Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Info page]

PROPOSED STANDARD
Network Working Group                                           A. SinghRequest for Comments: 3355                                      MotorolaCategory: Standards Track                                      R. Turner                                                                Paradyne                                                                  R. Tio                                                                S. Nanji                                                        Redback Networks                                                             August 2002Layer Two Tunnelling Protocol (L2TP)Over ATM Adaptation Layer 5 (AAL5)Status of this Memo   This document specifies an Internet standards track protocol for the   Internet community, and requests discussion and suggestions for   improvements.  Please refer to the current edition of the "Internet   Official Protocol Standards" (STD 1) for the standardization state   and status of this protocol.  Distribution of this memo is unlimited.Copyright Notice   Copyright (C) The Internet Society (2002).  All Rights Reserved.Abstract   The Layer Two Tunneling Protocol (L2TP) provides a standard method   for transporting the link layer of the Point-to-Point Protocol (PPP)   between a dial-up server and a Network Access Server, using a network   connection in lieu of a physical point-to-point connection.  This   document describes the use of an Asynchronous Transfer Mode (ATM)   network for the underlying network connection.  ATM User-Network   Interface (UNI) Signaling Specification Version 4.0 or Version 3.1   with ATM Adaptation Layer 5 (AAL5) are supported as interfaces to the   ATM network.Applicability   This specification is intended for implementations of L2TP that use   ATM to provide the communications link between the L2TP Access   Concentrator and the L2TP Network Server.Singh, et. al.              Standards Track                     [Page 1]

RFC 3355                     L2TP Over AAL5                  August 20021. Introduction   The Point-to-Point Protocol (PPP) [RFC1661], is frequently used on   the link between a personal computer with a dial modem and a network   service provider, or NSP.  The Layer Two Tunneling Protocol (L2TP)   [RFC2661] enables a dial-up server to provide access to a remote NSP   by extending the PPP connection through a tunnel in a network to   which both it and the NSP are directly connected.  A "tunnel" is a   network layer connection between two nodes, used in the role of a   data link layer connection between those nodes, possibly as part of a   different network.  In [RFC2661] the dial-up server is called an L2TP   Access Concentrator, or LAC.  The remote device that provides access   to a network is called an L2TP Network Server, or LNS.  L2TP uses a   packet delivery service to create a tunnel between the LAC and the   LNS.  "L2TP is designed to be largely insulated from the details of   the media over which the tunnel is established; L2TP requires only   that the tunnel media provide packet oriented point-to-point   connectivity" [RFC2661].  An ATM network with AAL5 offers a suitable   form of packet oriented connection.  This standard supplements   [RFC2661] by providing details specific to the use of AAL5 for a   point-to-point connection between LAC and LNS.2. Conventions   Requirements keywords The key words "MUST", "MUST NOT", "REQUIRED",   "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",   and "OPTIONAL" in this document are to be interpreted as described in   [RFC2119].   A list of acronyms used in this document is given at the end of the   document asAppendix A.3. AAL5 Layer Service Interface   L2TP treats the underlying ATM AAL5 layer service as a bit-   synchronous point-to-point link.  In this context, the L2TP link   corresponds to an ATM AAL5 virtual circuit (VC).  The VC MUST be   full-duplex, point to point, and it MAY be either dedicated (i.e.,   permanent, set up by provisioning) or switched (set up on demand.)   The AAL5 message mode service, in the non-assured mode of operation,   without the corrupted delivery option MUST be used.   Interface Format - The L2TP/AAL5 layer boundary presents an octet   service interface to the AAL5 layer.  There is no provision for sub-   octets to be supplied or accepted.Singh, et. al.              Standards Track                     [Page 2]

RFC 3355                     L2TP Over AAL5                  August 20023.1 Maximum Transfer Unit   Each L2TP PDU MUST be transported within a single AAL5 PDU.   Therefore the maximum transfer unit (MTU) of the AAL5 connection   constrains the MTU of the L2TP tunnel that uses the connection and   the MTU of all PPP connections that use the tunnel.  ([RFC1661]   refers to this as Maximum Receive Unit, or MRU.  In [SIG31], it is   the Forward and Backward Maximum CPCS-SDU Size.)   An implementation MUST support a PPP MRU of at least 1500 bytes.   An implementation SHOULD use a larger MTU than the minimum value   specified above.  It is RECOMMENDED that an implementation support an   IP packet of at least 9180 bytes in the PPP PDU.3.2 Quality of Service   In order to provide a desired Quality of Service (QoS), and possibly   different qualities of service to different client connections, an   implementation MAY use more than one AAL5 connection between LAC and   LNS.   QoS mechanisms, such as Differentiated UBR [DUBR], that could involve   inverse multiplexing a tunnel across multiple VCs are for further   study.  QoS mechanisms applicable to a single tunnel corresponding to   a single VC, are independent of the ATM transport and out of scope of   this document.3.3 ATM Connection Parameters   The L2TP layer does not impose any restrictions regarding   transmission rate or the underlying ATM layer traffic descriptor   parameters.   Specific traffic parameters MAY be set for a PVC connection by   agreement between the communicating parties.  The caller MAY request   specific traffic parameters at the time an SVC connection is set up.   Autoconfiguration of end-systems for PVCs can be facilitated by the   use of the optional ILMI 4.0 extensions documented in [ILMIA].  This   provides comparable information to the IEs used for control plane   connection establishment.Singh, et. al.              Standards Track                     [Page 3]

RFC 3355                     L2TP Over AAL5                  August 20024. Multi-Protocol Encapsulation   This specification uses the principles, terminology, and frame   structure described in "Multiprotocol Encapsulation over ATM   Adaptation Layer 5" [RFC2684].  The purpose of this specification is   not to reiterate what is already standardized in [RFC2684], but to   specify how the mechanisms described in [RFC2684] are to be used to   map L2TP onto an AAL5-based ATM network.   As specified in [RFC2684], L2TP PDUs shall be carried in the payload   field of Common Part Convergence Sublayer (CPCS) PDUs of AAL5, and   the Service Specific Convergence Sublayer (SSCS) of AAL5 shall be   empty.Section 1 of [RFC2684] defines two mechanisms for identifying the   protocol encapsulated in the AAL5 PDU's payload field:      1. Virtual circuit (VC) based multiplexing.      2. Logical Link Control (LLC) encapsulation.   In the first mechanism, the payload's protocol type is implicitly   agreed to by the end points for each virtual circuit using   provisioning or control plane procedures.  This mechanism will be   referred to as "VC-multiplexed L2TP".   In the second mechanism, the payload's protocol type is explicitly   identified in each AAL5 PDU by an IEEE 802.2 LLC header.  This   mechanism will be referred to as "LLC encapsulated L2TP".   An L2TP implementation:      1. MUST support LLC encapsulated L2TP on PVCs.      2. MAY support LLC encapsulated L2TP on SVCs.      3. MAY support VC-multiplexed L2TP on PVCs or SVCs.   When a PVC is used, the endpoints must be configured to use one of   the two encapsulation methods.   If an implementation supports SVCs, it MUST use the [Q.2931] Annex C   procedure to negotiate connection setup, encoding the Broadband Lower   Layer Interface (B-LLI) information element (IE) to signal either   VC-multiplexed L2TP or LLC encapsulated L2TP.  The details of this   control plane procedure are described insection 7.   If an implementation is connecting through a Frame Relay/ATM FRF.8   [FRF8] service inter-working unit, then it MUST use LLC encapsulated   L2TP.Singh, et. al.              Standards Track                     [Page 4]

RFC 3355                     L2TP Over AAL5                  August 20025. LLC Encapsulated L2TP over AAL5   When LLC encapsulation is used, the payload field of the AAL5 CPCS   PDU SHALL be encoded as shown in Figure 1.  The pertinent fields in   that diagram are:      1. IEEE 802.2 LLC header:  Source and destination SAP of 0xAA         followed by a frame type of Un-numbered Information (value         0x03).  This LLC header indicates that an IEEE 802.1a SNAP         header follows [RFC2684].      2. IEEE 802.1a SNAP Header:  The three octet Organizationally         Unique Identifier (OUI) value of 0x00-00-5E identifies IANA         (Internet Assigned Numbers Authority.)  The two octets Protocol         Identifier (PID) identifies L2TP as the encapsulated protocol.         The PID value is 0x0007.      3. The L2TP PDU:                  Figure 1 - LLC Encapsulated L2TP PDU                  +-------------------------+ --------                  |  Destination SAP (0xAA) |     ^                  +-------------------------+     |                  |  Source SAP      (0xAA) |  LLC header                  +-------------------------+     |                  |  Frame Type = UI (0x03) |     V                  +-------------------------+ --------                  |  OUI        (0x00-00-5E)|     |                  +-+-+-+-+-+-+-+-+-+-+-+-+-|  SNAP Header                  |  PID        (0x00-07)   |     |                  +-------------------------+ --------                  |                         |     |                  |                         |  L2TP PDU                  |                         |     |                  +-------------------------+ --------   Note: The format of the overall AAL5 CPCS PDU is shown in the next   section.   The end points MAY be bi-laterally provisioned to send other LLC-   encapsulated protocols besides L2TP across the same virtual   connection.Singh, et. al.              Standards Track                     [Page 5]

RFC 3355                     L2TP Over AAL5                  August 20026. Virtual Circuit Multiplexed L2TP over AAL5   VC-multiplexed L2TP over AAL5 is an alternative technique to LLC   encapsulated L2TP over AAL5.  In this case, the L2TP PDU is the AAL5   payload without an LLC header.  This is sometimes called "Null   encapsulation."                     Figure 2 - AAL5 CPCS-PDU Format                  +-------------------------------+ -------                  |             .                 |    ^                  |             .                 |    |                  |        CPCS-PDU payload       | L2TP PDU                  |     up to 2^16 - 1 octets)    |    |                  |             .                 |    V                  +-------------------------------+ -------                  |      PAD ( 0 - 47 octets)     |                  +-------------------------------+ -------                  |       CPCS-UU (1 octet )      |    ^                  +-------------------------------+    |                  |         CPI (1 octet )        |    |                  +-------------------------------+CPCS-PDU Trailer                  |        Length (2 octets)      |    |                  +-------------------------------|    |                  |         CRC (4 octets)        |    V                  +-------------------------------+ -------   The Common Part Convergence Sub-layer (CPCS) PDU payload field   contains user information up to 2^16 - 1 octets.   The PAD field pads the CPCS-PDU to fit exactly into the ATM cells   such that the last 48 octet cell payload created by the SAR sublayer   will have the CPCS-PDU Trailer right justified in the cell.   The CPCS-UU (User-to-User indication) field is used to transparently   transfer CPCS user to user information.  The field has no function   under the multi-protocol ATM encapsulation and MAY be set to any   value.   The CPI (Common Part Indicator) field aligns the CPCS-PDU trailer to   64 bits.  Possible additional functions are for further study in   ITU-T.  When only the 64 bit alignment function is used, this field   SHALL be coded as 0x00.   The Length field indicates the length, in octets, of the payload   field.  The maximum value for the Length field is 65535 octets.  A   Length field coded as 0x00 MAY be used for the abort function.Singh, et. al.              Standards Track                     [Page 6]

RFC 3355                     L2TP Over AAL5                  August 2002   The CRC field is computed over the entire CPCS-PDU except the CRC   field itself.   The CPCS-PDU payload SHALL consist of an L2TP PDU as defined in   [RFC2661].7. Out-of-Band Control Plane Signaling7.1 Connection Setup   An SVC connection can originate at either the LAC or the LNS.  An   implementation that supports the use of SVCs MUST be able to both   originate and respond to SVC setup requests.  Except for the B-LLI IE   specified below, all other IEs required for ATM User-Network   Interface (UNI) Signaling Specification Version 4.0 [SIG40] should be   encoded as per [RFC2331].   When originating an SVC AAL5 connection, the caller MUST request in   the SETUP message either VC-multiplexed L2TP, LLC encapsulated L2TP,   or both VC-multiplexed and LLC-encapsulated L2TP.  The B-LLI IE SHALL   be used to specify the requested encapsulation method.  When a caller   is offering both encapsulations, the two B-LLI IEs SHALL be encoded   within a Broadband Repeat Indicator information element in the order   of the sender's preference.   An implementation MUST be able to accept an incoming call that offers   LLC encapsulated L2TP in the caller's request.  The called peer's   implementation MUST reject a call setup request that only offers an   encapsulation that it does not support.  Implementations originating   a call offering both protocol encapsulation techniques MUST be able   to accept the use of either encapsulation techniques.   When originating an LLC encapsulated call that is to carry an L2TP   payload, the [Q.2931] B-LLI IE user information layer 2 protocol   field SHALL be encoded to select LAN Logical Link Control   (ISO/IEC8802-2) in octet 6.  See[RFC2331] Appendix A for an example.   When originating a VC-multiplexed call that is to carry an L2TP   payload, the [Q.2931] B-LLI IE user information layer 2 protocol   field SHALL be encoded to select no layer 2 protocol in octet 6 and   layer 3 protocol field SHALL be encoded to select ISO/IEC TR 9577   [ISO9577] in octet 7.  Furthermore, as per DSL Forum TR-037   [DSLF037], the extension octets specify VC-multiplexed L2TP by using   the SNAP IPI, followed by an OUI owned by IANA, followed by the PID   assigned by IANA for L2TP.  Thus, the User Information layer 3   protocol field is encoded:  0B 80 00 00 5E 00 07.  The AAL5 frame'sSingh, et. al.              Standards Track                     [Page 7]

RFC 3355                     L2TP Over AAL5                  August 2002   payload field will always contain an L2TP PDU.  The SNAP IPI is   employed only to use the IANA L2TP protocol value to specify the VC-   multiplexed PDU.   If the caller offers both encapsulation methods and the called peer   accepts the call, the called peer SHALL specify the encapsulation   method by including exactly one B-LLI IE in the Connect message.   If an SVC tunnel is reset in accordance withsection 4.1 of   [RFC2661], both ends MUST clear the SVC.  Any user sessions on the   tunnel will be terminated by the reset.  Either end MAY attempt to   re-establish the tunnel upon receipt of a new request from a client.7.2 Connection Setup Failure   When a connection setup fails, the L2TP entity that attempted the   connection setup MAY consider the called entity unreachable until   notified that the unreachable entity is available.  The conditions   under which an entity determines that another is unreachable and how   it determines that the other is available again are implementation   decisions.7.3 Connection Teardown   When there are no active sessions on an SVC tunnel, either end MAY   optionally clear the connection.8. Connection Failure   Upon notification that an AAL5 SVC connection has been cleared, an   Implementation SHALL tear down the tunnel and return the control   connection to the idle state.9. Security Considerations   The Layer Two Tunneling Protocol base specification [RFC2661]   discusses basic security issues regarding L2TP tunneling.  It is   possible that the L2TP over AAL5 tunnel security may be compromised   by the attack of ATM transport network itself.  The ATM Forum has   published a security framework [AFSEC1] and a security specification   [AFSEC2] that define procedures to guard against common threats to an   ATM transport network.  Applications that require protection against   threats to an ATM switching network are encouraged to use   authentication headers, or encrypted payloads, and/or the ATM-layer   security services described in [AFSEC2].Singh, et. al.              Standards Track                     [Page 8]

RFC 3355                     L2TP Over AAL5                  August 200210. Acknowledgments   This document draws heavily on material from: "PPP Over AAL5" (RFC2364) by George Gross, Manu Kaycee, Arthur Lin, Andrew Malis, and   John Stephens and an earlier document of L2TP over AAL5 by Nagraj   Arunkumar, Manu Kaycee, Tim Kwok, and Arthur Lin.   Special thanks to Mike Davison, Arthur Lin, John Stevens for making   significant contributions to the initial version of this document.   Special thanks to David Allan of Nortel for his invaluable review of   this document.   The security section of this document is based uponRFC 3337, "Class   Extensions for PPP over Asynchronous Transfer Mode Adaptation Layer 2   (AAL2)", by Bruce Thompson, Bruce Buffam and Thima Koren.11. References   [RFC2661] Townsley, W., Valencia, A., Rubens, A., Singh Pall, G.,             Zorn, G. and B. Palter, "Layer Two Tunneling Protocol             (L2TP)",RFC 2661, August 1999.   [RFC1661] Simpson, W., Editor, "The Point-to-Point Protocol (PPP)",             STD 51,RFC 1661, July 1994.   [SIG31]   The ATM Forum, "ATM User-Network Interface Specification             V3.1", af-uni-0010.002, 1994.   [ITU93]   International Telecommunication Union, "B-ISDN ATM             Adaptation Layer (AAL) Specification", ITU-T Recommendation             I.363, March 1993.   [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate             Requirement Levels",BCP 14,RFC 2119, March 1997.   [RFC2684] Grossman, D. and J. Heinanen, "Multiprotocol Encapsulation             over ATM Adaptation Layer 5",RFC 2684, September 1999.   [Q.2931]  International Telecommunication Union, "Broadband             Integrated Service Digital Network (B-ISDN) Digital             Subscriber Signaling System No.2 (DSS2) User Network             Interface Layer 3 Specification for Basic Call/Connection             Control", ITU-T Recommendation Q.2931, Feb. 1995.   [FRF8]    The Frame Relay Forum, "Frame Relay/ATM PVC Service             Interworking Implementation Agreement", FRF.8, April 1995.Singh, et. al.              Standards Track                     [Page 9]

RFC 3355                     L2TP Over AAL5                  August 2002   [ISO9577] ISO/IEC DTR 9577.2, "Information technology -             Telecommunications and Information exchange between systems             - Protocol Identification in the network layer", 1995-08-             16.   [RFC2331] Maher, M., "ATM Signaling Support for IP over ATM - UNI             Signaling 4.0 Update",RFC 2331, April 1998.   [DSLF037] DSL Forum Technical Report TR-037, "Auto-Configuration for             the Connection Between the DSL Broadband Network             Termination (B-NT) and the Network using ATM", March 2001.   [SIG40]   ATM Forum, "ATM User-Network Interface (UNI) Signaling             Specification Version 4.0", af-sig-0061.000, finalized July             1996; available atftp://ftp.atmforum.com/pub.   [DUBR]    ATM Forum, "Addendum to TM 4.1: Differentiated UBR", af-             tm-0149.000, finalized July, 2000; available atftp://ftp.atmforum.com/pub   [ILMIA]   ATM Forum, "Addendum to the ILMI Auto-configuration             extension", af-nm-00165.000, April 2001.   [AFSEC1]  The ATM Forum, "ATM Security Framework Version 1.0", af-             sec-0096.000, February 1998   [AFSEC2]  The ATM Forum, "ATM Security Specification v1.1", af-sec-             0100.002, March 2001Singh, et. al.              Standards Track                    [Page 10]

RFC 3355                     L2TP Over AAL5                  August 2002Appendix A.  Acronyms   AAL5    ATM Adaptation Layer Type 5   ATM     Asynchronous Transfer Mode   B-LLI   Broadband Low Layer Information   CPCS    Common Part Convergence Sublayer   IANA    Internet Assigned Numbers Authority   IE      Information Element   L2TP    Layer Two Tunneling Protocol   LAC     L2TP Access Concentrator   LLC     Logical Link Control   LNS     L2TP Network Server   MTU     Maximum Transfer Unit   MRU     Maximum Receive Unit   NSP     Network Service Provider   OUI     Organizationally Unique Identifier   PDU     Protocol Data Unit   PID     Protocol Identifier   PPP     Point-to-Point Protocol   PVC     Permanent Virtual Circuit   SAP     Service Access Point   SNAP    Subnetwork Address Protocol   SVC     Switched Virtual Circuit   VC      Virtual CircuitSingh, et. al.              Standards Track                    [Page 11]

RFC 3355                     L2TP Over AAL5                  August 2002Authors' Addresses   Rollins Turner   Paradyne Corporation   8545 126th Avenue North   Largo, FL 33773   EMail: rturner@eng.paradyne.com   Rene Tio   Redback Networks, Inc.   300 Holger Way   San Jose, CA 95134   EMail: tor@redback.com   Ajoy Singh   Motorola   1421 West Shure Dr,   Arlington Heights, IL 60004   EMail: asingh1@motorola.com   Suhail Nanji   Redback Networks, Inc.   300 Holger Way   Sunnyvale, CA 95134   EMail: suhail@redback.comSingh, et. al.              Standards Track                    [Page 12]

RFC 3355                     L2TP Over AAL5                  August 2002Full Copyright Statement   Copyright (C) The Internet Society (2002).  All Rights Reserved.   This document and translations of it may be copied and furnished to   others, and derivative works that comment on or otherwise explain it   or assist in its implementation may be prepared, copied, published   and distributed, in whole or in part, without restriction of any   kind, provided that the above copyright notice and this paragraph are   included on all such copies and derivative works.  However, this   document itself may not be modified in any way, such as by removing   the copyright notice or references to the Internet Society or other   Internet organizations, except as needed for the purpose of   developing Internet standards in which case the procedures for   copyrights defined in the Internet Standards process must be   followed, or as required to translate it into languages other than   English.   The limited permissions granted above are perpetual and will not be   revoked by the Internet Society or its successors or assigns.   This document and the information contained herein is provided on an   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.Acknowledgement   Funding for the RFC Editor function is currently provided by the   Internet Society.Singh, et. al.              Standards Track                    [Page 13]

[8]ページ先頭

©2009-2025 Movatter.jp