formatted Interface   Identifiers is as follows:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |           Tag (0xd)           |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Status Type            |    Status Identification      |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |     Tag (0x1=integer)         |            Length             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                     Interface Identifiers*                    |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |    Tag (0x8=integer range)    |            Length             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                 Interface Identifier Start1*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Interface Identifier Stop1*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                 Interface Identifier Start2*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Interface Identifier Stop2*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+           .                                                           .           .                                                           .           .                                                           .   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                 Interface Identifier StartN*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Interface Identifier StopN*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |              Additional Interface Identifiers                 |   |                    of Tag Type 0x1 or 0x8                     |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |         Tag (0x4)             |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                          INFO String*                         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+Morneault, et al.           Standards Track                    [Page 42]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001   The format for the Notify message with Text-formatted Interface   Identifiers is as follows:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |           Tag (0xd)           |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Status Type            |    Status Identification      |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |       Tag (0x3=string)        |            Length             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                     Interface Identifier*                     |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |              Additional Interface Identifiers                 |   |                        of Tag Type 0x3                        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |         Tag (0x4)             |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                          INFO String*                         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The Status Type parameter identifies the type of the Notify message.   The following are the valid Status Type values:      Value          Description       0x1   Application Server state change (AS_State_Change)       0x2   Other   The Status Identification parameter contains more detailed   information for the notification, based on the value of the Status   Type.  If the Status Type is AS_State_Change the following Status   Identification values are used:      Value          Description        1    Application Server Down (AS_Down)        2    Application Server Inactive (AS_Inactive)        3    Application Server Active (AS_Active)        4    Application Server Pending (AS_Pending)Morneault, et al.           Standards Track                    [Page 43]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001   These notifications are sent from an SG to an ASP upon a change in   status of a particular Application Server.  The value reflects the   new state of the Application Server.   If the Status Type is Other, then the following Status Information   values are defined:      Value          Description        1    Insufficient ASP resources active in AS        2    Alternate ASP Active   These notifications are not based on the SG reporting the state   change of an ASP or AS.  In the Insufficient ASP Resources case, the   SG is indicating to an "Inactive" ASP(s) in the AS that another ASP   is required in order to handle the load of the AS (Load-sharing   mode). For the Alternate ASP Active case, an ASP is informed when an   alternate ASP transitions to the ASP-Active state in Over-ride mode.   The format and description of the optional Interface Identifiers and   Info String parameters is the same as for the ASP Active message (SeeSection 3.3.2.3.).3.3.3.3 TEI Status Messages (Request, Confirm and Indication)   The TEI Status messages are exchanged between IUA layer peers to   request, confirm and indicate the status of a particular TEI.   The TEI Status messages contain the common message header followed by   IUA message header.  The TEI Status Request message does not contain   any additional parameters.   In the integrated ISDN Layer 2/3 model (e.g., in traditional ISDN   switches), it is assumed that the Layer Management for the Q.921   Layer and the Q.931 layer are co-located.  When backhauling ISDN,   this assumption is not necessarily valid.  The TEI status messages   allow the two Layer Management entities to communicate the status of   the TEI.  In addition, knowing that a TEI is in service allows the   ASP to request the SG to establish the datalink to the terminal (via   the IUA Establish message) for signaling if the ASP wants to be in   control of data link establishment.  Another use of the TEI status   procedure is where the Layer Management at the ASP can prepare for   send/receive signaling to/from a given TEI and confirm/verify the   establishment of a datalink to that TEI.  For example, if a datalink   is established for a TEI that the ASP did not know was assigned, the   ASP can check to see whether it was assigned or whether there was an   error in the signaling message.  Also, knowing that a TEI is out of   service, the ASP need not request the SG to establish a datalink to   that TEI.Morneault, et al.           Standards Track                    [Page 44]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001   The TEI Status Indication, and Confirm messages contain the following   parameter:     STATUS    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |          Tag (0x10)           |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                              Status                           |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The valid values for Status are shown in the following table.      Define     Value           Description   ASSIGNED       0x0        TEI is considered assigned by Q.921   UNASSIGNED     0x1        TEI is considered unassigned by Q.9214.0  Procedures   The IUA layer needs to respond to various primitives it receives from   other layers as well as messages it receives from the peer IUA layer.   This section describes various procedures involved in response to   these events.4.1  Procedures to support service insection 1.4.1   These procedures achieve the IUA layer's "Transport of Q.921/Q.931   boundary" service.4.1.1  Q.921 or Q.931 primitives procedures   On receiving these primitives from the local layer, the IUA layer   will send the corresponding QPTM message (Data, Unit Data, Establish,   Release) to its peer.  While doing so, the IUA layer needs to fill   various fields of the common and specific headers correctly.  In   addition the message needs to be sent on the SCTP stream that   corresponds to the D channel (Interface Identifier).4.1.2  QPTM message procedures   On receiving QPTM messages from a peer IUA layer, the IUA layer on an   SG or MGC needs to invoke the corresponding layer primitives (DL-   ESTABLISH, DL-DATA, DL-UNIT DATA, DL-RELEASE) to the local Q.921 or   Q.931 layer.Morneault, et al.           Standards Track                    [Page 45]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 20014.2  Procedures to support service insection 1.4.2   These procedures achieve the IUA layer's "Support for Communication   between Layer Managements" service.4.2.1 Layer Management primitives procedures   On receiving these primitives from the local Layer Management, the   IUA layer will provide the appropriate response primitive across the   internal local Layer Management interface.   An M-SCTP ESTABLISH request from Layer Management will initiate the   establishment of an SCTP association.  An M-SCTP ESTABLISH confirm   will be sent to Layer Management when the initiated association set-   up is complete.  An M-SCTP ESTABLISH indication is sent to Layer   Management upon successful completion of an incoming SCTP association   set-up from a peer IUA node   An M-SCTP RELEASE request from Layer Management will initiate the   tear-down of an SCTP association.  An M-SCTP RELEASE confirm will be   sent by Layer Management when the association teardown is complete.   An M-SCTP RELEASE indication is sent to Layer Management upon   successful tear-down of an SCTP association initiated by a peer IUA.   M-SCTP STATUS request and indication support a Layer Management query   of the local status of a particular SCTP association.   M-NOTIFY indication and M-ERROR indication indicate to Layer   Management the notification or error information contained in a   received IUA Notify or Error message respectively.  These indications   can also be generated based on local IUA events.   M-ASP STATUS request/indication and M-AS-STATUS request/indication   support a Layer Management query of the local status of a particular   ASP or AS.  No IUA peer protocol is invoked.   M-ASP-UP request, M-ASP-DOWN request, M-ASP-INACTIVE request and M-   ASP-ACTIVE request allow Layer Management at an ASP to initiate state   changes.  These requests result in outgoing IUA ASP UP, ASP DOWN, ASP   INACTIVE and ASP ACTIVE messages.   M-ASP-UP confirmation, M-ASP-DOWN confirmation, M-ASP-INACTIVE   confirmation and M-ASP-ACTIVE confirmation indicate to Layer   Management that the previous request has been confirmed.Morneault, et al.           Standards Track                    [Page 46]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001   Upon receipt of a M-TEI Status primitive from Layer Management, the   IUA will send the corresponding MGMT message (TEI Status) to its   peer.  While doing so, the IUA layer needs to fill various fields of   the common and specific headers correctly.   All MGMT messages are sent on a sequenced stream to ensure ordering.   SCTP stream '0' SHOULD be used.4.2.2  Receipt of IUA Peer Management messages   Upon receipt of IUA Management messages, the IUA layer MUST invoke   the corresponding Layer Management primitive indications (e.g., M-AS   Status ind., M-ASP Status ind., M-ERROR ind., M-TEI STATUS...) to the   local layer management.   M-NOTIFY indication and M-ERROR indication indicate to Layer   Management the notification or error information contained in a   received IUA Notify or Error message.  These indications can also be   generated based on local IUA events.   All MGMT messages are sent on a sequenced stream to ensure ordering.   SCTP stream '0' SHOULD be used.4.3 Procedures to support service insection 1.4.3   These procedures achieve the IUA layer's "Support for management of   active associations between SG and MGC" service.4.3.1 AS and ASP State Maintenance   The IUA layer on the SG needs to maintain the states of each ASP as   well as the state of the AS.4.3.1.1  ASP States   The state of the each ASP, in each AS that it is configured, is   maintained in the IUA layer on the SG.  The state of an ASP changes   due to the following type of events:      *  Reception of messages from peer IUA layer at that ASP      *  Reception of some messages from the peer IUA layer at other         ASPs in the AS      *  Reception of indications from SCTP layer   The ASP state transition diagram is shown in Figure 7.  The possible   states of an ASP are the following:Morneault, et al.           Standards Track                    [Page 47]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001   ASP-DOWN: Application Server Process is unavailable and/or the   related SCTP association is down.  Initially, all ASPs will be in   this state. An ASP in this state SHOULD NOT be sent any IUA messages.   ASP-INACTIVE: The remote IUA peer at the ASP is available (and the   related SCTP association is up) but application traffic is stopped.   In this state the ASP can be sent any non-QPTM IUA messages (except   for TEI Status messages).   ASP-ACTIVE: The remote IUA peer at the ASP is available and   application traffic is active.                   Figure 7  ASP State Transition Diagram                                    +-------------+             +----------------------|             |             |   Alternate  +-------| ASP-ACTIVE  |             |       ASP    |       +-------------+             |    Takeover  |           ^     |             |              |    ASP    |     | ASP             |              |    Active |     | Inactive             |              |           |     v             |              |       +-------------+             |              |       |             |             |              +------>|  ASP-INACT  |             |                      +-------------+             |                          ^    |   ASP Down/ |                     ASP  |    | ASP Down /   SCTP CDI  |                     Up   |    | SCTP CDI             |                          |    v             |                      +-------------+             +--------------------->|             |                                    |  ASP-DOWN   |                                    +-------------+   SCTP CDI:  The local SCTP layer's Communication Down Indication to   the Upper Layer Protocol (IUA) on an SG.  The local SCTP will send   this indication when it detects the loss of connectivity to the ASP's   peer SCTP layer.  SCTP CDI is understood as either a SHUTDOWN   COMPLETE notification and COMMUNICATION LOST notification from the   SCTP.4.3.1.2  AS States   The state of the AS is maintained in the IUA layer on the SG.   The state of an AS changes due to events.  These events include the   following:Morneault, et al.           Standards Track                    [Page 48]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001      *  ASP state transitions      *  Recovery timer triggers   The possible states of an AS are the following:   AS-DOWN: The Application Server is unavailable.  This state implies   that all related ASPs are in the ASP-DOWN state for this AS.   Initially the AS will be in this state.   AS-INACTIVE: The Application Server is available but no application   traffic is active (i.e., one or more related ASPs are in the ASP-   INACTIVE state, but none in the ASP-ACTIVE state).  The recovery   timer T(r) is not running or has expired.   AS-ACTIVE: The Application Server is available and application   traffic is active.  This state implies that at least one ASP is in   the ASP-ACTIVE state.   AS-PENDING: An active ASP has transitioned from active to inactive or   down and it was the last remaining active ASP in the AS.  A recovery   timer T(r) will be started and all incoming SCN messages will be   queued by the SG.  If an ASP becomes active before T(r) expires, the   AS will move to AS-ACTIVE state and all the queued messages will be   sent to the active ASP.   If T(r) expires before an ASP becomes active, the SG stops queuing   messages and  discards all previously queued messages.  The AS will   move to AS-INACTIVE if at least one ASP is in ASP-INACTIVE state,   otherwise it will move to AS-DOWN state.Morneault, et al.           Standards Track                    [Page 49]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001                 Figure 8  AS State Transition Diagram        +----------+  one ASP trans ACTIVE   +-------------+        |          |------------------------>|             |        | AS-INACT |                         |  AS-ACTIVE  |        |          |                         |             |        |          |<                        |             |        +----------+ \                       +-------------+           ^   |      \ Tr Trigger                ^    |           |   |       \ at least one             |    |           |   |        \ ASP in UP               |    |           |   |         \                        |    |           |   |          \                       |    |           |   |           \                      |    |   one ASP |   |            \            one ASP  |    | Last ACTIVE ASP   trans   |   | all ASP     \------\    trans to |    | trans to INACT   to      |   | trans to            \   ACTIVE   |    | or DOWN   INACT   |   | DOWN                 \           |    | (start Tr timer)           |   |                       \          |    |           |   |                        \         |    |           |   |                         \        |    |           |   v                          \       |    v        +----------+                       \ +-------------+        |          |                        -|             |        | AS-DOWN  |                         | AS-PENDING  |        |          |                         |  (queueing) |        |          |<------------------------|             |        +----------+    Tr Expiry and no     +-------------+                       ASP in INACTIVE state      Tr = Recovery Timer4.3.2 ASPM procedures for primitives   Before the establishment of an SCTP association the ASP state at both   the SG and ASP is assumed to be "Down".   As the ASP is responsible for initiating the setup of an SCTP   association to an SG, the IUA layer at an ASP receives an M-SCTP   ESTABLISH request primitive from the Layer Management, the IUA layer   will try to establish an SCTP association with the remote IUA peer at   an SG.  Upon reception of an eventual SCTP-Communication Up confirm   primitive from the SCTP, the IUA layer will invoke the primitive M-   SCTP ESTABLISH confirm to the Layer Management.   At the SG, the IUA layer will receive an SCTP Communication Up   indication primitive from the SCTP.  The IUA layer will then invoke   the primitive M-SCTP ESTABLISH indication to the Layer Management.Morneault, et al.           Standards Track                    [Page 50]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001   Once the SCTP association is established and assuming that the local   IUA-User is ready, the local ASP IUA Application Server Process   Maintenance (ASPM) function will initiate the ASPM procedures, using   the ASP Up/-Down/-Active/-Inactive messages to convey the ASP state   to the SG - seeSection 4.3.3.   The Layer Management and the IUA layer on SG can communicate the   status of the application server using the M-AS STATUS primitives.   The Layer Management and the IUA layer on both the SG and ASP can   communicate the status of an SCTP association using the M-SCTP STATUS   primitives.   If the Layer Management on SG or ASP wants to bring down an SCTP   association for management reasons, they would send M-SCTP RELEASE   request primitive to the local IUA layer.  The IUA layer would   release the SCTP association and upon receiving the SCTP   Communication Down indication from the underlying SCTP layer, it   would inform the local Layer Management using M-SCTP RELEASE confirm   primitive.   If the IUA layer receives an SCTP-Communication Down indication from   the underlying SCTP layer, it will inform the Layer Management by   invoking the M-SCTP RELEASE indication primitive.  The state of the   ASP will be moved to "Down" at both the SG and ASP.   At an ASP, the Layer Management MAY try to reestablish the SCTP   association using M-SCTP ESTABLISH request primitive.4.3.3 ASPM procedures for peer-to-peer messages   All ASPM messages are sent on a sequenced stream to ensure ordering.   SCTP stream '0' SHOULD be used.4.3.3.1 ASP Up   After an ASP has successfully established an SCTP association to an   SG, the SG waits for the ASP to send an ASP Up message, indicating   that the ASP IUA peer is available.  The ASP is always the initiator   of the ASP Up exchange.   When an ASP Up message is received at an SG and internally the remote   ASP is not considered locked-out for local management reasons, the SG   marks the remote ASP as "Inactive".  The SG responds with an ASP Up   Ack message in acknowledgement.  The SG sends an ASP-Up Ack message   in response to a received ASP Up message even if the ASP is already   marked as "Inactive" at the SG.Morneault, et al.           Standards Track                    [Page 51]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001   If for any local reason the SG cannot respond with an ASP Up, the SG   responds to a ASP Up with a with an ASP-Down Ack message with Reason   "Management Blocking".   At the ASP, the ASP Up Ack message received from the SG is not   acknowledged by the ASP.  If the ASP does not receive a response from   the SG, or an ASP Down Ack is received, the ASP MAY resend ASP Up   messages every 2 seconds until it receives a ASP Up Ack message from   the SG.  The ASP MAY decide to reduce the frequency (say to every 5   seconds) if an ASP Up Ack is not received after a few tries.   The ASP MUST wait for the ASP Up Ack message from the SG before   sending any ASP traffic control messages (ASPAC or ASPIA) or Data   messages or it will risk message loss.  If the SG receives QPTM, ASP   Active or ASP Inactive messages before an ASP Up is received, the SG   SHOULD discard these messages.4.3.3.2 ASP Down   The ASP will send an ASP Down to an SG when the ASP is to be removed   from the list of ASPs in all Application Servers that it is a member   and no longer receive any IUA traffic or management messages.   Whether the ASP is permanently removed from an AS is a function of   configuration management.   The SG marks the ASP as "Down" and returns an ASP Down Ack message to   the ASP if one of the following events occur:      -  to acknowledge an ASP Down message from an ASP,      -  to reply to ASPM messages from an ASP which is locked out for         management reasons.   The SG sends an ASP Down Ack message in response to a received ASP   Down message from the ASP even if the ASP is already marked as "Down"   at the SG.   If the ASP does not receive a response from the SG, the ASP MAY send   ASP Down messages every 2 seconds until it receives an ASP Down Ack   message from the SG or the SCTP association goes down.  The ASP MAY   decide to reduce the frequency (say to every 5 seconds) if an ASP   Down Ack is not received after a few tries.4.3.3.3 IUA Version Control   If a ASP Up message with an unsupported version is received, the   receiving end responds with an Error message, indicating the version   the receiving node supports and notifies Layer Management.Morneault, et al.           Standards Track                    [Page 52]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001   This is useful when protocol version upgrades are being performed in   a network.  A node upgraded to a newer version SHOULD support the   older versions used on other nodes it is communicating with.  Because   ASPs initiate the ASP Up procedure it is assumed that the Error   message would normally come from the SG.4.3.3.4 ASP Active   Any time after the ASP has received a ASP Up Ack from the SG, the ASP   sends an ASP-Active (ASPAC) to the SG indicating that the ASP is   ready to start processing traffic.  In the case where an ASP is   configured/registered to process the traffic for more than one   Application Server across an SCTP association, the ASPAC contains one   or more Interface Identifiers to indicate for which Application   Servers the ASPAC applies.   When an ASP Active (ASPAC) message is received, the SG responds to   the ASP with a ASPAC Ack message acknowledging that the ASPAC was   received and starts sending traffic for the associated Application   Server(s) to that ASP.   The ASP MUST wait for the ASP-Active Ack message from the SG before   sending any Data messages or it will risk message loss.  If the SG   receives QPTM messages before an ASP Active is received, the SG   SHOULD discard these messages.   There are two modes of Application Server traffic handling in the SG   IUA - Over-ride and Load-sharing.  The Type parameter in the ASPAC   message indicates the mode used in a particular Application Server.   If the SG determines that the mode indicates in an ASPAC is   incompatible with the traffic handling mode currently used in the AS,   the SG responds with an Error message indicating Unsupported Traffic   Handling Mode.   In the case of an Over-ride mode AS, reception of an ASPAC message at   an SG causes the redirection of all traffic for the AS to the ASP   that sent the ASPAC.  The SG responds to the ASPAC with an ASP-Active   Ack message to the ASP.  Any previously active ASP in the AS is now   considered Inactive and will no longer receive traffic from the SG   within the AS.  The SG sends a Notify (Alternate ASP-Active) to the   previously active ASP in the AS, after stopping all traffic to that   ASP.   In the case of a load-share mode AS, reception of an ASPAC message at   an SG causes the direction of traffic to the ASP sending the ASPAC,   in addition to all the other ASPs that are currently active in the   AS. The algorithm at the SG for load-sharing traffic within an AS to   all the active ASPs is implementation dependent.  The algorithmMorneault, et al.           Standards Track                    [Page 53]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001   could, for example be round-robin or based on information in the Data   message, such as Interface Identifier, depending on the requirements   of the application and the call state handling assumptions of the   collection of ASPs in the AS.  The SG responds to the ASPAC with a   ASP-Active Ack message to the ASP.4.3.3.5 ASP Inactive   When an ASP wishes to withdraw from receiving traffic within an AS,   the ASP sends an ASP Inactive (ASPIA) to the SG.  In the case where   an ASP is configured/registered to process the traffic for more than   one Application Server across an SCTP association, the ASPIA contains   one or more Interface Identifiers to indicate for which Application   Servers the ASPIA applies.   There are two modes of Application Server traffic handling in the SG   IUA when withdrawing an ASP from service - Over-ride and Load-   sharing. The Type parameter in the ASPIA message indicates the mode   used in a particular Application Server.  If the SG determines that   the mode indicates in an ASPAC is incompatible with the traffic   handling mode currently used in the AS, the SG responds with an Error   message indicating Unsupported Traffic Handling Mode.   In the case of an Over-ride mode AS, where normally another ASP has   already taken over the traffic within the AS with an Over-ride ASPAC,   the ASP which sends the ASPIA is already considered by the SG to be   "Inactive".  An ASPIA Ack message is sent to the ASP, after ensuring   that all traffic is stopped to the ASP.   In the case of a Load-share mode AS, the SG moves the ASP to the   "Inactive" state and the AS traffic is re-allocated across the   remaining "active" ASPs per the load-sharing algorithm currently used   within the AS.  An ASPIA Ack message is sent to the ASP after all   traffic is halted to the ASP.  A NTFY (Insufficient ASPs) MAY be sent   to all inactive ASPs, if required.   If no other ASPs are Active in the Application Server, the SG sends a   NTFY (AS-Pending) to all inactive ASPs of the AS and either discards   all incoming messages for the AS or starts buffering the incoming   messages for T(r)seconds, after which messages will be discarded.   T(r) is configurable by the network operator.  If the SG receives an   ASPAC from an ASP in the AS before expiry of T(r), the buffered   traffic is directed to the ASP and the timer is cancelled.  If T(r)   expires, the AS is moved to the "Inactive" state.Morneault, et al.           Standards Track                    [Page 54]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 20014.3.3.6  Notify   A Notify message reflecting a change in the AS state is sent to all   ASPs in the AS, except those in the "Down" state, with appropriate   Status Identification.   In the case where a Notify (AS-Pending) message is sent by an SG that   now has no ASPs active to service the traffic, or a NTFY   (Insufficient ASPs) is sent in the Load-share mode, the Notify does   not explicitly force the ASP(s) receiving the message to become   active.  The ASPs remain in control of what (and when) action is   taken.4.3.3.7  Heartbeat   The optional Heartbeat procedures MAY be used when operating over   transport layers that do not have their own heartbeat mechanism for   detecting loss of the transport association (i.e., other than the   SCTP).   After receiving an ASP Up Ack message from the SG in response to an   ASP Up message, the ASP MAY optionally send Beat messages   periodically, subject to a provisionable timer T(beat).  The SG IUA,   upon receiving a BEAT message from the ASP, responds with a BEAT ACK   message.  If no BEAT message (or any other IUA message) is received   from the SG within the timer 2*T(beat), the SG will consider the   remote IUA as "Down".  The SG will also send an ASP Down Ack message   to the ASP.   At the ASP, if no BEAT ACK message (or any other IUA message) is   received from the SG within 2*T(beat), the SG is considered   unavailable.  Transmission of BEAT messages is stopped and ASP Up   procedures are used to re-establish communication with the SG IUA   peer.   The BEAT message MAY optionally contain an opaque Heartbeat Data   parameter that MUST be echoed back unchanged in the related Beat Ack   message.  The ASP upon examining the contents of the returned BEAT   Ack message MAY choose to consider the remote ASP as unavailable.   The contents/format of the Heartbeat Data parameter is   implementation-dependent and only of local interest to the original   sender.  The contents MAY be used, for example, to support a   Heartbeat sequence algorithm (to detect missing Heartbeats), and/or a   timestamp mechanism (to evaluate delays).   Note:  Heartbeat related events are not shown in Figure 4 "ASP state   transition diagram".Morneault, et al.           Standards Track                    [Page 55]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 20015.0 Examples5.1 Establishment of Association and Traffic between SGs and ASPs5.1.1 Single ASP in an Application Server (1+0 sparing)   This scenario shows the example IUA message flows for the   establishment of traffic between an SG and an ASP, where only one ASP   is configured within an AS (no backup).  It is assumed that the SCTP   association is already set-up.                SG                       ASP1                 |                 |<---------ASP Up----------|                 |--------ASP Up Ack------->|                 |                          |                 |<-------ASP Active--------|                 |------ASP Active Ack----->|                 |                          |5.1.2 Two ASPs in Application Server (1+1 sparing)   This scenario shows the example IUA message flows for the   establishment of traffic between an SG and two ASPs in the same   Application Server, where ASP1 is configured to be Active and ASP2 a   standby in the event of communication failure or the withdrawal from   service of ASP1.  ASP2 MAY act as a hot, warm, or cold standby   depending on the extent to which ASP1 and ASP2 share call state or   can communicate call state under failure/withdrawal events.  The   example message flow is the same whether the ASP-Active messages are   Over-ride or Load-share mode although typically this example would   use an Over-ride mode.          SG                        ASP1                        ASP2           |                         |                          |           |<--------ASP Up----------|                          |           |-------ASP Up Ack------->|                          |           |                         |                          |           |<-----------------------------ASP Up----------------|           |----------------------------ASP Up Ack------------->|           |                         |                          |           |                         |                          |           |<-------ASP Active-------|                          |           |-----ASP Active Ack----->|                          |           |                         |                          |Morneault, et al.           Standards Track                    [Page 56]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 20015.1.3 Two ASPs in an Application Server (1+1 sparing, load-sharing case)   This scenario shows a similar case toSection 5.1.2 but where the two   ASPs are brought to active and load-share the traffic load.  In this   case, one ASP is sufficient to handle the total traffic load.          SG                       ASP1                       ASP2           |                         |                          |           |<---------ASP Up---------|                          |           |--------ASP Up Ack------>|                          |           |                         |                          |           |<------------------------------ASP Up---------------|           |-----------------------------ASP Up Ack------------>|           |                         |                          |           |                         |                          |           |<--ASP Active (Ldshr)----|                          |           |----ASP Active Ack------>|                          |           |                         |                          |           |<----------------------------ASP Active (Ldshr)-----|           |-----------------------------ASP Active Ack-------->|           |                         |                          |5.1.4 Three ASPs in an Application Server (n+k sparing, load-sharing      case)   This scenario shows the example IUA message flows for the   establishment of traffic between an SG and three ASPs in the same   Application Server, where two of the ASPs are brought to active and   share the load.  In this case, a minimum of two ASPs are required to   handle the total traffic load (2+1 sparing).Morneault, et al.           Standards Track                    [Page 57]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001      SG                  ASP1                ASP2                ASP3       |                    |                   |                   |       |<------ASP Up-------|                   |                   |       |-----ASP Up Ack---->|                   |                   |       |                    |                   |                   |       |<--------------------------ASP Up-------|                   |       |------------------------ASPUp Ack)----->|                   |       |                    |                   |                   |       |<---------------------------------------------ASP Up--------|       |--------------------------------------------ASP Up Ack----->|       |                    |                   |                   |       |                    |                   |                   |       |<-ASP Act (Ldshr)---|                   |                   |       |----ASP Act Ack---->|                   |                   |       |                    |                   |                   |       |<---------------------ASP Act (Ldshr)---|                   |       |----------------------ASP Act Ack------>|                   |       |                    |                   |                   |5.2 ASP Traffic Fail-over Examples5.2.1 (1+1 Sparing, withdrawal of ASP, Back-up Over-ride)   The following example shows a case in which an ASP withdraws from   service:          SG                       ASP1                       ASP2           |                         |                          |           |<-----ASP Inactive-------|                          |           |----ASP Inactive Ack---->|                          |           |-------------------NTFY(AS-Pending) --------------->|           |                         |                          |           |<------------------------------ ASP Active----------|           |-----------------------------ASP Active Ack)------->|           |                                                    |   In this case, the SG notifies ASP2 that the AS has moved to the Down   state.  The SG could have also (optionally) sent a Notify message   when the AS moved to the Pending state.   Note:  If the SG detects loss of the IUA peer (IUA heartbeat loss or   detection of SCTP failure), the initial SG-ASP1 ASP Inactive message   exchange would not occur.5.2.2 (1+1 Sparing, Back-up Over-ride)   The following example shows a case in which ASP2 wishes to over-ride   ASP1 and take over the traffic:Morneault, et al.           Standards Track                    [Page 58]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001          SG                       ASP1                       ASP2           |                         |                          |           |<-------------------------------ASP Active----------|           |-----------------------------ASP Active Ack-------->|           |----NTFY( Alt ASP-Act)-->|           |                         |                          |   In this case, the SG notifies ASP1 that an alternative ASP has   overridden it.5.2.3 (n+k Sparing, Load-sharing case, withdrawal of ASP)   Following on from the example inSection 5.1.4, and ASP1 withdraws   from service     SG                  ASP1                 ASP2                 ASP3      |                    |                   |                   |      |<----ASP Inact------|                   |                   |      |---ASP Inact Ack--->|                   |                   |      |                    |                   |                   |      |---------------------------------NTFY(Ins. ASPs)----------->|      |                    |                   |                   |      |<-----------------------------------------ASP Act (Ldshr)---|      |-------------------------------------------ASP Act (Ack)--->|      |                    |                   |                   |   In this case, the SG has knowledge of the minimum ASP resources   required (implementation dependent) for example if the SG knows that   n+k = 2+1 for a load-share AS and n currently equals 1.   Note:  If the SG detects loss of the ASP1 IUA peer (IUA heartbeat   loss or detection of SCTP failure), the first SG-ASP1 ASP Inactive   message exchange would not occur.5.3 Q.921/Q.931 primitives backhaul Examples   When the IUA layer on the ASP has a QPTM message to send to the SG,   it will do the following:      -  Determine the correct SG      -  Find the SCTP association to the chosen SG      -  Determine the correct stream in the SCTP association based on         the D channel      -  Fill in the QPTM message, fill in IUA Message Header, fill in         Common HeaderMorneault, et al.           Standards Track                    [Page 59]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001      -  Send the QPTM message to the remote IUA peer in the SG, over         the SCTP association   When the IUA layer on the SG has a QPTM message to send to the ASP,   it will do the following:      -  Determine the AS for the Interface Identifier      -  Determine the Active ASP (SCTP association) within the AS      -  Determine the correct stream in the SCTP association based on         the D channel      -  Fill in the QPTM message, fill in IUA Message Header, fill in         Common Header      -  Send the QPTM message to the remote IUA peer in the ASP, over         the SCTP association   An example of the message flows for establishing a data link on a   signaling channel, passing PDUs and releasing a data link on a   signaling channel is shown below.  An active association between MGC   and SG is established (Section 5.1) prior to the following message   flows.            SG                             ASP                        <----------- Establish Request      Establish Confirm  ---------->                        <----------- Data Request         Data Indication ----------->                        <----------- Data Request         Data Indication ----------->                        <----------- Data Request                        <----------- Data Request         Data Indication ----------->                        <----------- Release Request (RELEASE_MGMT)        Release Confirm  ---------->   An example of the message flows for a failed attempt to establish a   data link on the signaling channel is shown below.  In this case, the   gateway has a problem with its physical connection (e.g., Red Alarm),   so it cannot establish a data link on the signaling channel.Morneault, et al.           Standards Track                    [Page 60]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001            SG                             ASP                        <----------- Establish Request (ESTABLISH_START)      Release Indication ---------->      (RELEASE_PHYS)5.4 Layer Management Communication Examples   An example of the message flows for communication between Layer   Management modules between SG and ASP is shown below.  An active   association between ASP and SG is established (Section 5.1) prior to   the following message flows.                  SG                       ASP                        <----------- Data Request        Error Indication ---------->         (INVALID_TEI)                        <----------- TEI Status Request      TEI Status Confirm ---------->           (Unassigned)6.0 Security   IUA is designed to carry signaling messages for telephony services.   As such, IUA MUST involve the security needs of several parties the   end users of the services; the network providers and the applications   involved.  Additional requirements MAY come from local regulation.   While having some overlapping security needs, any security solution   SHOULD fulfill all of the different parties' needs.6.1 Threats   There is no quick fix, one-size-fits-all solution for security.  As a   transport protocol, IUA has the following security objectives:      *  Availability of reliable and timely user data transport.      *  Integrity of user data transport.      *  Confidentiality of user data.   IUA runs on top of SCTP.  SCTP [3] provides certain transport related   security features, such as      *  Blind Denial of Service Attacks      *  Flooding      *  Masquerade      *  Improper Monopolization of ServicesMorneault, et al.           Standards Track                    [Page 61]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001   When IUA is running in professionally managed corporate or service   provider network, it is reasonable to expect that this network   includes an appropriate security policy framework.  The "Site   Security Handbook" [5] SHOULD be consulted for guidance.   When the network in which IUA runs in involves more than one party,   it MAY NOT be reasonable to expect that all parties have implemented   security in a sufficient manner.  In such a case, it is recommended   that IPSEC is used to ensure confidentiality of user payload.   Consult [6] for more information on configuring IPSEC services.6.2 Protecting Confidentiality   Particularly for mobile users, the requirement for confidentiality   MAY include the masking of IP addresses and ports.  In this case   application level encryption is not sufficient; IPSEC ESP SHOULD be   used instead.  Regardless of which level performs the encryption, the   IPSEC ISAKMP service SHOULD be used for key management.7.0 IANA Considerations7.1 SCTP Payload Protocol Identifier   A request will be made to IANA to assign an IUA value for the Payload   Protocol Identifier in SCTP Payload Data chunk.  The following SCTP   Payload Protocol Identifier will be registered:         IUA    "1"   The SCTP Payload Protocol Identifier is included in each SCTP Data   chunk, to indicate which protocol the SCTP is carrying.  This Payload   Protocol Identifier is not directly used by SCTP but MAY be used by   certain network entities to identify the type of information being   carried in a Data chunk.   The User Adaptation peer MAY use the Payload Protocol Identifier as a   way of determining additional information about the data being   presented to it by SCTP.7.2  IUA Protocol Extensions   This protocol may also be extended through IANA in three ways:      -- through definition of additional message classes,      -- through definition of additional message types, and      -- through definition of additional message parameters.Morneault, et al.           Standards Track                    [Page 62]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 2001   The definition and use of new message classes, types and parameters   is an integral part of SIGTRAN adaptation layers.  Thus, these   extensions are assigned by IANA through an IETF Consensus action as   defined in [RFC2434].   The proposed extension must in no way adversely affect the general   working of the protocol.7.2.1 IETF Defined Message Classes   The documentation for a new message class MUST include the following   information:   (a) A long and short name for the message class.   (b) A detailed description of the purpose of the message class.7.2.2 IETF Defined Message Types   Documentation of the message type MUST contain the following   information:   (a) A long and short name for the new message type.   (b) A detailed description of the structure of the message.   (c) A detailed definition and description of intended use of each       field within the message.       ti3 (d) A detailed procedural description of the use of the new       message type within the operation of the protocol.   (e) A detailed description of error conditions when receiving this       message type.   When an implementation receives a message type which it does not   support, it MUST respond with an Error (ERR) message with an Error   Code of Unsupported Message Type.7.2.3 IETF-defined TLV Parameter Extension   Documentation of the message parameter MUST contain the following   information:   (a) Name of the parameter type.   (b) Detailed description of the structure of the parameter field.       This structure MUST conform to the general type-length-value       format described inSection 3.1.5.   (c) Detailed definition of each component of the parameter value.   (d) Detailed description of the intended use of this parameter type,       and an indication of whether and under what circumstances       multiple instances of this parameter type may be found within the       same message type.Morneault, et al.           Standards Track                    [Page 63]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 20018.0 Acknowledgements   The authors would like to thank Alex Audu, Maria Sonia Vazquez   Arevalillo, Ming-te Chao, Keith Drage, Norm Glaude, Nikhil Jain,   Bernard Kuc, Ming Lin, Stephen Lorusso, John Loughney, Barry   Nagelberg, Neil Olson, Lyndon Ong, Heinz Prantner, Jose Luis Jimenez   Ramirez, Ian Rytina, Michael Tuexen and Hank Wang for their valuable   comments and suggestions.9.0  References   [1] ITU-T Recommendation Q.920, 'Digital Subscriber signaling System       No. 1 (DSS1) - ISDN User-Network Interface Data Link Layer -       General Aspects'   [2] T1S1.7/99-220 Contribution, 'Back-hauling of DSS1 protocol in a       Voice over Packet Network'   [3] Stewart, R., Xie, Q., Morneault, K., Sharp, C., Schwarzbauer, H.,       Taylor, T., Rytina, I., Kalla, M., Zhang, L. and V. Paxson,       "Stream Control Transmission Protocol",RFC 2960, October 2000.   [4] Ong, L., Rytina, I., Garcia, M., Schwarzbauer, H., Coene, L.,       Lin, H., Juhasz, I., Holdrege, M., and C. Sharp, "Architectural       Framework for Signaling Transport",RFC 2719, October 1999.   [5] Fraser, B., "Site Security Handbook", FYI 8,RFC 2196, September       1997.   [6] Kent, S. and R. Atkinson, "Security Architecture for the Internet       Protocol",RFC 2401, November 1998.   [7] Bradner, s., "Key words for use in RFCs to Indicate Requirement       Levels",BCP 14,RFC 2119, March 1997.   [8] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA       Considerations Section in RFCs",BCP 26,RFC 2434, October 1998.Morneault, et al.           Standards Track                    [Page 64]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 200110.0 Authors' Addresses   Ken Morneault   Cisco Systems Inc.   13615 Dulles Technology Drive   Herndon, VA. 20171   USA   Phone: +1-703-484-3323   EMail: kmorneau@cisco.com   Malleswar Kalla   Telcordia Technologies   PYA 2J-341   3 Corporate Place   Piscataway, NJ 08854   USA   Phone: +1-732-699-3728   EMail: mkalla@telcordia.com   Selvam Rengasami   Telcordia Technologies   NVC-2Z439   331 Newman Springs Road   Red Bank, NJ 07701   USA   Phone: +1-732-758-5260   EMail: srengasa@telcordia.com   Greg Sidebottom   Nortel Networks   3685 Richmond Road   Nepean, Ontario   Canada  K2H5B7   Phone: +1-613-763-7305   EMail: gregside@nortelnetworks.comMorneault, et al.           Standards Track                    [Page 65]

RFC 3057            ISDN Q.921-User Adaptation Layer       February 200110. Full Copyright Statement   Copyright (C) The Internet Society (2001).  All Rights Reserved.   This document and translations of it may be copied and furnished to   others, and derivative works that comment on or otherwise explain it   or assist in its implementation may be prepared, copied, published   and distributed, in whole or in part, without restriction of any   kind, provided that the above copyright notice and this paragraph are   included on all such copies and derivative works.  However, this   document itself may not be modified in any way, such as by removing   the copyright notice or references to the Internet Society or other   Internet organizations, except as needed for the purpose of   developing Internet standards in which case the procedures for   copyrights defined in the Internet Standards process must be   followed, or as required to translate it into languages other than   English.   The limited permissions granted above are perpetual and will not be   revoked by the Internet Society or its successors or assigns.   This document and the information contained herein is provided on an   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.Acknowledgement   Funding for the RFC Editor function is currently provided by the   Internet Society.Morneault, et al.           Standards Track                    [Page 66]

[8]ページ先頭

©2009-2026 Movatter.jp