Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Info page]

INFORMATIONAL
Network Working Group                                         S. ShimizuRequest for Comments: 3186                                     T. KawanoCategory: Informational                                      K. Murakami                                            NTT Network Innovation Labs.                                                                E. Beier                                                              DeTeSystem                                                           December 2001MAPOS/PPP Tunneling modeStatus of this Memo   This memo provides information for the Internet community.  It does   not specify an Internet standard of any kind.  Distribution of this   memo is unlimited.Copyright Notice   Copyright (C) The Internet Society (2001).  All Rights Reserved.IESG Note   This memo documents a way of tunneling PPP over Sonet over MAPOS   networks.  This document is NOT the product of an IETF working group   nor is it a standards track document.  It has not necessarily   benefited from the widespread and in depth community review that   standards track documents receive.Abstract   This document specifies tunneling configuration over MAPOS (Multiple   Access Protocol over SONET/SDH) networks.  Using this mode, a MAPOS   network can provide transparent point-to-point link for PPP over   SONET/SDH (Packet over SONET/SDH, POS) without any additional   overhead.1. Introduction   MAPOS [1][2] frame is designed to be similar to PPP over SONET/SDH   (Packet over SONET/SDH, POS)[3][4] frame (Figure 1).Shimizu, et al.              Informational                      [Page 1]

RFC 3186                MAPOS/PPP Tunneling mode           December 2001      a) MAPOS frame header (version 1)         +-----------+-----------+-----------+-----------+         | Address   | Control   | Protocol              |         |  8 bits   | fixed,0x03| 16 bits               |         +-----------+-----------+-----------+-----------+      b) MAPOS frame header (MAPOS 16)         +-----------+-----------+-----------+-----------+         | Address               | Protocol              |         |   16bits              | 16 bits               |         +-----------+-----------+-----------+-----------+      c) PPP frame header         +-----------+-----------+-----------+-----------+         | Address   | Control   | Protocol              |         | fixed,0xFF| fixed,0x03| 16 bits               |         +-----------+-----------+-----------+-----------+      Figure 1. Header similarity of MAPOS frame and POS frame   This means that a MAPOS network can easily carry POS frames with no   additional header overhead by rewriting only 1 or 2 octets.  PPP   tunneling configuration over MAPOS networks (MAPOS/PPP tunneling   mode) provides for efficient L2 multiplexing by which users can share   the cost of high speed long-haul links.   This document specifies MAPOS/PPP tunneling mode.  In this mode, a   MAPOS network provides a point-to-point link for those who intend to   connect POS equipment.  Such link is established within a MAPOS   switch, or between a pair of MAPOS switches that converts between POS   header and MAPOS header for each L2 frame.   Chapter 2 describes the specification in two parts.  First part is   user network interface (UNI) specification and the second part is   operation, administration, management and provisioning (OAM&P)   description.  Other issues such as congestion avoidance, end-to-end   fairness control are out of scope of this document.   Implementation issues are discussed in Chapter 3.  Security   considerations are noted in Chapter 4.Shimizu, et al.              Informational                      [Page 2]

RFC 3186                MAPOS/PPP Tunneling mode           December 20012. MAPOS/PPP tunneling mode2.1 Overview   MAPOS/PPP tunneling mode is based on header rewriting.  Figure 2.   shows an example of MAPOS/PPP tunneling mode.  The MAPOS network uses   MAPOS 16 [2] in this example.  Consider a tunneling path between   customer premise equipment (CPE) A and CPE B which are industry   standard POS equipment.  The ingress/egress MAPOS switches A/B   assigns unique MAPOS addresses (0x0203 and 0x0403) to the CPEs.   These MAPOS addresses are used in the MAPOS network, for frame   forwarding between CPE A and CPE B.  NSP [5] will not be running   between the CPEs and the switches in this case.   MAPOS switch A rewrites the first 2 octets of every frame from CPE A,   which are fixed as 0xFF and 0x03, to the MAPOS address of its peer,   which is 0x0403.  Frames are forwarded by the MAPOS network and   arrives at the egress MAPOS switch B which rewrites the first 2   octets to their original values.  If MAPOS v1 [1] is used in the   MAPOS network, only the first octet is rewritten.    +-----+ POS/0x0203 +--------+                  +--------+    |CPE A|<---------->|MAPOS   |     MAPOS        |MAPOS   |<---    +-----+        --->|switch A|------------------|switch  |<---                       +--------+\__  Network  __/ +--------+                                    \__     __/                       +--------+    +-|-----|-+ POS/0x0403 +-----+                   --->|MAPOS   |----|MAPOS    |<---------->|CPE B|                   --->|switch  |    |switch B |<---        +-----+                       +--------+    +---------+                    Figure 2. MAPOS/PPP tunneling mode   The tunneling path between the two CPEs is managed by the   ingress/egress MAPOS switches.2.2 User-Network Interface(UNI)2.2.1 Physical Layer   For transport media between border MAPOS switch and CPE, SONET/SDH   signal is utilized.  Signal speed, path signal label, light power   budget and all physical requirements are the same as those of PPP   over SONET/SDH [3].Shimizu, et al.              Informational                      [Page 3]

RFC 3186                MAPOS/PPP Tunneling mode           December 2001   SONET/SDH overheads are terminated at the ingress/egress switches.   SONET/SDH performance monitors and alarms are used for the link   management between a CPE and the switch.  Inter-switch links are   similarly managed by SONET/SDH monitors and alarms.   A CPE should synchronize to the clock of the border MAPOS switch.   The corresponding port of the MAPOS switch uses its internal clock.   When the CPE is connected to the MAPOS switch through SONET/SDH   transmission equipment, both should synchronize to the clock of the   SONET/SDH transmission equipment.2.2.2 Link layer   Link layer framing between CPE and MAPOS switch also follows the   specification of PPP over SONET/SDH [3].   HDLC operation including byte stuffing, scrambling, FCS generation is   terminated at the ingress/egress switch.  In a MAPOS switch, HDLC   frame [4] is picked up from a SONET/SDH payload and the first octet   (HDLC address) for MAPOS v1 [1], or the first two octets (HDLC   address and control field) for MAPOS 16 [2] are rewritten.  The   operation inside the border switch is as follows:    From CPE (Ingress Switch receiving):      SONET/SDH framing         -> X^43+1 De-scrambling -> HDLC Byte de-stuffing         -> HDLC FCS detection (if error, silently discard)         -> L2 HDLC address/control rewriting             (0xFF   -> MAPOS v1 destination address, or              0xFF03 -> MAPOS 16 destination address)         -> MAPOS-FCS generation         -> HDLC Byte stuffing -> X^43+1 Scrambling -> SONET/SDH framing    To CPE (Egress Switch transmitting):      SONET/SDH framing         -> X^43+1 De-scrambling -> HDLC Byte de-stuffing         -> MAPOS-FCS detection (if error, silently discard)         -> L2 HDLC address/control rewriting             (MAPOS v1 address -> 0xFF, or              MAPOS 16 address -> 0xFF03)         -> HDLC FCS generation         -> HDLC Byte stuffing -> X^43+1 Scrambling -> SONET/SDH framingShimizu, et al.              Informational                      [Page 4]

RFC 3186                MAPOS/PPP Tunneling mode           December 2001   For STS-3c-SPE/VC-4, non-scrambled frame can be used for   compatibility withRFC 1619.  However, the use of 32bit-CRC and   X^43+1 scrambling is recommended inRFC2615 [3] and for MAPOS   networks.   Maximum transmission unit (MTU) of the link must not be negotiated   larger than MAPOS-MTU which is 65280 octets.   Figure 3 shows a CPE-side L2 frame and the converted frame in the   ingress/egress MAPOS switches.  Note that the MAPOS/PPP tunneling   mode is not a piggy-back encapsulation, but it is a transparent link   with no additional header overhead.   <--- Transmission        +----------+----------+----------+----------+        |   Flag   | Address  | Control  | Protocol |        | 01111110 | 11111111 | 00000011 | 16 bits  |        +----------+----------+----------+----------+        +-------------+---------+----------+----------+-----------------        | Information | Padding |HDLC FCS  |   Flag   | Inter-frame Fill        |      *      |    *    |16/32 bits| 01111110 | or next Address        +-------------+---------+----------+----------+-----------------           (a) HDLC frame from/to CPE   <--- Transmission        +----------+----------+----------+----------+        |   Flag   | MAPOS Destination   | Protocol |        | 01111110 | 0xxxxxx0 | xxxxxxx1 | 16 bits  |        +----------+----------+----------+----------+        +-------------+---------+----------+----------+-----------------        | Information | Padding |MAPOS FCS |   Flag   | Inter-frame Fill        |      *      |    *    |16/32 bits| 01111110 | or next Address        +-------------+---------+----------+----------+-----------------           (b) Converted MAPOS 16 frame, forwarded in MAPOS networks            Figure 3. HDLC frame from/to CPE and its conversion2.3 Operation, Administration, Management and Provisioning (OAM&P)2.3.1 MAPOS/PPP mode transition   When a port of MAPOS switch is configured to PPP tunneling mode, at   least the following operations are performed in the switch.      a) Disable NSP [5] and SSP [6] (for the port, same below)      b) Disable MAPOS broadcast and multicast forwardingShimizu, et al.              Informational                      [Page 5]

RFC 3186                MAPOS/PPP Tunneling mode           December 2001      c) Reset the Path Signal Label (C2) to 0x16 if X^43+1 scrambling         is used.  The value 0xCF is used for non-scrambled OC3c signal.      d) Enable header rewriting function to specified destination         address   When the port is configured back to MAPOS mode, reverse order of the   operations above are performed.  That means;      a) Disable header rewriting function (for the port, same below)      b) Reset the Path Signal Label (C2) to MAPOS default (0x8d)      c) Enable MAPOS broadcast and multicast forwarding      d) Enable NSP and SSP   SONET/SDH alarms (B1/B2/B3 error exceeding, SLOF, SLOS, etc.) should   not affect this transition.  Figure 4 shows mode transition described   above.     [MAPOS mode]  <----------------------------+          |                                     |   (Disable NSP)                          (Enable NSP)   (Disable SSP)                          (Enable SSP)   (Disable Broadcast/                    (Enable Broadcast/    Multicast forwarding)                  Multicast forwarding)   (C2-byte setting to 0x16 or 0xcf)      (C2-byte setting to 0x8d)   (Enable Header Rewriting function)     (Disable Header Rewriting          |                                     |         function)          v                                     |     [PPP mode] --------------------------------+        Figure 4. MAPOS/PPP tunneling mode state transition diagram2.3.2 Path Establishment   A MAPOS/PPP tunneling path is established by following steps.      a) Choose MAPOS address pair on both ingress/egress switches and         configure their ports to PPP tunneling mode (see 2.3.1).      b) When the routes for both directions become stable, the         tunneling path is established.  The link between the CPEs may         be set up at that moment; PPP LCP controls are transparently         exchanged by the CPEs.   To add a new path, operators should pick unused MAPOS address-pair.   They may be determined simply by choosing switches and ports for each   CPE, because there is one-to-one correspondence between MAPOS   addresses and switch ports.Shimizu, et al.              Informational                      [Page 6]

RFC 3186                MAPOS/PPP Tunneling mode           December 2001   Then, those ports should be configured to MAPOS/PPP tunneling mode on   both of the switches.  Frame reachability is provided by SSP [6] in   the MAPOS network.  When the frame forwarding for each direction are   stable, the path is established and frame forwarding is started.   Until then, the link between border switches and CPE should be down.   A MAPOS/PPP tunneling path should be managed by the pair of MAPOS   addresses.  It should be carefully handled to avoid misconfiguration   such as path duplication.  For convenient management, path database   can be used to keep information about pairs of MAPOS addresses.  Note   that the path database is not used for frame forwarding.  It is for   OAM&P use only.2.3.3 Failure detection and indication   When any link or node failure is detected, it should be indicated to   each peer of the path.  This is done by PPP [7] keep-alive (LCP Echo   request/reply) for end-to-end detection.   Consideration is required to handle SONET/SDH alarms.  When a link   between CPE and the MAPOS switch fails, it is detected by both the   MAPOS switch and the CPE seeing SONET/SDH alarms.  However, far-side   link remains up and no SONET/SDH error is found;  SONET/SDH alarms   are not transferred to the far end because each optical path is   terminated in MAPOS network.  In this case, the far end will see   'link up, line protocol down' status due to keep-alive expiration.   For example, Figure 5 shows a tunneling path.  When link 1 goes down,   MAPOS sw A and CPE A detects SONET/SDH alarms but MAPOS sw B and CPE   A' do not see this failure.  When PPP keep-alive expires, CPE A'   detects the failure and stops the packet transmission.  The same   mechanism is used for failure within the MAPOS cloud (link 2).  When   a MAPOS switch is down, SSP handles it as a topology change.              1                       2                       3      CPE A <-x-> MAPOS sw A ---(MAPOS cloud)--- MAPOS sw B <---> CPE A'                          Figure 5. Link failure   2.3.4 Path removal   A MAPOS/PPP tunneling path is removed by following steps.      a) Choose the path to remove, configure MAPOS switches on both         ends of the path to disable the ports connected to the CPEs.      b) Path database may be updated that the path is removed.Shimizu, et al.              Informational                      [Page 7]

RFC 3186                MAPOS/PPP Tunneling mode           December 2001      c) When CPE is detached, port may be reset to MAPOS default         configurations.   Frames arriving after the destination port was disabled should be   silently discarded and should not be forwarded to the port.2.3.5 Provisioning and Design Consideration   Because MAPOS does not have any QoS control at its protocol level,   and POS does not have flow-control feature, it is difficult to   guarantee end-end throughput.  Sufficient bandwidth for inter-switch   link should be prepared to support all paths on the link.   Switches are recommended to ensure per-port fairness using any   appropriate queuing algorithm.  This is especially important for   over-subscribed configuration, for example to have more than 16 OC12c   paths on one OC192c inter-switch link.   Although MAPOS v1 can be applied to the MAPOS/PPP tunneling mode,   MAPOS 16 is recommended for ease of address management.   Automatic switch address negotiation mechanism is not suitable for   the MAPOS/PPP tunneling mode, because the path management mechanism   becomes much more complex.3. Implementation3.1 Service example   Figure 6 shows an example of MAPOS network with four switches.   Inter-switch links are provided at OC192c and OC48c rate, customer   links are either OC3c or OC12c rate.  Some links are optically   protected.  Path database is used for path management.   Using MAPOS-netmask with 8 bits, this topology can be extended up to   64 MAPOS switches, each equipped with up to 127 CPE ports.  Switch   addresses are fixed to pre-assigned values.   The cost of optical protection (< 50ms) can be shared among paths.   Unprotected link can also be coupled for more redundancy in case of   link failure.  SSP provides restoration path within few seconds.Shimizu, et al.              Informational                      [Page 8]

RFC 3186                MAPOS/PPP Tunneling mode           December 2001      0x2003+---------+                       +---------+ 0x2203     A----->| MAPOS   |   OC192c(protected)   | MAPOS   |<-------A'      0x2005| Switch 1|=======================| Switch 2| 0x2205     B----->| 0x2000/8|              _________| 0x2200/8|<-------C'            +---------+             /         +---------+           OC192c|                 /                 |                / OC48c(backup)            +---------+          /            +---------+ 0x2603            | MAPOS   |_________/             | MAPOS   |<-------B'      0x2405| Switch 3|=======================| Switch 4|     C----->| 0x2400/8|   OC192c(protected)   | 0x2600/8|            +---------+                       +---------+       Path database entries:       -----------------------------------------------------------        User : Speed : Mode            : Address pair  : Status       -----------------------------------------------------------        A-A' : OC3c  : CRC32, scramble : 0x2003-0x2203 : Up and running        B-B' : OC12c : CRC32, scramble : 0x2005-0x2603 : B Down        C-C' : OC3c  : CRC16, no-scram : 0x2405-0x2205 : C' Down       -----------------------------------------------------------            Figure 6.  Example Topology and its Path Management3.2 Evaluation of latency of reference implementation   Figure 7 shows evaluation platforms in terms of latency measurement   of MAPOS/PPP tunneling mode.Shimizu, et al.              Informational                      [Page 9]

RFC 3186                MAPOS/PPP Tunneling mode           December 2001     Case 1: Base latency measurement         Measurement         Equipment         +---------+   POS Unidirectional Flow, OC12c 30%, FCS 32bits,         | IXIA 400|   payload-scrambling on (same for all cases)         | POS-LM  |<--+         | OC12c x2|---+ Loopback         +---------+         (Using IxSoftware v3.1.148/SP1d)     Case 2: Router latency measurement         Measurement                      Device Under Test         +---------+  POS                 +------------+         | IXIA 400|  Unidirectional Flow | Cisco GSR  |         | POS-LM  |<---------------------| 12008/1port|         | OC12c x2|--------------------->| OC12cLC x2 |         +---------+                      +------------+                                     (Using IOS 12.0(15)S1)     Case 3: MAPOS/PPP tunneling switch latency measurement         Measurement                      Device Under Test         +---------+  POS                 +-------------+         | IXIA 400|  Unidirectional Flow | CSR MAPOS   |         | POS-LM  |<---------------------| CORESwitch80|         | OC12c x2|--------------------->| OC12c x2    |         +---------+                      +-------------+   Figure 7.  Latency measurement of reference platform for MAPOS/PPP   tunneling mode   There is a PPP connection between port 1 and 2 of the measurement   equipment.  Traffic comes from measurement equipment (IXIA 400) and   forwarded by a device under test back to the equipment.  Timestamping   and latency calculation are performed by IXIA 400 automatically.   Traffic Load is set to 30% of OC12c for offloading router.   Results are shown in Table 1.  Measurements were taken according to   theRFC2544 requirements [8].  We measured 25 trials of 150 seconds   duration for each frame size.  Results are averaged and rounded to   the 20 ns resolution of IXIA.  95% confidence interval (C.I.) value   are also rounded.Shimizu, et al.              Informational                     [Page 10]

RFC 3186                MAPOS/PPP Tunneling mode           December 2001   --------------------------------------------------------------------   Frame size (bytes)   64    128    256    512    1024    1280    1518   --------------------------------------------------------------------   Latency(ns)   --------------------------------------------------------------------   Case 1: Baseline   4060   5640   6940   9840   16420   20700   23340      95% C.I.(+/-)     20     80     60    180      80     100     120   --------------------------------------------------------------------   Case 2: Router    26560  28760  33860  44600   68280   80500   91160      95% C.I.(+/-)    200    100    160    220     100     100     200   --------------------------------------------------------------------   Case 3: Switch    11100  13480  16620  22920   36380   43900   49920      95% C.I.(+/-)    120    120    120    200     100     160     120   --------------------------------------------------------------------           Table 1. Results of Latency (ns) - Frame size (bytes)   This results shows that MAPOS/PPP tunneling mode does not cause any   performance degradation in terms of latency view.  A POS L2 switch   was reasonably faster than a L3 router.4. Security Considerations   There is no way to control or attack a MAPOS network from CPE side   under PPP tunneling mode.  It is quite difficult to inject other   stream because it is completely transparent from the viewpoint of the   CPE.  However, operators must carefully avoid misconfiguration such   as path duplication.  Per-path isolation is extremely important;   switches are recommended to implement this feature (like VLAN   mechanism).   In addition, potential vulnerability still exists in a mixed   environment where PPP tunneling mode and MAPOS native mode coexists   in the same network.  Use of such environment is not recommended,   until an isolation feature is implemented in all MAPOS switches in   the network.  Note that there is no source address field in the MAPOS   framing, which may make path isolation difficult in a mixed MAPOS/PPP   environment.Shimizu, et al.              Informational                     [Page 11]

RFC 3186                MAPOS/PPP Tunneling mode           December 20015. References   [1]   Murakami, K. and M. Maruyama, "MAPOS - Multiple Access Protocol         over SONET/SDH Version 1",RFC 2171, June 1997.   [2]   Murakami, K. and M. Maruyama, "MAPOS 16 - Multiple Access         Protocol over SONET/SDH with 16 Bit Addressing",RFC 2175, June         1997.   [3]   Malis, A. and W. Simpson, "PPP over SONET/SDH",RFC 2615, June         1999.   [4]   Simpson, W., "PPP in HDLC-like Framing", STD 51,RFC 1662, July         1994.   [5]   Murakami, K. and M. Maruyama, "A MAPOS version 1 Extension -         Node Switch Protocol,"RFC 2173, June 1997.   [6]   Murakami, K. and M. Maruyama,  "A MAPOS version 1 Extension -         Switch-Switch Protocol",RFC 2174, June 1997.   [7]   Simpson, W., "The Point-to-Point Protocol (PPP)", STD 51,RFC1661, July 1994.   [8]   Bradner, S. and J. McQuaid, "Benchmarking Methodology for         Network Interconnect Devices",RFC 2544, March 1999.6. Acknowledgments   The authors would like to acknowledge the contributions and   thoughtful suggestions of Takahiro Sajima.Shimizu, et al.              Informational                     [Page 12]

RFC 3186                MAPOS/PPP Tunneling mode           December 20017. Author's Address   Susumu Shimizu   NTT Network Innovation Laboratories,   3-9-11, Midori-cho Musashino-shi   Tokyo  180-8585  Japan   Phone: +81 422 59 3323   Fax:   +81 422 59 3765   EMail: shimizu@ntt-20.ecl.net   Tetsuo Kawano   NTT Network Innovation Laboratories,   3-9-11, Midori-cho Musashino-shi   Tokyo  180-8585  Japan   Phone: +81 422 59 7145   Fax:   +81 422 59 4584   EMail: kawano@core.ecl.net   Ken Murakami   NTT Network Innovation Laboratories,   3-9-11, Midori-cho Musashino-shi   Tokyo  180-8585  Japan   Phone: +81 422 59 4650   Fax:   +81 422 59 3765   EMail: murakami@ntt-20.ecl.net   Eduard Beier   DeTeSystem GmbH   Merianstrasse 32   D-90409 Nuremberg, Germany   EMail: Beier@bina.deShimizu, et al.              Informational                     [Page 13]

RFC 3186                MAPOS/PPP Tunneling mode           December 20018.  Full Copyright Statement   Copyright (C) The Internet Society (2001).  All Rights Reserved.   This document and translations of it may be copied and furnished to   others, and derivative works that comment on or otherwise explain it   or assist in its implementation may be prepared, copied, published   and distributed, in whole or in part, without restriction of any   kind, provided that the above copyright notice and this paragraph are   included on all such copies and derivative works.  However, this   document itself may not be modified in any way, such as by removing   the copyright notice or references to the Internet Society or other   Internet organizations, except as needed for the purpose of   developing Internet standards in which case the procedures for   copyrights defined in the Internet Standards process must be   followed, or as required to translate it into languages other than   English.   The limited permissions granted above are perpetual and will not be   revoked by the Internet Society or its successors or assigns.   This document and the information contained herein is provided on an   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.Acknowledgement   Funding for the RFC Editor function is currently provided by the   Internet Society.Shimizu, et al.              Informational                     [Page 14]

[8]ページ先頭

©2009-2025 Movatter.jp