Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|PDF|HTML] [Tracker] [IPR] [Info page]

INFORMATIONAL
Independent Submission                              H. van Helvoort, Ed.Request for Comments: 7347                           Huawei TechnologiesCategory: Informational                                     J. Ryoo, Ed.ISSN: 2070-1721                                                     ETRI                                                                H. Zhang                                                     Huawei Technologies                                                                F. Huang                                                                 Philips                                                                   H. Li                                                            China Mobile                                                         A. D'Alessandro                                                          Telecom Italia                                                          September 2014Pre-standard Linear Protection Switching inMPLS Transport Profile (MPLS-TP)Abstract   The IETF Standards Track solution for MPLS Transport Profile   (MPLS-TP) Linear Protection is provided in RFCs 6378, 7271, and 7324.   This document describes the pre-standard implementation of MPLS-TP   Linear Protection that has been deployed by several network operators   using equipment from multiple vendors.  At the time of publication,   these pre-standard implementations were still in operation carrying   live traffic.   The specified mechanism supports 1+1 unidirectional/bidirectional   protection switching and 1:1 bidirectional protection switching.  It   is purely supported by the MPLS-TP data plane and can work without   any control plane.van Helvoort, et al.          Informational                     [Page 1]

RFC 7347        Pre-standard MPLS-TP Lin. Prot. Switching September 2014Status of This Memo   This document is not an Internet Standards Track specification; it is   published for informational purposes.   This is a contribution to the RFC Series, independently of any other   RFC stream.  The RFC Editor has chosen to publish this document at   its discretion and makes no statement about its value for   implementation or deployment.  Documents approved for publication by   the RFC Editor are not a candidate for any level of Internet   Standard; seeSection 2 of RFC 5741.   Information about the current status of this document, any errata,   and how to provide feedback on it may be obtained athttp://www.rfc-editor.org/info/rfc7347.Copyright Notice   Copyright (c) 2014 IETF Trust and the persons identified as the   document authors.  All rights reserved.   This document is subject toBCP 78 and the IETF Trust's Legal   Provisions Relating to IETF Documents   (http://trustee.ietf.org/license-info) in effect on the date of   publication of this document.  Please review these documents   carefully, as they describe your rights and restrictions with respect   to this document.van Helvoort, et al.          Informational                     [Page 2]

RFC 7347        Pre-standard MPLS-TP Lin. Prot. Switching September 2014Table of Contents1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .42.  Conventions Used in This Document . . . . . . . . . . . . . .53.  Acronyms  . . . . . . . . . . . . . . . . . . . . . . . . . .54.  Linear Protection-Switching Overview  . . . . . . . . . . . .64.1.  Protection Architecture Types . . . . . . . . . . . . . .64.1.1.  1+1 Architecture  . . . . . . . . . . . . . . . . . .64.1.2.  1:1 Architecture  . . . . . . . . . . . . . . . . . .64.1.3.  1:n Architecture  . . . . . . . . . . . . . . . . . .74.2.  Protection Switching Type . . . . . . . . . . . . . . . .74.3.  Protection Operation Type . . . . . . . . . . . . . . . .75.  Protection-Switching Trigger Conditions . . . . . . . . . . .85.1.  Fault Conditions  . . . . . . . . . . . . . . . . . . . .85.2.  External Commands . . . . . . . . . . . . . . . . . . . .85.2.1.  End-to-End Commands . . . . . . . . . . . . . . . . .85.2.2.  Local Commands  . . . . . . . . . . . . . . . . . . .96.  Protection-Switching Schemes  . . . . . . . . . . . . . . . .106.1.  1+1 Unidirectional Protection Switching . . . . . . . . .106.2.  1+1 Bidirectional Protection Switching  . . . . . . . . .116.3.  1:1 Bidirectional Protection Switching  . . . . . . . . .127.  APS Protocol  . . . . . . . . . . . . . . . . . . . . . . . .137.1.  APS PDU Format  . . . . . . . . . . . . . . . . . . . . .137.2.  APS Transmission  . . . . . . . . . . . . . . . . . . . .167.3.  Hold-Off Timer  . . . . . . . . . . . . . . . . . . . . .177.4.  WTR Timer . . . . . . . . . . . . . . . . . . . . . . . .177.5.   Command Acceptance and Retention . . . . . . . . . . . .187.6.  Exercise Operation  . . . . . . . . . . . . . . . . . . .188.  Protection-Switching Logic  . . . . . . . . . . . . . . . . .198.1.  Principle of Operation  . . . . . . . . . . . . . . . . .198.2.  Equal Priority Requests . . . . . . . . . . . . . . . . .218.3.  Signal Degrade of the Protection Transport Entity . . . .229.  Protection-Switching State Transition Tables  . . . . . . . .2210. Security Considerations . . . . . . . . . . . . . . . . . . .2411. Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .2412. References  . . . . . . . . . . . . . . . . . . . . . . . . .2412.1.  Normative References . . . . . . . . . . . . . . . . . .2412.2.  Informative References . . . . . . . . . . . . . . . . .25Appendix A.  Operation Examples of the APS Protocol . . . . . . .26van Helvoort, et al.          Informational                     [Page 3]

RFC 7347        Pre-standard MPLS-TP Lin. Prot. Switching September 20141.  Introduction   The IETF Standards Track solution for MPLS Transport Profile   (MPLS-TP) Linear Protection is provided in [RFC6378], [RFC7271], and   [RFC7324].   This document describes the pre-standard implementation of MPLS-TP   Linear Protection that has been deployed by several network operators   using equipment from multiple vendors.  At the time of publication,   these pre-standard implementations were still in operation carrying   live traffic.   This implementation was considered in the MPLS WG; however, a   different path was chosen.   This document may be useful in the future if a vendor or operator is   trying to interwork with a different vendor or operator who has   deployed the pre-standard implementation, and it provides a permanent   record of the pre-standard implementation.  It is also worth noting   that the experience gained during deployment of the implementations   of this document was used to refine [RFC7271].   MPLS-TP is defined as the transport profile of MPLS technology to   allow its deployment in transport networks.  A typical feature of a   transport network is that it can provide fast protection switching   for end-to-end transport paths and transport path segments.  The   protection-switching time is generally required to be less than 50 ms   to meet the strict requirements of services such as voice, private   line, etc.   The goal of a linear protection-switching mechanism is to satisfy the   requirement of fast protection switching for an MPLS-TP network.   Linear protection switching means that, for one or more working   transport entities (working paths), there is one protection transport   entity (protection path), which is disjoint from any of the working   transport entities, ready to take over the service transmission when   a working transport entity has failed.   This document specifies a 1+1 unidirectional protection-switching   mechanism for a unidirectional transport entity (either point to   point or point to multipoint) as well as a bidirectional point-to-   point transport entity and a 1+1/1:1 bidirectional protection-   switching mechanism for a point-to-point bidirectional transport   entity.  Since bidirectional protection switching needs the   coordination of the two endpoints of the transport entity, this   document also specifies the Automatic Protection Switching (APS)   protocol, which is used for this purpose.van Helvoort, et al.          Informational                     [Page 4]

RFC 7347        Pre-standard MPLS-TP Lin. Prot. Switching September 2014   The linear protection mechanism described in this document is   applicable to both Label Switched Paths (LSPs) and Pseudowires (PWs).   The APS protocol specified in this document is based on the same   principles and behavior of the APS protocol designed for Synchronous   Optical Network (SONET) [T1.105.01] / Synchronous Digital Hierarchy   (SDH) [G.841], Optical Transport Network (OTN) [G.873.1], and   Ethernet [G.8031] and provides commonality with the established   operation models utilized in transport network technologies (e.g.,   SDH/SONET, OTN, and Ethernet).2.  Conventions Used in This Document   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this   document are to be interpreted as described in [RFC2119].3.  Acronyms   This document uses the following acronyms:   APS     Automatic Protection Switching   DNR     Do not Revert   EXER    Exercise   G-ACh   Generic Associated Channel   FS      Forced Switch   LO      Lockout of Protection   LSP     Label Switched Path   MPLS-TP MPLS Transport Profile   MS      Manual Switch   MS-P    Manual Switch to Protection transport entity   MS-W    Manual Switch to Working transport entity   NR      No Request   OAM     Operations, Administration, and Maintenance   OTN     Optical Transport Network   PDU     Protocol Data Unit   PW      Pseudowire   RR      Reverse Request   SD      Signal Degrade   SD-P    Signal Degrade on Protection transport entity   SD-W    Signal Degrade on Working transport entity   SDH     Synchronous Digital Hierarchy   SF      Signal Fail   SF-P    Signal Fail on Protection transport entity   SF-W    Signal Fail on Working transport entity   SONET   Synchronous Optical Network   WTR     Wait to Restorevan Helvoort, et al.          Informational                     [Page 5]

RFC 7347        Pre-standard MPLS-TP Lin. Prot. Switching September 20144.  Linear Protection-Switching Overview   To guarantee the protection-switching time for a working transport   entity, its protection transport entity is always preconfigured   before the failure occurs.  Normally, traffic will be transmitted and   received on the working transport entity.  Switching to the   protection transport entity is usually triggered by link or node   failure, external commands, etc.  Note that external commands are   often used in transport networks by operators, and they are very   useful in cases of service adjustment, path maintenance, etc.4.1.  Protection Architecture Types4.1.1.  1+1 Architecture   In the 1+1 architecture, the protection transport entity is   associated with a working transport entity.  The normal traffic is   permanently bridged onto both the working transport entity and the   protection transport entity at the source endpoint of the protected   domain.  The normal traffic on working and protection transport   entities is transmitted simultaneously to the destination sink   endpoint of the protected domain, where a selection between the   working and protection transport entity is made based on   predetermined criteria, such as signal fail and signal degrade   indications.4.1.2.  1:1 Architecture   In the 1:1 architecture, the protection transport entity is   associated with a working transport entity.  When the working   transport entity is determined to be impaired, the normal traffic   MUST be transferred from the working to the protection transport   entity at both the source and sink endpoints of the protected domain.   The selection between the working and protection transport entities   is made based on predetermined criteria, such as signal fail and   signal degrade indications from the working or protection transport   entity.   The bridge at the source endpoint can be realized in two ways: it is   either a selector bridge or a broadcast bridge.  With a selector   bridge, the normal traffic is connected either to the working   transport entity or the protection transport entity.  With a   broadcast bridge, the normal traffic is permanently connected to the   working transport entity, and in case a protection switch is active,   it is also connected to the protection transport entity.  The   broadcast bridge is recommended to be used in revertive mode only.van Helvoort, et al.          Informational                     [Page 6]

RFC 7347        Pre-standard MPLS-TP Lin. Prot. Switching September 20144.1.3.  1:n Architecture   Details for the 1:n protection-switching architecture are out of   scope of this document and will be provided in a different document   in the future.   It is worth noting that the APS protocol defined here is capable of   supporting 1:n operations.4.2.  Protection Switching Type   The linear protection-switching types can be a unidirectional   switching type or a bidirectional switching type.   o  Unidirectional switching type: Only the affected direction of the      working transport entity is switched to the protection transport      entity; the selectors at each endpoint operate independently.      This switching type is recommended to be used for 1+1 protection      in this document.   o  Bidirectional switching type: Both directions of the working      transport entity, including the affected direction and the      unaffected direction, are switched to the protection transport      entity.  For bidirectional switching, the APS protocol is required      to coordinate the two endpoints so that both have the same bridge      and selector settings, even for a unidirectional failure.  This      type is applicable for 1+1 and 1:1 protection.4.3.  Protection Operation Type   The linear protection operation types can be a non-revertive   operation type or a revertive operation type.   o  Non-revertive operation: The normal traffic will not be switched      back to the working transport entity even after a protection      switching cause has cleared.  This is generally accomplished by      replacing the previous switch request with a "Do not Revert (DNR)"      request, which has a low priority.   o  Revertive operation: The normal traffic is restored to the working      transport entity after the condition(s) causing the protection      switching has cleared.  In the case of clearing a command (e.g.,      Forced Switch), this happens immediately.  In the case of clearing      a defect, this generally happens after the expiry of a "Wait to      Restore (WTR)" timer, which is used to avoid chattering of      selectors in the case of intermittent defects.van Helvoort, et al.          Informational                     [Page 7]

RFC 7347        Pre-standard MPLS-TP Lin. Prot. Switching September 20145.  Protection-Switching Trigger Conditions5.1.  Fault Conditions   Fault conditions mean the requests generated by the local Operations,   Administration, and Maintenance (OAM) function.   o  Signal Fail (SF): If an endpoint detects a failure by an OAM      function or other mechanism, it will submit a local signal failure      (local SF) to the APS module to request a protection switch.  The      local SF could be on the working transport entity (Signal Fail on      Working transport entity (SF-W)) or the protection transport      entity (Signal Fail on Protection transport entity (SF-P)).   o  Signal Degrade (SD): If an endpoint detects signal degradation by      an OAM function or other mechanism, it will submit a local signal      degrade (local SD) to the APS module to request a protection      switching.  The local SD could be on the working transport entity      (Signal Degrade on Working transport entity (SD-W)) or the      protection transport entity (Signal Degrade on Protection      transport entity (SD-P)).5.2.  External Commands   The external command issues an appropriate external request to the   protection process.5.2.1.  End-to-End Commands   These commands are applied to both local and remote nodes.  When the   APS protocol is present, these commands, except the Clear command,   are signaled to the far end of the connection.  In bidirectional   switching, these commands affect the bridge and selector at both   ends.   o  Lockout of Protection (LO): This command is used to provide the      operator a tool for temporarily disabling access to the protection      transport entity.   o  Manual Switch (MS): This command is used to provide the operator a      tool for temporarily switching normal traffic to the working      transport entity (Manual Switch to Working transport entity (MS-      W)) or to the protection transport entity (Manual Switch to      Protection transport entity (MS-P)), unless a higher priority      switch request (i.e., LO, FS, or SF) is in effect.van Helvoort, et al.          Informational                     [Page 8]

RFC 7347        Pre-standard MPLS-TP Lin. Prot. Switching September 2014   o  Forced Switch (FS): This command is used to provide the operator a      tool for temporarily switching normal traffic from the working      transport entity to the protection transport entity, unless a      higher priority switch request (i.e., LO or SF-P) is in effect.   o  Exercise (EXER): Exercise is a command to test if the APS      communication is operating correctly.  The EXER command SHALL NOT      affect the state of the protection selector and bridge.   o  Clear: This command between management and the local protection      process is not a request sent by APS to other endpoints.  It is      used to clear the active near-end external command or WTR state.5.2.2.  Local Commands   These commands apply only to the near end (local node) of the   protection group.  Even when an APS protocol is supported, they are   not signaled to the far end.   o  Freeze: This command freezes the state of the protection group.      Until the freeze is cleared, additional near-end commands are      rejected, and condition changes and received APS information are      ignored.  When the Freeze command is cleared, the state of the      protection group is recomputed based on the condition and received      APS information.      Because the freeze is local, if the freeze is issued at one end      only, a failure of protocol can occur as the other end is open to      accept any operator command or fault condition.   o  Clear Freeze: This command clears the local freeze.van Helvoort, et al.          Informational                     [Page 9]

RFC 7347        Pre-standard MPLS-TP Lin. Prot. Switching September 20146.  Protection-Switching Schemes6.1.  1+1 Unidirectional Protection Switching     +-----------+                                       +-----------+     |           |---------------------------------------|           |     |          -+---------------------------------------+-          |     |         / |---------------------------------------| \         |     |        /  |       Working transport entity        |  \        |   --+------->   |                                       |   --------+->     |        \  |                                       |           |     |         \ |---------------------------------------|           |     |          -+---------------------------------------|           |     |  source   |---------------------------------------|    sink   |     +-----------+       Protection transport entity     +-----------+                            (normal condition)     +-----------+                                       +-----------+     |           |---------------------------------------|           |     |          -+------------------XX-------------------+           |     |         / |---------------------------------------|           |     |        /  |   Working transport entity (failure)  |           |   --|------->   |                                       |   --------+->     |        \  |                                       |  /        |     |         \ |---------------------------------------| /         |     |          -+---------------------------------------+-          |     |  source   |---------------------------------------|    sink   |     +-----------+     Protection transport entity       +-----------+                           (failure condition)         Figure 1: 1+1 Unidirectional Linear Protection Switching   1+1 unidirectional protection switching is the simplest protection   switching mechanism.  The normal traffic is permanently bridged on   both the working and protection transport entities at the source   endpoint of the protected domain.  In the normal condition, the sink   endpoint receives traffic from the working transport entity.  If the   sink endpoint detects a failure on the working transport entity, it   will switch to receive traffic from the protection transport entity.   1+1 unidirectional protection switching is recommended to be used for   unidirectional transport.   Note that 1+1 unidirectional protection switching does not use the   APS coordination protocol since it only performs protection switching   based on the local request.van Helvoort, et al.          Informational                    [Page 10]

RFC 7347        Pre-standard MPLS-TP Lin. Prot. Switching September 20146.2.  1+1 Bidirectional Protection Switching     +-----------+                                       +-----------+     |           |---------------------------------------|           |     |          -+<--------------------------------------+-          |     |         / +-------------------------------------->+ \         |     | sink   / /|---------------------------------------|\ \   sink |   <-+-------/ / |        Working transport entity       | --\-------+->   --+-------->  |                                       |    <------+--     | source  \ |                                       |   / source|     |          \|---------------------------------------|  /        |     |           +-------------------------------------->| /         |     |           |<--------------------------------------+-          |     | APS <...................................................> APS |     |           |---------------------------------------+           |     +-----------+      Protection transport entity      +-----------+                            (normal condition)     +-----------+                                       +-----------+     |           |---------------------------------------|           |     |           +<----------------XX--------------------+-          |     |           +-------------------------------------->+ \         |     |          /|---------------------------------------|  \        |     | source  / |   Working transport entity (failure)  |   \ source|   --+-------->  |                                       |    \<-----+--   <-+-------  \ |                                       |  --/------+->     | sink  \  \|---------------------------------------| / /  sink |     |        \  +-------------------------------------->+- /        |     |         --+<--------------------------------------+-/         |     | APS <...................................................> APS |     |           |---------------------------------------+           |     +-----------+      Protection transport entity      +-----------+                             (failure condition)          Figure 2: 1+1 Bidirectional Linear Protection Switching   In 1+1 bidirectional protection switching, for each direction, the   normal traffic is permanently bridged on both the working and   protection transport entities at the source endpoint of the protected   domain.  In the normal condition, for each direction, the sink   endpoint receives traffic from the working transport entity.   If the sink endpoint detects a failure on the working transport   entity, it will switch to receive traffic from the protection   transport entity.  It will also send an APS message to inform the   sink endpoint on the other direction to switch to receive traffic   from the protection transport entity.van Helvoort, et al.          Informational                    [Page 11]

RFC 7347        Pre-standard MPLS-TP Lin. Prot. Switching September 2014   The APS mechanism is necessary to coordinate the two endpoints of the   transport entity and to implement 1+1 bidirectional protection   switching even for a unidirectional failure.6.3.  1:1 Bidirectional Protection Switching     +-----------+                                       +-----------+     |           |---------------------------------------|           |     |          -+<--------------------------------------+-          |     |         / +-------------------------------------->+ \         |     | sink   / /|---------------------------------------|\ \  source|   <-+-------/ / |        Working transport entity       | \ <-------+--   --+-------->  |                                       |  ---------+->     | source    |                                       |      sink |     |           |---------------------------------------|           |     |           |                                       |           |     |           |                                       |           |     | APS <...................................................> APS |     |           |---------------------------------------|           |     +-----------+      Protection transport entity      +-----------+                           (normal condition)     +-----------+                                       +-----------+     |           |---------------------------------------|           |     |           |                 \/                    |           |     |           |                 /\                    |           |     |           |---------------------------------------|           |     | source    |   Working transport entity (failure)  |      sink |   --+------->   |                                       |   --------+->   <-+------- \  |                                       |  / <------+--     | sink  \ \ |---------------------------------------| / / source|     |        \ -+-------------------------------------->+- /        |     |         --+<--------------------------------------+--         |     | APS <...................................................> APS |     |           |---------------------------------------+           |     +-----------+      Protection transport entity      +-----------+                           (failure condition)          Figure 3: 1:1 Bidirectional Linear Protection Switching   In 1:1 bidirectional protection switching, for each direction, the   source endpoint sends traffic on either the working transport entity   or the protection transport entity.  The sink endpoint receives the   traffic from the same transport entity on which the source endpoint   sends the traffic.   In the normal condition, for each direction, the source and sink   endpoints send and receive traffic from the working transport entity.van Helvoort, et al.          Informational                    [Page 12]

RFC 7347        Pre-standard MPLS-TP Lin. Prot. Switching September 2014   If the sink endpoint detects a failure on the working transport   entity, it will switch to send and receive traffic from the   protection transport entity.  It will also send an APS message to   inform the sink endpoint on another direction to switch to send and   receive traffic from the protection transport entity.   The APS mechanism is necessary to coordinate the two endpoints of the   transport entity and implement 1:1 bidirectional protection switching   even for a unidirectional failure.7.  APS Protocol   This APS protocol is based upon the APS protocol defined in   Section 11 of [G.8031].  See that reference for further definition of   the Protocol Data Unit (PDU) fields and protocol details beyond the   description in this document.7.1.  APS PDU Format   APS packets MUST be sent over a Generic Associated Channel (G-ACh) as   defined in [RFC5586].   The format of APS PDU is specified in Figure 4 below.     0                   1                   2                   3     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |0 0 0 1|0 0 0 0|0 0 0 0 0 0 0 0|     Channel Type (=0x7FFA)    |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    | MEL | Version |    OpCode     |     Flags     |   TLV Offset  |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |                  APS Specific Information                     |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |    End TLV    |    +-+-+-+-+-+-+-+-+                         Figure 4: APS PDU Format   The following values MUST be used for APS PDU:   o  Channel Type: The Channel Type MUST be configurable by the      implementation.  During deployment, the local system administrator      provisioned the value 0x7FFA.  This is a code point value in the      range of experimental Channel Types as described inRFC 5586,      Section 10.van Helvoort, et al.          Informational                    [Page 13]

RFC 7347        Pre-standard MPLS-TP Lin. Prot. Switching September 2014   o  Maintenance Entity group Level (MEL): The MEL value to set and      check MUST be configurable.  The DEFAULT value MUST be "111".      With co-routed bidirectional transport paths, the configured MEL      MUST be the same in both directions.   o  Version: 0x00   o  OpCode: 0x27 (=0d39)   o  Flags: 0x00   o  TLV Offset: 4   o  End TLV: 0x00   The format of the APS-specific information is defined in Figure 5.     0                   1                   2                   3     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |Request|Pr.Type|   Requested   |   Bridged     | |             |    |   /   |-+-+-+-|               |               |T|  Reserved(0)|    | State |A|B|D|R|    Signal     |    Signal     | |             |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                 Figure 5: APS-Specific Information Format   All bits defined as "Reserved" MUST be transmitted as 0 and ignored   on reception.   o  Request/State:      The four bits indicate the protection-switching request type.  See      Figure 6 for the code of each request/state type.van Helvoort, et al.          Informational                    [Page 14]

RFC 7347        Pre-standard MPLS-TP Lin. Prot. Switching September 2014      In case that there are multiple protection-switching requests,      only the protection-switching request with the highest priority      MUST be processed.          +------------------------------------+---------------+          |            Request/State           | Code/Priority |          +------------------------------------+---------------+          |Lockout of Protection (LO)          | 1111 (highest)|          +------------------------------------+---------------+          |Signal Fail on Protection (SF-P)    | 1110          |          +------------------------------------+---------------+          |Forced Switch (FS)                  | 1101          |          +------------------------------------+---------------+          |Signal Fail on Working (SF-W)       | 1011          |          +------------------------------------+---------------+          |Signal Degrade (SD)                 | 1001          |          +------------------------------------+---------------+          |Manual Switch (MS)                  | 0111          |          +------------------------------------+---------------+          |Wait to Restore (WTR)               | 0101          |          +------------------------------------+---------------+          |Exercise (EXER)                     | 0100          |          +------------------------------------+---------------+          |Reverse Request (RR)                | 0010          |          +------------------------------------+---------------+          |Do Not Revert (DNR)                 | 0001          |          +------------------------------------+---------------+          |No Request (NR)                     | 0000 (lowest) |          +------------------------------------+---------------+           Figure 6: Protection-Switching Request Code/Priority   o  Protection Type (Pr.Type):      The four bits are used to specify the protection type.      A: reserved (set by default to 1)      B: 0 - 1+1 (permanent bridge)      1 - 1:1 (no permanent bridge)      D: 0 - Unidirectional switching      1 - Bidirectional switching      R: 0 - Non-revertive operation      1 - Revertive operationvan Helvoort, et al.          Informational                    [Page 15]

RFC 7347        Pre-standard MPLS-TP Lin. Prot. Switching September 2014   o  Requested Signal:      This byte is used to indicate the traffic that the near-end      requests to be carried over the protection entity.      value = 0: Null traffic      value = 1: Normal traffic 1      value = 2~255: Reserved   o  Bridged Signal:      This byte is used to indicate the traffic that is bridged onto the      protection entity.      value = 0: Null traffic      value = 1: Normal traffic 1      value = 2~255: Reserved   o  Bridge Type (T):      This bit is used to further specify the type of non-permanent      bridge for 1:1 protection switching.      value = 0: Selector bridge      value = 1: Broadcast bridge   o  Reserved:      This field MUST be set to zero.7.2.  APS Transmission   The APS message MUST be transported on the protection transport   entity by encapsulation with the protection transport entity label   (the label of the LSP used to transport protection traffic).  If an   endpoint receives APS-specific information from the working transport   entity, it MUST ignore this information and MUST report the failure   of protocol defect (seeSection 8.1) to the operator.   A new APS packet MUST be transmitted immediately when a change in the   transmitted status occurs.  The first three APS packets MUST be   transmitted as fast as possible only if the APS information to be   transmitted has been changed so that fast protection switching is   possible, even if one or two APS packets are lost or corrupted.  The   interval of the first three APS packets SHOULD be 3.3 ms.  APS   packets after the first three MUST be transmitted with the interval   of 5 seconds.van Helvoort, et al.          Informational                    [Page 16]

RFC 7347        Pre-standard MPLS-TP Lin. Prot. Switching September 2014   If no valid APS-specific information is received, the last valid   received information remains applicable.7.3.  Hold-Off Timer   In order to coordinate timing of protection switches at multiple   layers, a hold-off timer MAY be required.  The purpose is to allow a   server-layer protection switch to have a chance to fix the problem   before switching at a client layer.   Each selector SHOULD have a provisioned hold-off timer.  The   suggested range of the hold-off timer is 0 to 10 seconds in steps of   100 ms (accuracy of +/-5 ms).   When a new defect or more severe defect occurs (new SF or SD) on the   active transport entity (the transport entity that currently carries   and selects traffic), this event will not be reported immediately to   protection switching if the provisioned hold-off timer value is non-   zero.  Instead, the hold-off timer SHALL be started.  When the hold-   off timer expires, it SHALL be checked whether a defect still exists   on the transport entity that started the timer.  If it does, that   defect SHALL be reported to protection switching.  The defect need   not be the same one that started the timer.   This hold-off timer mechanism SHALL be applied for both working and   protection transport entities.7.4.  WTR Timer   In revertive mode of operation, to prevent frequent operation of the   protection switch due to an intermittent defect, a failed working   transport entity MUST become fault free.  After the failed working   transport entity meets this criterion, a fixed period of time SHALL   elapse before a normal traffic signal uses it again.  This period,   called a WTR period, MAY be configured by the operator in 1 minute   steps between 5 and 12 minutes; the default value is 5 minutes.  An   SF or SD condition will override the WTR.  To activate the WTR timer   appropriately, even when both ends concurrently detect clearance of   SF-W and SD-W, when the local state transits from SF-W or SD-W to No   Request (NR) with the requested signal number 1, the previous local   state, SF-W or SD-W, MUST be memorized.  If both the local state and   far-end state are NR with the requested signal number 1, the local   state transits to WTR only when the previous local state is SF-W or   SD-W.  Otherwise, the local state transits to NR with the requested   signal number 0.van Helvoort, et al.          Informational                    [Page 17]

RFC 7347        Pre-standard MPLS-TP Lin. Prot. Switching September 2014   In revertive mode of operation, when the protection is no longer   requested, i.e., the failed working transport entity is no longer in   SF or SD condition (and assuming no other requesting transport   entities), a local WTR state will be activated.  Since this state   becomes the highest in priority, it is indicated on the APS signal   and maintains the normal traffic signal from the previously failed   working transport entity on the protection transport entity.  This   state SHALL normally time out and become an NR state.  The WTR timer   deactivates earlier when any request of higher priority request   preempts this state.7.5.  Command Acceptance and Retention   The commands Clear, LO, FS, MS, and EXER are accepted or rejected in   the context of previous commands, the condition of the working and   protection entities in the protection group, and (in bidirectional   switching only) the APS information received.   The Clear command MUST be only valid if a near-end LO, FS, MS, or   EXER command is in effect or if a WTR state is present at the near   end and rejected otherwise.  This command will remove the near-end   command or WTR state, allowing the next lower-priority condition or   (in bidirectional switching) APS request to be asserted.   Other commands MUST be rejected unless they are higher priority than   the previously existing command, condition, or (in bidirectional   switching) APS request.  If a new command is accepted, any previous,   lower-priority command that is overridden MUST be forgotten.  If a   higher priority command overrides a lower-priority condition or (in   bidirectional switching) APS request, that other request will be   reasserted if it still exists at the time the command is cleared.  If   a command is overridden by a condition or (in bidirectional   switching) APS request, that command MUST be forgotten.7.6.  Exercise Operation   Exercise is a command to test if the APS communication is operating   correctly.  It is lower priority than any "real" switch request.  It   is only valid in bidirectional switching, since this is the only   place where you can get a meaningful test by looking for a response.   The Exercise command SHALL issue the command with the same requested   and bridged signal numbers of the NR, Reverse Request (RR), or DNR   request that it replaces.  The valid response will be an RR with the   corresponding requested and bridged signal numbers.  When Exercise   commands are input at both ends, an EXER, instead of RR, MUST be   transmitted from both ends.  The standard response to DNR MUST be DNR   rather than NR.  When the exercise command is cleared, it MUST bevan Helvoort, et al.          Informational                    [Page 18]

RFC 7347        Pre-standard MPLS-TP Lin. Prot. Switching September 2014   replaced with NR or RR if the requested signal number is 0 and DNR or   RR if the requested signal number is 1.8.  Protection-Switching Logic8.1.  Principle of Operation                +-------------+ Persistent +----------+    SF,SD       | Hold-off    | fault      | Local    |    ----------->| timer logic |----------->| request  |                +-------------+            | logic    |    Other local requests ----------------->|          |    (LO, FS, MS, EXER, Clear)              +----------+                                               |                                               | Highest                                               | local request                                               |    Remote APS                                 V    message       +-------+ Remote APS    +----------------+    ------------->|  APS  | request/state |  APS process   |    (received     | check |-------------->|  logic         |    from far end) +-------+               +----------------+                    |   ^                   |            |                    |   |                   | Signaled   |                    |   |                   | APS        |                    |   | Txed              |            |                    |   | "Requested        V            |                    |   | Signal"         +-----------+  |                    |   +-----------------| APS mess. |  |                    |                     | generator |  |                    |                     +-----------+  |                    |                       |            |                    V                       |            |                Failure of                  V            |                protocol                  APS message    |                detection                                V                                                    Set local                                                    bridge/selector                   Figure 7: Protection-Switching Logic   Figure 7 describes the protection-switching logic.   One or more local protection-switching requests may be active.  The   "local request logic" determines which of these requests is highest   using the order of priority given in Figure 6.  This highest local   request information SHALL be passed on to the "APS process logic".   Note that an accepted Clear command, clearance of SF or SD, orvan Helvoort, et al.          Informational                    [Page 19]

RFC 7347        Pre-standard MPLS-TP Lin. Prot. Switching September 2014   expiration of the WTR timer SHALL NOT be processed by the local   request logic but SHALL be considered as the highest local request   and submitted to the APS process logic for processing.   The remote APS message is received from the far end and is subjected   to the validity check and mismatch detection in "APS check".  Failure   of protocol situations are as follows:   o  The "B" field mismatch due to incompatible provisioning;   o  The reception of the APS message from the working entity due to      working/protection configuration mismatch;   o  No match in sent "Requested Signal" and received "Requested      Signal" for more than 50 ms;   o  No APS message is received on the protection transport entity      during at least 3.5 times the long APS interval (e.g., at least      17.5 seconds), and there is no defect on the protection transport      entity.   Provided the "B" field matches:   o  If the "D" bit mismatches, the bidirectional side will fall back      to unidirectional switching.   o  If the "R" bit mismatches, one side will clear switches to WTR and      the other will clear to DNR.  The two sides will interwork and the      traffic is protected.   o  If the "T" bit mismatches, the side using a broadcast bridge will      fall back to using a selector bridge.   The APS message with invalid information MUST be ignored, and the   last valid received information remains applicable.   The linear protection-switching algorithm SHALL commence immediately   every time one of the input signals changes, i.e., when the status of   any local request changes, or when different APS-specific information   is received from the far end.  The consequent actions of the   algorithm are also initiated immediately, i.e., change the local   bridge/selector position (if necessary), transmit new APS-specific   information (if necessary), or detect the failure of protocol defect   if the protection switching is not completed within 50 ms.van Helvoort, et al.          Informational                    [Page 20]

RFC 7347        Pre-standard MPLS-TP Lin. Prot. Switching September 2014   The state transition is calculated in the "APS process logic" based   on the highest local request, the request of the last received   "Request/State" information, and state transition tables defined inSection 9, as follows:   o  If the highest local request is Clear, clearance of SF or SD, or      expiration of WTR, a state transition is calculated first based on      the highest local request and state machine table for local      requests to obtain an intermediate state.  This intermediate state      is the final state in case of clearance of SF-P; otherwise,      starting at this intermediate state, the last received far-end      request and the state machine table for far-end requests are used      to calculate the final state.   o  If the highest local request is neither Clear nor clearance of SF      or of SD nor expiration of WTR, the APS process logic compares the      highest local request with the request of the last received      "Request/State" information based on Figure 6.      1.  If the highest local request has higher or equal priority, it          is used with the state transition table for local requests          defined inSection 9 to determine the final state; otherwise,      2.  The request of the last received "Request/State" information          is used with the state transition table for far-end requests          defined inSection 9 to determine the final state.   The "APS message generator" generates APS-specific information with   the signaled APS information for the final state from the state   transition calculation (with coding as described in Figure 5).8.2.  Equal Priority Requests   In general, once a switch has been completed due to a request, it   will not be overridden by another request of the same priority   (first-come, first-served policy).  Equal priority requests from both   sides of a bidirectional protection group are both considered valid,   as follows:   o  If the local state is NR, with the requested signal number 1, and      the far-end state is NR, with the requested signal number 0, the      local state transits to NR with the requested signal number 0.      This applies to the case when the remote request for switching to      the protection transport entity has been cleared.van Helvoort, et al.          Informational                    [Page 21]

RFC 7347        Pre-standard MPLS-TP Lin. Prot. Switching September 2014   o  If both the local and far-end states are NR, with the requested      signal number 1, the local state transits to the appropriate new      state (DNR state for non-revertive mode and WTR state for      revertive mode).  This applies to the case when the old request      has been cleared at both ends.   o  If both the local and far-end states are RR, with the same      requested signal number, both ends transit to the appropriate new      state according to the requested signal number.  This applies to      the case of concurrent deactivation of EXER from both ends.   o  In other cases, no state transition occurs, even if equal priority      requests are activated from both ends.  Note that if MSs are      issued simultaneously to both working and protection transport      entities, either as local or far-end requests, the MS to the      working transport entity is considered as having higher priority      than the MS to the protection transport entity.8.3.  Signal Degrade of the Protection Transport Entity   Signal degrade on the protection transport entity has the same   priority as signal degrade on the working transport entity.  As a   result, if an SD condition affects both transport entities, the first   SD detected MUST NOT be overridden by the second SD detected.  If the   SD is detected simultaneously, either as local or far-end requests on   both working and protection transport entities, then the SD on the   standby transport entity MUST be considered as having higher priority   than the SD on the active transport entity, and the normal traffic   signal continues to be selected from the active transport entity   (i.e., no unnecessary protection switching is performed).   In the preceding sentence, "simultaneously" relates to the occurrence   of SD on both the active and standby transport entities at input to   the protection-switching process at the same time, or as long as an   SD request has not been acknowledged by the remote end in   bidirectional protection switching.9.  Protection-Switching State Transition Tables   In this section, state transition tables for the following protection   switching configurations are described.   o  1:1 bidirectional (revertive mode, non-revertive mode);   o  1+1 bidirectional (revertive mode, non-revertive mode);   o  1+1 unidirectional (revertive mode, non-revertive mode).van Helvoort, et al.          Informational                    [Page 22]

RFC 7347        Pre-standard MPLS-TP Lin. Prot. Switching September 2014   Note that any other global or local request that is not described in   state transition tables does not trigger any state transition.   The states specified in the state transition tables can be described   as follows:   o  NR: NR is the state entered by the local priority under all      conditions where no local protection-switching requests (including      WTR and DNR) are active.  NR can also indicate that the highest      local request is overridden by the far-end request, whose priority      is higher than the highest local request.  Normal traffic signal      is selected from the corresponding transport entity.   o  LO, SF-P, SD-P: The access by the normal traffic to the protection      transport entity is NOT allowed in this state.  The normal traffic      is carried by the working transport entity, regardless of the      fault/degrade condition possibly present (due to the highest      priority of the switching triggers leading to this state).   o  FS, SF-W, SD-W, MS-W, MS-P: A switching trigger NOT resulting in      the protection transport entity unavailability is present.  The      normal traffic is selected either from the corresponding working      transport entity or from the protection transport entity,      according to the behavior of the specific switching trigger.   o  WTR: In revertive operation, after the clearing of an SF-W or SD-      W, this maintains normal traffic as selected from the protection      transport entity until the WTR timer expires or another request      with higher priority, including the Clear command, is received.      This is used to prevent frequent operation of the selector in the      case of intermittent failures.   o  DNR: In non-revertive operation, this is used to maintain a normal      traffic to be selected from the protection transport entity.   o  EXER: Exercise of the APS protocol.   o  RR: The near end will enter and signal Reverse Request only in      response to an EXER from the far end.   [State transition tables are shown at the end of the PDF form of this   document.]van Helvoort, et al.          Informational                    [Page 23]

RFC 7347        Pre-standard MPLS-TP Lin. Prot. Switching September 201410.  Security Considerations   MPLS-TP is a subset of MPLS and so builds upon many of the aspects of   the security model of MPLS.  MPLS networks make the assumption that   it is very hard to inject traffic into a network and equally hard to   cause traffic to be directed outside the network.  The control-plane   protocols utilize hop-by-hop security and assume a "chain-of-trust"   model such that end-to-end control-plane security is not used.  For   more information on the generic aspects of MPLS security, see   [RFC5920].   This document describes a protocol carried in the G-ACh [RFC5586] and   so is dependent on the security of the G-ACh, itself.  The G-ACh is a   generalization of the associated channel defined in [RFC4385].  Thus,   this document relies heavily on the security mechanisms provided for   the associated channel and described in those two documents.11.  Acknowledgements   The authors would like to thank Hao Long, Vincenzo Sestito, Italo   Busi, Igor Umansky, and Andy Malis for their input to and review of   the current document.12.  References12.1.  Normative References   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate              Requirement Levels",BCP 14,RFC 2119, March 1997.   [RFC4385]  Bryant, S., Swallow, G., Martini, L., and D. McPherson,              "Pseudowire Emulation Edge-to-Edge (PWE3) Control Word for              Use over an MPLS PSN",RFC 4385, February 2006.   [RFC5586]  Bocci, M., Vigoureux, M., and S. Bryant, "MPLS Generic              Associated Channel",RFC 5586, June 2009.   [RFC5920]  Fang, L., "Security Framework for MPLS and GMPLS              Networks",RFC 5920, July 2010.   [G.841]    International Telecommunications Union, "Types and              characteristics of SDH network protection architectures",              ITU-T Recommendation G.841, October 1998.   [G.873.1]  International Telecommunications Union, "Optical Transport              Network (OTN): Linear protection", ITU-T Recommendation              G.873.1, May 2014.van Helvoort, et al.          Informational                    [Page 24]

RFC 7347        Pre-standard MPLS-TP Lin. Prot. Switching September 2014   [G.8031]   International Telecommunications Union, "Ethernet linear              protection switching", ITU-T Recommendation G.8031/Y.1342,              June 2011.   [T1.105.01]              American National Standards Institute, "Synchronous              Optical Network (SONET) - Automatic Protection Switching",              ANSI 0900105.01:2000 (R2010), March 2000.12.2.  Informative References   [RFC6378]  Weingarten, Y., Bryant, S., Osborne, E., Sprecher, N., and              A. Fulignoli, "MPLS Transport Profile (MPLS-TP) Linear              Protection",RFC 6378, October 2011.   [RFC7271]  Ryoo, J., Gray, E., van Helvoort, H., D'Alessandro, A.,              Cheung, T., and E. Osborne, "MPLS Transport Profile (MPLS-              TP) Linear Protection to Match the Operational              Expectations of Synchronous Digital Hierarchy, Optical              Transport Network, and Ethernet Transport Network              Operators",RFC 7271, June 2014.   [RFC7324]  Osborne, E., "Updates to MPLS Transport Profile Linear              Protection",RFC 7324, July 2014.van Helvoort, et al.          Informational                    [Page 25]

RFC 7347        Pre-standard MPLS-TP Lin. Prot. Switching September 2014Appendix A.  Operation Examples of the APS Protocol   The sequence diagrams shown in this section are only a few examples   of the APS operations.  The first APS message, which differs from the   previous APS message, is shown.  The operation of hold-off timer is   omitted.  The fields whose values are changed during APS packet   exchange are shown in the APS packet exchange.  They are Request/   State, requested traffic, and bridged traffic.  For an example,   SF(0,1) represents an APS packet with the following field values:   Request/State = SF, Requested Signal = 0, and Bridged Signal = 1.   The values of the other fields remain unchanged from the initial   configuration.  The signal numbers 0 and 1 refer to null signal and   normal traffic signal, respectively.  W(A->Z) and P(A->Z) indicate   the working and protection paths in the direction of A to Z,   respectively.   Example 1. 1:1 bidirectional protection switching (revertive mode) -   Unidirectional SF case                       A                  Z                       |                  |                   (1) |---- NR(0,0)----->|                       |<----- NR(0,0)----|                       |                  |                       |                  |                   (2) | (SF on W(Z->A))  |                       |---- SF(1,1)----->| (3)                       |<----- NR(1,1)----|                   (4) |                  |                       |                  |                   (5) | (Recovery)       |                       |---- WTR(1,1)---->|                      /|                  |             WTR timer |                  |                      \|                  |                   (6) |---- NR(0,0)----->| (7)                   (8) |<----- NR(0,0)----|                       |                  |   (1)  The protected domain is operating without any defect, and the        working entity is used for delivering the normal traffic.   (2)  Signal Fail occurs on the working entity in the Z to A        direction.  Selector and bridge of node A select protection        entity.  Node A generates an SF(1,1) message.van Helvoort, et al.          Informational                    [Page 26]

RFC 7347        Pre-standard MPLS-TP Lin. Prot. Switching September 2014   (3)  Upon receiving SF(1,1), node Z sets selector and bridge to        protection entity.  As there is no local request in node Z, node        Z generates an NR(1,1) message.   (4)  Node A confirms that the far end is also selecting protection        entity.   (5)  Node A detects clearing of the SF condition, starts the WTR        timer, and sends a WTR(1,1) message.   (6)  At expiration of the WTR timer, node A sets selector and bridge        to working entity and sends an NR(0,0) message.   (7)  Node Z is notified that the far-end request has been cleared and        sets selector and bridge to working entity.   (8)  It is confirmed that the far end is also selecting working        entity.   Example 2. 1:1 bidirectional protection switching (revertive mode) -   Bidirectional SF case                       A                  Z                       |                  |                   (1) |---- NR(0,0)----->| (1)                       |<----- NR(0,0)----|                       |                  |                       |                  |                   (2) | (SF on W(Z<->A)) | (2)                       |<---- SF(1,1)---->|                   (3) |                  | (3)                       |                  |                   (4) |    (Recovery)    | (4)                       |<---- NR(1,1)---->|                   (5) |<--- WTR(1,1)---->| (5)                      /|                  |\             WTR timer |                  | WTR timer                      \|                  |/                   (6) |<---- NR(1,1)---->| (6)                   (7) |<----- NR(0,0)--->| (7)                   (8) |                  | (8)   (1)  The protected domain is operating without any defect, and the        working entity is used for delivering the normal traffic.   (2)  Nodes A and Z detect local SF conditions on the working entity,        set selector and bridge to protection entity, and generate        SF(1,1) messages.van Helvoort, et al.          Informational                    [Page 27]

RFC 7347        Pre-standard MPLS-TP Lin. Prot. Switching September 2014   (3)  Upon receiving SF(1,1), each node confirms that the far end is        also selecting protection entity.   (4)  Each node detects clearing of the SF condition and sends an        NR(1,1) message as the last received APS message was SF.   (5)  Upon receiving NR(1,1), each node starts the WTR timer and sends        WTR(1,1).   (6)  At expiration of the WTR timer, each node sends NR(1,1) as the        last received APS message was WTR.   (7)  Upon receiving NR(1,1), each node sets selector and bridge to        working entity and sends an NR(0,0) message.   (8)  It is confirmed that the far end is also selecting working        entity.   Example 3. 1:1 bidirectional protection switching (revertive mode) -   Bidirectional SF case - Inconsistent WTR timers                       A                  Z                       |                  |                   (1) |---- NR(0,0)----->| (1)                       |<----- NR(0,0)----|                       |                  |                       |                  |                   (2) | (SF on W(Z<->A)) | (2)                       |<---- SF(1,1)---->|                   (3) |                  | (3)                       |                  |                   (4) |    (Recovery)    | (4)                       |<---- NR(1,1)---->|                   (5) |<--- WTR(1,1)---->| (5)                      /|                  |\             WTR timer |                  | |                      \|                  | WTR timer                   (6) |----- NR(1,1)---->| | (7)                       |                  |/                   (9) |<----- NR(0,0)----| (8)                       |---- NR(0,0)----->| (10)   (1)   The protected domain is operating without any defect, and the         working entity is used for delivering the normal traffic.   (2)   Nodes A and Z detect local SF conditions on the working entity,         set selector and bridge to protection entity, and generate         SF(1,1) messages.van Helvoort, et al.          Informational                    [Page 28]

RFC 7347        Pre-standard MPLS-TP Lin. Prot. Switching September 2014   (3)   Upon receiving SF(1,1), each node confirms that the far end is         also selecting protection entity.   (4)   Each node detects clearing of the SF condition and sends an         NR(1,1) message as the last received APS message was SF.   (5)   Upon receiving NR(1,1), each node starts the WTR timer and         sends WTR(1,1).   (6)   At expiration of the WTR timer in node A, node A sends an         NR(1,1) message as the last received APS message was WTR.   (7)   At node Z, the received NR(1,1) is ignored as the local WTR has         a higher priority.   (8)   At expiration of the WTR timer in node Z, node Z sets selector         and bridge to working entity and sends an NR(0,0) message.   (9)   Upon receiving NR(0,0), node A sets selector and bridge to         working entity and sends an NR(0,0) message.   (10)  It is confirmed that the far end is also selecting working         entity.   Example 4. 1:1 bidirectional protection switching (non-revertive   mode) - Unidirectional SF on working followed by unidirectional SF on   protectionvan Helvoort, et al.          Informational                    [Page 29]

RFC 7347        Pre-standard MPLS-TP Lin. Prot. Switching September 2014                       A                  Z                       |                  |                   (1) |---- NR(0,0)----->| (1)                       |<----- NR(0,0)----|                       |                  |                       |                  |                   (2) | (SF on W(Z->A))  |                       |----- SF(1,1)---->| (3)                   (4) |<----- NR(1,1)----|                       |                  |                       |                  |                   (5) |    (Recovery)    |                       |----- DNR(1,1)--->| (6)                       |<--- DNR(1,1)---->|                       |                  |                       |                  |                       | (SF on P(A->Z))  | (7)                   (8) |<--- SF-P(0,0)----|                       |---- NR(0,0)----->|                       |                  |                       |                  |                       |     (Recovery)   | (9)                       |<----- NR(0,0)----|                       |                  |   (1)  The protected domain is operating without any defect, and the        working entity is used for delivering the normal traffic.   (2)  Signal Fail occurs on the working entity in the Z to A        direction.  Selector and bridge of node A select the protection        entity.  Node A generates an SF(1,1) message.   (3)  Upon receiving SF(1,1), node Z sets selector and bridge to        protection entity.  As there is no local request in node Z, node        Z generates an NR(1,1) message.   (4)  Node A confirms that the far end is also selecting protection        entity.   (5)  Node A detects clearing of the SF condition and sends a DNR(1,1)        message.   (6)  Upon receiving DNR(1,1), node Z also generates a DNR(1,1)        message.   (7)  Signal Fail occurs on the protection entity in the A to Z        direction.  Selector and bridge of node Z select the working        entity.  Node Z generates an SF-P(0,0) message.van Helvoort, et al.          Informational                    [Page 30]

RFC 7347        Pre-standard MPLS-TP Lin. Prot. Switching September 2014   (8)  Upon receiving SF-P(0,0), node A sets selector and bridge to        working entity and generates an NR(0,0) message.   (9)  Node Z detects clearing of the SF condition and sends an NR(0,0)        message.   Exmaple 5. 1:1 bidirectional protection switching (non-revertive   mode) - Bidirectional SF on working followed by bidirectional SF on   protection                       A                  Z                       |                  |                   (1) |---- NR(0,0)----->| (1)                       |<----- NR(0,0)----|                       |                  |                       |                  |                   (2) | (SF on W(A<->Z)) | (2)                   (3) |<---- SF(1,1)---->| (3)                       |                  |                       |                  |                   (4) |    (Recovery)    | (4)                   (5) |<---- NR(1,1)---->| (5)                       |<--- DNR(1,1)---->|                       |                  |                       |                  |                   (6) | (SF on P(A<->Z)) | (6)                   (7) |<--- SF-P(0,0)--->| (7)                       |                  |                       |                  |                   (8) |     (Recovery)   | (8)                       |<---- NR(0,0)---->|                       |                  |   (1)  The protected domain is operating without any defect, and the        working entity is used for delivering the normal traffic.   (2)  Nodes A and Z detect local SF conditions on the working entity,        set selector and bridge to protection entity, and generate        SF(1,1) messages.   (3)  Upon receiving SF(1,1), each node confirms that the far end is        also selecting protection entity.   (4)  Each node detects clearing of the SF condition and sends an        NR(1,1) message as the last received APS message was SF.   (5)  Upon receiving NR(1,1), each node sends DNR(1,1).van Helvoort, et al.          Informational                    [Page 31]

RFC 7347        Pre-standard MPLS-TP Lin. Prot. Switching September 2014   (6)  Signal Fail occurs on the protection entity in both directions.        Selector and bridge of each node selects the working entity.        Each node generates an SF-P(0,0) message.   (7)  Upon receiving SF-P(0,0), each node confirms that the far end is        also selecting working entity.   (8)  Each node detects clearing of the SF condition and sends an        NR(0,0) message.Authors' Addresses   Huub van Helvoort (editor)   Huawei Technologies   EMail: huub@van-helvoort.eu   Jeong-dong Ryoo (editor)   ETRI   EMail: ryoo@etri.re.kr   Haiyan Zhang   Huawei Technologies   EMail: zhanghaiyan@huawei.com   Feng Huang   Philips   EMail: feng.huang@philips.com   Han Li   China Mobile   EMail: lihan@chinamobile.com   Alessandro D'Alessandro   Telecom Italia   EMail: alessandro.dalessandro@telecomitalia.itvan Helvoort, et al.          Informational                    [Page 32]

[8]ページ先頭

©2009-2025 Movatter.jp