Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Info page]

INFORMATIONAL
Internet Research Task Force (IRTF)                   S. Smyshlyaev, Ed.Request for Comments: 8645                                     CryptoProCategory: Informational                                      August 2019ISSN: 2070-1721Re-keying Mechanisms for Symmetric KeysAbstract   A certain maximum amount of data can be safely encrypted when   encryption is performed under a single key.  This amount is called   the "key lifetime".  This specification describes a variety of   methods for increasing the lifetime of symmetric keys.  It provides   two types of re-keying mechanisms based on hash functions and block   ciphers that can be used with modes of operations such as CTR, GCM,   CBC, CFB, and OMAC.   This document is a product of the Crypto Forum Research Group (CFRG)   in the IRTF.Status of This Memo   This document is not an Internet Standards Track specification; it is   published for informational purposes.   This document is a product of the Internet Research Task Force   (IRTF).  The IRTF publishes the results of Internet-related research   and development activities.  These results might not be suitable for   deployment.  This RFC represents the consensus of the Crypto Forum   Research Group of the Internet Research Task Force (IRTF).  Documents   approved for publication by the IRSG are not candidates for any level   of Internet Standard; seeSection 2 of RFC 7841.   Information about the current status of this document, any errata,   and how to provide feedback on it may be obtained athttps://www.rfc-editor.org/info/rfc8645.Smyshlyaev                    Informational                     [Page 1]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019Copyright Notice   Copyright (c) 2019 IETF Trust and the persons identified as the   document authors.  All rights reserved.   This document is subject toBCP 78 and the IETF Trust's Legal   Provisions Relating to IETF Documents   (https://trustee.ietf.org/license-info) in effect on the date of   publication of this document.  Please review these documents   carefully, as they describe your rights and restrictions with respect   to this document.Smyshlyaev                    Informational                     [Page 2]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019Table of Contents1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .42.  Conventions Used in This Document . . . . . . . . . . . . . .73.  Basic Terms and Definitions . . . . . . . . . . . . . . . . .74.  Choosing Constructions and Security Parameters  . . . . . . .95.  External Re-keying Mechanisms . . . . . . . . . . . . . . . .115.1.  Methods of Key Lifetime Control . . . . . . . . . . . . .145.2.  Parallel Constructions  . . . . . . . . . . . . . . . . .14       5.2.1.  Parallel Construction Based on a KDF on a Block               Cipher  . . . . . . . . . . . . . . . . . . . . . . .15       5.2.2.  Parallel Construction Based on a KDF on a Hash               Function  . . . . . . . . . . . . . . . . . . . . . .165.2.3.  Tree-Based Construction . . . . . . . . . . . . . . .165.3.  Serial Constructions  . . . . . . . . . . . . . . . . . .17       5.3.1.  Serial Construction Based on a KDF on a Block Cipher   19       5.3.2.  Serial Construction Based on a KDF on a Hash Function  195.4.  Using Additional Entropy during Re-keying . . . . . . . .196.  Internal Re-keying Mechanisms . . . . . . . . . . . . . . . .206.1.  Methods of Key Lifetime Control . . . . . . . . . . . . .226.2.  Constructions that Do Not Require a Master Key  . . . . .236.2.1.  ACPKM Re-keying Mechanisms  . . . . . . . . . . . . .236.2.2.  CTR-ACPKM Encryption Mode . . . . . . . . . . . . . .256.2.3.  GCM-ACPKM Authenticated Encryption Mode . . . . . . .266.3.  Constructions that Require a Master Key . . . . . . . . .296.3.1.  ACPKM-Master Key Derivation from the Master Key . . .296.3.2.  CTR-ACPKM-Master Encryption Mode  . . . . . . . . . .316.3.3.  GCM-ACPKM-Master Authenticated Encryption Mode  . . .336.3.4.  CBC-ACPKM-Master Encryption Mode  . . . . . . . . . .376.3.5.  CFB-ACPKM-Master Encryption Mode  . . . . . . . . . .396.3.6.  OMAC-ACPKM-Master Authentication Mode . . . . . . . .407.  Joint Usage of External and Internal Re-keying  . . . . . . .428.  Security Considerations . . . . . . . . . . . . . . . . . . .439.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .4310. References  . . . . . . . . . . . . . . . . . . . . . . . . .4410.1.  Normative References . . . . . . . . . . . . . . . . . .4410.2.  Informative References . . . . . . . . . . . . . . . . .45Appendix A.  Test Examples  . . . . . . . . . . . . . . . . . . .48A.1.  Test Examples for External Re-keying  . . . . . . . . . .48A.1.1.  External Re-keying with a Parallel Construction . . .48A.1.2.  External Re-keying with a Serial Construction . . . .49A.2.  Test Examples for Internal Re-keying  . . . . . . . . . .52       A.2.1.  Internal Re-keying Mechanisms that Do Not               Require a Master Key  . . . . . . . . . . . . . . . .52A.2.2.  Internal Re-keying Mechanisms with a Master Key . . .56   Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . .69   Contributors  . . . . . . . . . . . . . . . . . . . . . . . . . .69   Author's Address  . . . . . . . . . . . . . . . . . . . . . . . .69Smyshlyaev                    Informational                     [Page 3]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 20191.  Introduction   A certain maximum amount of data can be safely encrypted when   encryption is performed under a single key.  Hereinafter, this amount   will be referred to as the "key lifetime".  The need for such a   limitation is dictated by the following methods of cryptanalysis:   1.  Methods based on the combinatorial properties of the used block       cipher mode of operation          These methods do not depend on the underlying block cipher.          Common mode restrictions derived from such methods are of          order 2^{n/2}, where n is a block size defined inSection 3.          [Sweet32] includes an example of an attack that is based on          such methods.   2.  Methods based on side-channel analysis issues          In most cases, these methods do not depend on the used          encryption modes and weakly depend on the used cipher          features.  Limitations resulting from these considerations are          usually the most restrictive ones.  [TEMPEST] is an example of          an attack that is based on such methods.   3.  Methods based on the properties of the used block cipher          The most common methods of this type are linear and          differential cryptanalysis [LDC].  In most cases, these          methods do not depend on the used modes of operation.  In the          case of secure block ciphers, bounds resulting from such          methods are roughly the same as the natural bounds of 2^n and          are dominated by the other bounds above.  Therefore, they can          be excluded from the considerations here.   As a result, it is important to replace a key when the total size of   the processed plaintext under that key approaches the lifetime   limitation.  A specific value of the key lifetime should be   determined in accordance with some safety margin for protocol   security and the methods outlined above.   Suppose L is a key lifetime limitation in some protocol P.  For   simplicity, assume that all messages have the same length m.  Hence,   the number of messages q that can be processed with a single key K   should be such that m * q <= L.  This can be depicted graphically as   a rectangle with sides m and q enclosed by area L (see Figure 1).Smyshlyaev                    Informational                     [Page 4]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019                      +------------------------+                      |                      L |                      | +--------m---------+   |                      | |==================|   |                      | |==================|   |                      | q==================|   |       m * q <= L                      | |==================|   |                      | |==================|   |                      | +------------------+   |                      +------------------------+         Figure 1: Graphic Display of the Key Lifetime Limitation   In practice, the amount of data that corresponds to limitation L may   not be enough.  The simplest and obvious solution in this situation   is a regular renegotiation of an initial key after processing this   threshold amount of data L.  However, this reduces the total   performance, since it usually entails termination of application data   transmission, additional service messages, the use of a random number   generator, and many other additional calculations, including   resource-intensive public key cryptography.   For protocols based on block ciphers or stream ciphers, a more   efficient way to increase the key lifetime is to use various   re-keying mechanisms.  This specification considers re-keying   mechanisms for block ciphers only; re-keying mechanisms typical for   stream ciphers (e.g., [Pietrzak2009], [FPS2012]) are beyond the scope   of this document.   Re-keying mechanisms can be applied at the different protocol levels:   the block cipher level (this approach is known as fresh re-keying and   is described, for instance, in [FRESHREKEYING]; the block cipher mode   of operation level (seeSection 6); and the protocol level above the   block cipher mode of operation (seeSection 5).  The usage of the   first approach is highly inefficient due to the key changing after   each message block is processed.  Moreover, fresh re-keying   mechanisms can change the block cipher internal structure and,   consequently, can require an additional security analysis for each   particular block cipher.  As a result, this approach depends on   particular primitive properties and cannot be applied to any   arbitrary block cipher without additional security analysis.   Therefore, fresh re-keying mechanisms go beyond the scope of this   document.   Thus, this document contains the list of recommended re-keying   mechanisms that can be used in the symmetric encryption schemes based   on the block ciphers.  These mechanisms are independent from theSmyshlyaev                    Informational                     [Page 5]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   particular block cipher specification, and their security properties   rely only on the standard block cipher security assumption.   This specification presents two basic approaches to extending the   lifetime of a key while avoiding renegotiation, which were introduced   in [AAOS2017]:   1.  External re-keying      External re-keying is performed by a protocol, and it is      independent of the underlying block cipher and the mode of      operation.  External re-keying can use parallel and serial      constructions.  In the parallel case, data processing keys K^1,      K^2, ... are generated directly from the initial key K      independently of each other.  In the serial case, every data-      processing key depends on the state that is updated after the      generation of each new data-processing key.      As a generalization of external parallel re-keying, an external      tree-based mechanism can be considered.  It is specified inSection 5.2.3 and can be viewed as the tree generalization in      [GGM].  Similar constructions are used in the one-way tree      mechanism ([OWT]) and [AESDUKPT] standard.   2.  Internal re-keying      Internal re-keying is built into the mode, and it depends heavily      on the properties of the mode of operation and the block size.   The re-keying approaches extend the key lifetime for a single initial   key by allowing the leakages to be limited (via side channels) and by   improving the combinatorial properties of the used block cipher mode   of operation.   In practical applications, re-keying can be useful for protocols that   need to operate in hostile environments or under restricted resource   conditions (e.g., those that require lightweight cryptography, where   ciphers have a small block size that imposes strict combinatorial   limitations).  Moreover, mechanisms that use external or internal   re-keying may provide some protection against possible future attacks   (by limiting the number of plaintext-ciphertext pairs that an   adversary can collect) and some properties of forward or backward   security (meaning that past or future data-processing keys remain   secure even if the current key is compromised; see [AbBell] for more   details).  External or internal re-keying can be used in network   protocols as well as in the systems for data-at-rest encryption.Smyshlyaev                    Informational                     [Page 6]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   Depending on the concrete protocol characteristics, there might be   situations in which both external and internal re-keying mechanisms   (seeSection 7) can be applied.  For example, a similar approach was   used in Taha's tree construction (see [TAHA]).   Note that there are key-updating (key regression) algorithms (e.g.,   [FKK2005] and [KMNT2003]) that are called "re-keying" as well, but   they pursue goals other than increasing the key lifetime.  Therefore,   key regression algorithms are excluded from the considerations here.   This document represents the consensus of the Crypto Forum Research   Group (CFRG).2.  Conventions Used in This Document   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and   "OPTIONAL" in this document are to be interpreted as described inBCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all   capitals, as shown here.3.  Basic Terms and Definitions   This document uses the following terms and definitions for the sets   and operations on the elements of these sets:   V*      the set of all bit strings of a finite length (hereinafter           referred to as strings), including the empty string;   V_s     the set of all bit strings of length s, where s is a           non-negative integer;   |X|     the bit length of the bit string X;   A | B   the concatenation of strings A and B both belonging to V*,           i.e., a string in V_{|A|+|B|}, where the left substring in           V_|A| is equal to A and the right substring in V_|B| is equal           to B;   (xor)   the exclusive-or of two bit strings of the same length;   Z_{2^n} the ring of residues modulo 2^n;   Int_s: V_s -> Z_{2^s}           the transformation that maps the string a = (a_s, ... , a_1)           in V_s into the integer Int_s(a) = 2^{s-1} * a_s + ... + 2 *           a_2 + a_1 (the interpretation of the binary string as an           integer);Smyshlyaev                    Informational                     [Page 7]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   Vec_s: Z_{2^s} -> V_s           the transformation inverse to the mapping Int_s (the           interpretation of an integer as a binary string);   MSB_i: V_s -> V_i           the transformation that maps the string a = (a_s, ... , a_1)           in V_s into the string MSB_i(a) = (a_s, ... , a_{s-i+1}) in           V_i (most significant bits);   LSB_i: V_s -> V_i           the transformation that maps the string a = (a_s, ... , a_1)           in V_s into the string LSB_i(a) = (a_i, ... , a_1) in V_i           (least significant bits);   Inc_c: V_s -> V_s           the transformation that maps the string a = (a_s, ... , a_1)           in V_s into the string Inc_c(a) = MSB_{|a|-c}(a) |           Vec_c(Int_c(LSB_c(a)) + 1(mod 2^c)) in V_s (incrementing the           least significant c bits of the bit string, regarded as the           binary representation of an integer);   a^s     the string in V_s that consists of s 'a' bits;   E_{K}: V_n -> V_n           the block cipher permutation under the key K in V_k;   ceil(x) the smallest integer that is greater than or equal to x;   floor(x)           the biggest integer that is less than or equal to x;   k       the bit length of the K; k is assumed to be divisible by 8;   n       the block size of the block cipher (in bits); n is assumed to           be divisible by 8;   b       the number of data blocks in the plaintext P (b =           ceil(|P|/n));   N       the section size (the number of bits that are processed with           one section key before this key is transformed).   A plaintext message P and the corresponding ciphertext C are divided   into b = ceil(|P|/n) blocks, denoted as P = P_1 | P_2 | ... | P_b and   C = C_1 | C_2 | ... | C_b, respectively.  The first b-1 blocks P_i   and C_i are in V_n for i = 1, 2, ... , b-1.  The b-th blocks P_b and   C_b may be incomplete blocks, i.e., in V_r, where r <= n if not   otherwise specified.Smyshlyaev                    Informational                     [Page 8]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 20194.  Choosing Constructions and Security Parameters   External re-keying is an approach assuming that a key is transformed   after encrypting a limited number of entire messages.  The external   re-keying method is chosen at the protocol level, regardless of the   underlying block cipher or the encryption mode.  External re-keying   is recommended for protocols that process relatively short messages   or protocols that have a way to divide a long message into manageable   pieces.  Through external re-keying, the number of messages that can   be securely processed with a single initial key K is substantially   increased without a loss of message length.   External re-keying has the following advantages   1.  It increases the lifetime of an initial key by increasing the       number of messages processed with this key.   2.  It has minimal impact on performance when the number of messages       processed under one initial key is sufficiently large.   3.  It provides forward and backward security of data-processing       keys.   However, the use of external re-keying has the following   disadvantage: in cases with restrictive key lifetime limitations, the   message sizes can become obstructive due to the impossibility of   processing sufficiently large messages, so it may be necessary to   perform additional fragmentation at the protocol level.  For example,   if the key lifetime L is 1 GB and the message length m = 3 GB, then   this message cannot be processed as a whole, and it should be divided   into three fragments that will be processed separately.   Internal re-keying is an approach assuming that a key is transformed   during each separate message processing.  Such procedures are   integrated into the base modes of operations, so every internal   re-keying mechanism is defined for the particular operation mode and   the block size of the used cipher.  Internal re-keying is recommended   for protocols that process long messages: the size of each single   message can be substantially increased without loss in the number of   messages that can be securely processed with a single initial key.   Internal re-keying has the following advantages:   1.  It increases the lifetime of an initial key by increasing the       size of the messages processed with one initial key.   2.  It has minimal impact on performance.Smyshlyaev                    Informational                     [Page 9]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   3.  Internal re-keying mechanisms without a master key do not affect       short-message transformation at all.   4.  It is transparent (works like any mode of operation): it does not       require changes of initialization vectors (IVs) and a restart of       MACing.   However, the use of internal re-keying has the following   disadvantages:   1.  a specific method must not be chosen independently of a mode of       operation.   2.  internal re-keying mechanisms without a master key do not provide       backward security of data-processing keys.   Any block cipher modes of operations with internal re-keying can be   jointly used with any external re-keying mechanisms.  Such joint   usage increases both the number of messages processed with one   initial key and their maximum possible size.   If the adversary has access to the data-processing interface, the use   of the same cryptographic primitives both for data-processing and   re-keying transformation decreases the code size but can lead to some   possible vulnerabilities (the possibility of mounting a chosen-   plaintext attack may lead to the compromise of the following keys).   This vulnerability can be eliminated by using different primitives   for data processing and re-keying, e.g., block cipher for data   processing and hash for re-keying (seeSection 5.2.2 andSection 5.3.2).  However, in this case, the security of the whole   scheme cannot be reduced to standard notions like a pseudorandom   function (PRF) or pseudorandom permutation (PRP), so security   estimations become more difficult and unclear.   Summing up the abovementioned issues briefly:   1.  If a protocol assumes processing of long records (e.g., [CMS]),       internal re-keying should be used.  If a protocol assumes       processing of a significant number of ordered records, which can       be considered as a single data stream (e.g., [TLS], [SSH]),       internal re-keying may also be used.   2.  For protocols that allow out-of-order delivery and lost records       (e.g., [DTLS], [ESP]), external re-keying should be used as, in       this case, records cannot be considered as a single data stream.       If the records are also long enough, internal re-keying should       also be used during each separate message processing.Smyshlyaev                    Informational                    [Page 10]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   For external re-keying:   1.  If it is desirable to separate transformations used for data       processing and key updates, hash function-based re-keying should       be used.   2.  If parallel data processing is required, then parallel external       re-keying should be used.   3.  If restrictive key lifetime limitations are present, external       tree-based re-keying should be used.   For internal re-keying:   1.  If the property of forward and backward security is desirable for       data-processing keys and if additional key material can be easily       obtained for the data-processing stage, internal re-keying with a       master key should be used.5.  External Re-keying Mechanisms   This section presents an approach to increasing the initial key   lifetime by using a transformation of a data-processing key (frame   key) after processing a limited number of entire messages (frame).   The approach provides external parallel and serial re-keying   mechanisms (see [AbBell]).  These mechanisms use initial key K only   for frame key generation and never use it directly for data   processing.  Such mechanisms operate outside of the base modes of   operations and do not change them at all; therefore, they are called   "external re-keying" mechanisms in this document.   External re-keying mechanisms are recommended for usage in protocols   that process quite small messages, since the maximum gain in   increasing the initial key lifetime is achieved by increasing the   number of messages.   External re-keying increases the initial key lifetime through the   following approach.  Suppose there is a protocol P with some mode of   operation (base encryption or authentication mode).  Let L1 be a key   lifetime limitation induced by side-channel analysis methods (side-   channel limitation), let L2 be a key lifetime limitation induced by   methods based on the combinatorial properties of a used mode of   operation (combinatorial limitation), and let q1, q2 be the total   numbers of messages of length m that can be safely processed with an   initial key K according to these limitations.Smyshlyaev                    Informational                    [Page 11]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   Let L = min(L1, L2), q = min(q1, q2), and q * m <= L.  As the L1   limitation is usually much stronger than the L2 limitation (L1 < L2),   the final key lifetime restriction is equal to the most restrictive   limitation L1.  Thus, as displayed in Figure 2, without re-keying,   only q1 (q1 * m <= L1) messages can be safely processed.                         <--------m------->                         +----------------+ ^ ^                         |================| | |                         |================| | |                     K-->|================| q1|                         |================| | |                         |==============L1| | |                         +----------------+ v |                         |                |   |                         |                |   |                         |                |   q2                         |                |   |                         |                |   |                         |                |   |                         |                |   |                         |                |   |                         |                |   |                         |                |   |                         |                |   |                         |              L2|   |                         +----------------+   v             Figure 2: Basic Principles of Message Processing                        without External Re-keying   Suppose that the safety margin for the protocol P is fixed and the   external re-keying approach is applied to the initial key K to   generate the sequence of frame keys.  The frame keys are generated in   such a way that the leakage of a previous frame key does not have any   impact on the following one, so the side-channel limitation L1 is   switched off.  Thus, the resulting key lifetime limitation of the   initial key K can be calculated on the basis of a new combinatorial   limitation L2'.  It is proven (see [AbBell]) that the security of the   mode of operation that uses external re-keying leads to an increase   when compared to base mode without re-keying (thus, L2 < L2').   Hence, as displayed in Figure 3, the resulting key lifetime   limitation if using external re-keying can be increased up to L2'.Smyshlyaev                    Informational                    [Page 12]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019                         <--------m------->                   K     +----------------+                   |     |================|                   v     |================|                  K^1--> |================|                   |     |================|                   |     |==============L1|                   |     +----------------+                   |     |================|                   v     |================|                  K^2--> |================|                   |     |================|                   |     |==============L1|                   |     +----------------+                   |     |================|                   v     |================|                  ...    |      . . .     |                         |                |                         |                |                         |              L2|                         +----------------+                         |                |                        ...              ...                         |             L2'|                         +----------------+             Figure 3: Basic Principles of Message Processing                          with External Re-keying   Note: The key transformation process is depicted in a simplified   form.  A specific approach (parallel and serial) is described below.   Consider an example.  Let the message size in a protocol P be equal   to 1 KB.  Suppose L1 = 128 MB and L2 = 1 TB.  Thus, if an external   re-keying mechanism is not used, the initial key K must be   renegotiated after processing 128 MB / 1 KB = 131072 messages.   If an external re-keying mechanism is used, the key lifetime   limitation L1 goes off.  Hence, the resulting key lifetime limitation   L2' can be set to more than 1 TB.  Thus, if an external re-keying   mechanism is used, more than 1 TB / 1 KB = 2^30 messages can be   processed before the initial key K is renegotiated.  This is 8192   times greater than the number of messages that can be processed when   an external re-keying mechanism is not used.Smyshlyaev                    Informational                    [Page 13]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 20195.1.  Methods of Key Lifetime Control   Suppose L is an amount of data that can be safely processed with one   frame key.  For i in {1, 2, ... , t}, the frame key K^i (see Figures   4 and 6) should be transformed after processing q_i messages, where   q_i can be calculated in accordance with one of the following   approaches:   Explicit approach:      q_i is such that |M^{i,1}| + ... + |M^{i,q_i}| <= L, |M^{i,1}| +      ... + |M^{i,q_i+1}| > L.      This approach allows use of the frame key K^i in an almost optimal      way, but it can be applied only when messages cannot be lost or      reordered (e.g., TLS records).   Implicit approach:      q_i = L / m_max, i = 1, ... , t.      The amount of data processed with one frame key K^i is calculated      under the assumption that every message has the maximum length      m_max.  Hence, this amount can be considerably less than the key      lifetime limitation L.  On the other hand, this approach can be      applied when messages may be lost or reordered (e.g., DTLS      records).   Dynamic key changes:      We can organize the key change using the Protected Point to Point      ([P3]) solution by building a protected tunnel between the      endpoints in which the information about frame key updating can be      safely passed across.  This can be useful, for example, when we      want the adversary to not detect the key change during the      protocol evaluation.5.2.  Parallel Constructions   External parallel re-keying mechanisms generate frame keys K^1, K^2,   ... directly from the initial key K independently of each other.   The main idea behind external re-keying with a parallel construction   is presented in Figure 4:Smyshlyaev                    Informational                    [Page 14]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   Maximum message size = m_max.   _____________________________________________________________                                   m_max                             <---------------->                   M^{1,1}   |===             |                   M^{1,2}   |=============== |         +->K^1-->   ...            ...         |         M^{1,q_1} |========        |         |         |         |         M^{2,1}   |================|         |         M^{2,2}   |=====           |   K-----|->K^2-->   ...            ...         |         M^{2,q_2} |==========      |         |        ...         |         M^{t,1}   |============    |         |         M^{t,2}   |=============   |         +->K^t-->   ...            ...                   M^{t,q_t} |==========      |   _____________________________________________________________             Figure 4: External Parallel Re-keying Mechanisms   The frame key K^i, i = 1, ... , t - 1 is updated after processing a   certain number of messages (seeSection 5.1).5.2.1.  Parallel Construction Based on a KDF on a Block Cipher   The ExtParallelC re-keying mechanism is based on the key derivation   function on a block cipher and is used to generate t frame keys as   follows:      K^1 | K^2 | ... | K^t = ExtParallelC(K, t * k) = MSB_{t *      k}(E_{K}(Vec_n(0)) |      E_{K}(Vec_n(1)) | ... | E_{K}(Vec_n(R - 1))),   where R = ceil(t * k/n).Smyshlyaev                    Informational                    [Page 15]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 20195.2.2.  Parallel Construction Based on a KDF on a Hash Function   The ExtParallelH re-keying mechanism is based on the key derivation   function HKDF-Expand, described in [RFC5869], and is used to generate   t frame keys as follows:      K^1 | K^2 | ... | K^t = ExtParallelH(K, t * k) = HKDF-Expand(K,      label, t * k),   where label is a string (may be a zero-length string) that is defined   by a specific protocol.5.2.3.  Tree-Based Construction   The application of an external tree-based mechanism leads to the   construction of the key tree with the initial key K (root key) at the   0 level and the frame keys K^1, K^2, ... at the last level, as   described in Figure 5.                            K_root = K                      ___________|___________                     |          ...          |                     V                       V                    K{1,1}                K{1,W1}               ______|______           ______|______              |     ...     |         |     ...     |              V             V         V             V           K{2,1}       K{2,W2}  K{2,(W1-1)*W2+1} K{2,W1*W2}            __|__         __|__     __|__         __|__           | ... |       | ... |   | ... |       | ... |           V     V       V     V   V     V       V     V        K{3,1}  ...     ...   ... ...   ...     ...   K{3,W1*W2*W3}         ...                                           ...        __|__                   ...                   __|__       | ... |                                       | ... |       V     V                                       V     V   K{h,1}   K{h,Wh}         K{h,(W1*...*W{h-1}-1)*Wh+1}  K{h,W1*...*Wh}     //       \\                                  //       \\   K^1       K^{Wh}        K^{(W1*...*W{h-1}-1)*Wh+1}     K^{W1*...*Wh}   ____________________________________________________________________                  Figure 5: External Tree-Based Mechanism   The tree height h and the number of keys Wj, j in {1, ... , h}, which   can be partitioned from the "parent" key, are defined in accordance   with a specific protocol and key lifetime limitations for the used   derivation functions.Smyshlyaev                    Informational                    [Page 16]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   Each j-level key K{j,w}, where j in {1, ... , h}, w in {1, ... , W1 *   ... * Wj}, is derived from the (j-1)-level "parent" key K{j-1,   ceil(w/Wi)} (and other appropriate input data) using the j-th level   derivation function.  This function can be based on the block cipher   function or on the hash function and is defined in accordance with a   specific protocol.   The i-th frame K^i, i in {1, 2, ... , W1*...*Wh}, can be calculated   as follows:      K^i = ExtKeyTree(K, i) = KDF_h(KDF_{h-1}(... KDF_1(K, ceil(i / (W2      * ... * Wh)) ... , ceil(i / Wh)), i),   where KDF_j is the j-th level derivation function that takes two   arguments (the parent key value and the integer in a range from 1 to   W1 * ... * Wj) and outputs the j-th level key value.   The frame key K^i is updated after processing a certain number of   messages (seeSection 5.1).   In order to create an efficient implementation, during frame key K^i   generation, the derivation functions KDF_j, j in {1, ... , h-1}   should be used only when ceil(i / (W{j+1} * ... * Wh)) != ceil((i -   1) / (W{j+1} * ... * Wh)); otherwise, it is necessary to use a   previously generated value.  This approach also makes it possible to   take countermeasures against side-channel attacks.   Consider an example.  Suppose h = 3, W1 = W2 = W3 = W, and KDF_1,   KDF_2, KDF_3 are key derivation functions based on the   KDF_GOSTR3411_2012_256 (hereafter simply KDF) function described in   [RFC7836].  The resulting ExtKeyTree function can be defined as   follows:      ExtKeyTree(K, i) = KDF(KDF(KDF(K, "level1", ceil(i / W^2)),      "level2", ceil(i / W)), "level3", i).   where i in {1, 2, ... , W^3}.   A structure similar to the external tree-based mechanism can be found   in Section 6 of [NISTSP800-108].5.3.  Serial Constructions   External serial re-keying mechanisms generate frame keys, each of   which depends on the secret state (K*_1, K*_2, ...) that is updated   after the generation of each new frame key; see Figure 6.  Similar   approaches are used in the [SIGNAL] protocol and the [TLS] updatingSmyshlyaev                    Informational                    [Page 17]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   traffic key mechanism and were proposed for use in the [U2F]   protocol.   External serial re-keying mechanisms have the obvious disadvantage of   being impossible to implement in parallel, but they may be the   preferred option if additional forward secrecy is desirable.  If all   keys are securely deleted after usage, the compromise of a current   secret state at some point does not lead to a compromise of all   previous secret states and frame keys.  In terms of [TLS], compromise   of application_traffic_secret_N does not compromise all previous   application_traffic_secret_i, i < N.   The main idea behind external re-keying with a serial construction is   presented in Figure 6:   Maximum message size = m_max.   _____________________________________________________________                                        m_max                                  <---------------->                        M^{1,1}   |===             |                        M^{1,2}   |=============== |   K*_1 = K --->K^1-->    ...            ...     |                  M^{1,q_1} |========        |     |     |     |                  M^{2,1}   |================|     v                  M^{2,2}   |=====           |   K*_2 ------->K^2-->    ...            ...     |                  M^{2,q_2} |==========      |     |    ...     |                  M^{t,1}   |============    |     v                  M^{t,2}   |=============   |   K*_t ------->K^t-->    ...            ...                        M^{t,q_t} |==========      |   _____________________________________________________________              Figure 6: External Serial Re-keying Mechanisms   The frame key K^i, i = 1, ... , t - 1, is updated after processing a   certain number of messages (seeSection 5.1).Smyshlyaev                    Informational                    [Page 18]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 20195.3.1.  Serial Construction Based on a KDF on a Block Cipher   The frame key K^i is calculated using the ExtSerialC transformation   as follows:      K^i = ExtSerialC(K, i) =      MSB_k(E_{K*_i}(Vec_n(0)) |E_{K*_i}(Vec_n(1)) | ... |      E_{K*_i}(Vec_n(J - 1))),   where J = ceil(k / n), i = 1, ... , t, K*_i is calculated as follows:      K*_1 = K,      K*_{j+1} = MSB_k(E_{K*_j}(Vec_n(J)) | E_{K*_j}(Vec_n(J + 1)) |      ... |      E_{K*_j}(Vec_n(2 * J - 1))),   where j = 1, ... , t - 1.5.3.2.  Serial Construction Based on a KDF on a Hash Function   The frame key K^i is calculated using the ExtSerialH transformation   as follows:      K^i = ExtSerialH(K, i) = HKDF-Expand(K*_i, label1, k),   where i = 1, ... , t; HKDF-Expand is the HMAC-based key derivation   function, as described in [RFC5869]; and K*_i is calculated as   follows:      K*_1 = K,      K*_{j+1} = HKDF-Expand(K*_j, label2, k), where j = 1, ... , t - 1,   where label1 and label2 are different strings from V* that are   defined by a specific protocol (see, for example, the algorithm for   updating traffic keys in TLS 1.3 [TLS]).5.4.  Using Additional Entropy during Re-keying   In many cases, using additional entropy during re-keying won't   increase security but may give a false sense of that.  Therefore, one   can rely on additional entropy only after conducting a deep security   analysis.  For example, good PRF constructions do not require   additional entropy for the quality of keys, so, in most cases, there   is no need to use additional entropy with external re-keying   mechanisms based on secure KDFs.  However, in some situations, mixed-   in entropy can still increase security in the case of a time-limitedSmyshlyaev                    Informational                    [Page 19]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   but complete breach of the system when an adversary can access the   frame-key generation interface but cannot reveal the master keys   (e.g., when the master keys are stored in a Hardware Security Module   (HSM)).   For example, an external parallel construction based on a KDF on a   hash function with a mixed-in entropy can be described as follows:      K^i = HKDF-Expand(K, label_i, k),   where label_i is additional entropy that must be sent to the   recipient (e.g., sent jointly with an encrypted message).  The   entropy label_i and the corresponding key K^i must be generated   directly before message processing.6.  Internal Re-keying Mechanisms   This section presents an approach to increasing the key lifetime by   using a transformation of a data-processing key (section key) during   each separate message processing.  Each message is processed starting   with the same key (the first section key), and each section key is   updated after processing N bits of the message (section).   This section provides internal re-keying mechanisms called ACPKM   (Advanced Cryptographic Prolongation of Key Material) and ACPKM-   Master that do not use a master key and use a master key,   respectively.  Such mechanisms are integrated into the base modes of   operation and actually form new modes of operation.  Therefore, they   are called "internal re-keying" mechanisms in this document.   Internal re-keying mechanisms are recommended to be used in protocols   that process large single messages (e.g., CMS messages), since the   maximum gain in increasing the key lifetime is achieved by increasing   the length of a message, while it provides almost no increase in the   number of messages that can be processed with one initial key.   Internal re-keying increases the key lifetime through the following   approach.  Suppose protocol P uses some base mode of operation.  Let   L1 and L2 be a side channel and combinatorial limitations,   respectively, and for some fixed number of messages q, let m1, m2 be   the lengths of messages that can be safely processed with a single   initial key K according to these limitations.   Thus, the approach without re-keying (analogous toSection 5) yields   a final key lifetime restriction equal to L1, and only q messages of   the length m1 can be safely processed; see Figure 7.Smyshlyaev                    Informational                    [Page 20]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019                K                |                v      ^ +----------------+------------------------------------+      | |==============L1|                                  L2|      | |================|                                    |      q |================|                                    |      | |================|                                    |      | |================|                                    |      v +----------------+------------------------------------+        <-------m1------->        <----------------------------m2----------------------->             Figure 7: Basic Principles of Message Processing                        without Internal Re-keying   Suppose that the safety margin for the protocol P is fixed and the   internal re-keying approach is applied to the base mode of operation.   Suppose further that every message is processed with a section key,   which is transformed after processing N bits of data, where N is a   parameter.  If q * N does not exceed L1, then the side-channel   limitation L1 goes off, and the resulting key lifetime limitation of   the initial key K can be calculated on the basis of a new   combinatorial limitation L2'.  The security of the mode of operation   that uses internal re-keying increases when compared to the base mode   of operation without re-keying (thus, L2 < L2').  Hence, as displayed   in Figure 8, the resulting key lifetime limitation if using internal   re-keying can be increased up to L2'.     K-----> K^1-------------> K^2 -----------> . . .             |                 |             v                 v   ^ +---------------+---------------+------------------+--...--+   | |=============L1|=============L1|======          L2|    L2'|   | |===============|===============|======            |       |   q |===============|===============|====== . . .      |       |   | |===============|===============|======            |       |   | |===============|===============|======            |       |   v +---------------+---------------+------------------+--...--+     <-------N------->             Figure 8: Basic Principles of Message Processing                          with Internal Re-keying   Note: The key transformation process is depicted in a simplified   form.  A specific approach (ACPKM and ACPKM-Master re-keying   mechanisms) is described below.Smyshlyaev                    Informational                    [Page 21]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   Since the performance of encryption can slightly decrease for rather   small values of N, the maximum possible value should be selected for   parameter N for a particular protocol in order to provide the   necessary key lifetime for the considered security models.   Consider an example.  Suppose L1 = 128 MB and L2 = 10 TB.  Let the   message size in the protocol be large/unlimited (which may exhaust   the whole key lifetime L2).  The most restrictive resulting key   lifetime limitation is equal to 128 MB.   Thus, there is a need to put a limit on the maximum message size   m_max.  For example, if m_max = 32 MB, it may happen that the   renegotiation of initial key K would be required after processing   only four messages.   If an internal re-keying mechanism with section size N = 1 MB is   used, more than L1 / N = 128 MB / 1 MB = 128 messages can be   processed before the renegotiation of initial key K (instead of four   messages when an internal re-keying mechanism is not used).  Note   that only one section of each message is processed with the section   key K^i, and, consequently, the key lifetime limitation L1 goes off.   Hence, the resulting key lifetime limitation L2' can be set to more   than 10 TB (in cases when a single large message is processed using   the initial key K).6.1.  Methods of Key Lifetime Control   Suppose L is an amount of data that can be safely processed with one   section key and N is a section size (fixed parameter).  Suppose   M^{i}_1 is the first section of message M^{i}, i = 1, ... , q (see   Figures 9 and 10); the parameter q can then be calculated in   accordance with one of the following two approaches:   o  Explicit approach:      q_i is such that |M^{1}_1| + ... + |M^{q}_1| <= L, |M^{1}_1| + ...      + |M^{q+1}_1| > L      This approach allows use of the section key K^i in an almost      optimal way, but it can be applied only when messages cannot be      lost or reordered (e.g., TLS records).   o  Implicit approach:      q = L / N.      The amount of data processed with one section key K^i is      calculated under the assumption that the length of every message      is equal to or greater than section size N and thus can be      considerably less than the key lifetime limitation L.  On the      other hand, this approach can be applied when messages may be lost      or reordered (e.g., DTLS records).Smyshlyaev                    Informational                    [Page 22]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 20196.2.  Constructions that Do Not Require a Master Key   This section describes the block cipher modes that use the ACPKM   re-keying mechanism, which does not use a master key; an initial key   is used directly for the data encryption.6.2.1.  ACPKM Re-keying Mechanisms   This section defines a periodical key transformation without a master   key, which is called the ACPKM re-keying mechanism.  This mechanism   can be applied to one of the base encryption modes (CTR and GCM block   cipher modes) to get an extension of this encryption mode that uses   periodical key transformation without a master key.  This extension   can be considered as a new encryption mode.   An additional parameter that defines the functioning of base   encryption modes with the ACPKM re-keying mechanism is the section   size N.  The value of N is measured in bits and is fixed within a   specific protocol based on the requirements of the system capacity   and the key lifetime.  The section size N MUST be divisible by the   block size n.   The main idea behind internal re-keying without a master key is   presented in Figure 9:   Section size = const = N,   maximum message size = m_max.   ____________________________________________________________________                 ACPKM       ACPKM              ACPKM          K^1 = K ---> K^2 ---...-> K^{l_max-1} ----> K^{l_max}              |          |                |           |              |          |                |           |              v          v                v           v   M^{1} |==========|==========| ... |==========|=======:  |   M^{2} |==========|==========| ... |===       |       :  |     .        .          .        .       .          .  :     :        :          :        :       :          :  :   M^{q} |==========|==========| ... |==========|=====  :  |                      section                           :                    <---------->                      m_max                       N bit   ___________________________________________________________________   l_max = ceil(m_max/N).             Figure 9: Internal Re-keying without a Master KeySmyshlyaev                    Informational                    [Page 23]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   During the processing of the input message M with the length m in   some encryption mode that uses the ACPKM key transformation of the   initial key K, the message is divided into l = ceil(m / N) sections   (denoted as M = M_1 | M_2 | ... | M_l, where M_i is in V_N for i in   {1, 2, ... , l - 1} and M_l is in V_r, r <= N).  The first section of   each message is processed with the section key K^1 = K.  To process   the (i + 1)-th section of each message, the section key K^{i+1} is   calculated using the ACPKM transformation as follows:      K^{i+1} = ACPKM(K^i) = MSB_k(E_{K^i}(D_1) | ... | E_{K^i}(D_J)),   where J = ceil(k/n) and D_1, D_2, ... , D_J are in V_n and are   calculated as follows:      D_1 | D_2 | ... | D_J = MSB_{J * n}(D),   where D is the following constant in V_{1024}:             D = ( 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87                 | 88 | 89 | 8a | 8b | 8c | 8d | 8e | 8f                 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97                 | 98 | 99 | 9a | 9b | 9c | 9d | 9e | 9f                 | a0 | a1 | a2 | a3 | a4 | a5 | a6 | a7                 | a8 | a9 | aa | ab | ac | ad | ae | af                 | b0 | b1 | b2 | b3 | b4 | b5 | b6 | b7                 | b8 | b9 | ba | bb | bc | bd | be | bf                 | c0 | c1 | c2 | c3 | c4 | c5 | c6 | c7                 | c8 | c9 | ca | cb | cc | cd | ce | cf                 | d0 | d1 | d2 | d3 | d4 | d5 | d6 | d7                 | d8 | d9 | da | db | dc | dd | de | df                 | e0 | e1 | e2 | e3 | e4 | e5 | e6 | e7                 | e8 | e9 | ea | eb | ec | ed | ee | ef                 | f0 | f1 | f2 | f3 | f4 | f5 | f6 | f7                 | f8 | f9 | fa | fb | fc | fd | fe | ff)   Note: The constant D is such that D_1, ... , D_J are pairwise   different for any allowed n and k values.   Note: The highest bit of each octet of the constant D is equal to 1.   This condition is important as, in conjunction with a certain mode   message length limitation, it allows prevention of collisions of   block cipher permutation inputs in cases with key transformation and   message processing (for more details, see Section 4.4 of [AAOS2017]).Smyshlyaev                    Informational                    [Page 24]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 20196.2.2.  CTR-ACPKM Encryption Mode   This section defines a CTR-ACPKM encryption mode that uses the ACPKM   internal re-keying mechanism for the periodical key transformation.   The CTR-ACPKM mode can be considered as the base encryption mode CTR   (see [MODES]) extended by the ACPKM re-keying mechanism.   The CTR-ACPKM encryption mode can be used with the following   parameters:   o  64 <= n <= 512.   o  128 <= k <= 512.   o  The number c of bits in a specific part of the block to be      incremented is such that 32 <= c <= 3 / 4 n, where c is a multiple      of 8.   o  The maximum message size m_max = n * 2^{c-1}.   The CTR-ACPKM mode encryption and decryption procedures are defined   as follows:   +----------------------------------------------------------------+   |  CTR-ACPKM-Encrypt(N, K, ICN, P)                               |   |----------------------------------------------------------------|   |  Input:                                                        |   |  - section size N,                                             |   |  - initial key K,                                              |   |  - initial counter nonce ICN in V_{n-c},                       |   |  - plaintext P = P_1 | ... | P_b, |P| <= m_max.                |   |  Output:                                                       |   |  - ciphertext C.                                               |   |----------------------------------------------------------------|   |  1. CTR_1 = ICN | 0^c                                          |   |  2. For j = 2, 3, ... , b do                                   |   |         CTR_{j} = Inc_c(CTR_{j-1})                             |   |  3. K^1 = K                                                    |   |  4. For i = 2, 3, ... , ceil(|P| / N)                          |   |         K^i = ACPKM(K^{i-1})                                   |   |  5. For j = 1, 2, ... , b do                                   |   |         i = ceil(j * n / N),                                   |   |         G_j = E_{K^i}(CTR_j)                                   |   |  6. C = P (xor) MSB_{|P|}(G_1 | ... | G_b)                     |   |  7. Return C                                                   |   +----------------------------------------------------------------+Smyshlyaev                    Informational                    [Page 25]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   +----------------------------------------------------------------+   |  CTR-ACPKM-Decrypt(N, K, ICN, C)                               |   |----------------------------------------------------------------|   |  Input:                                                        |   |  - section size N,                                             |   |  - initial key K,                                              |   |  - initial counter nonce ICN in V_{n-c},                       |   |  - ciphertext C = C_1 | ... | C_b, |C| <= m_max.               |   |  Output:                                                       |   |  - plaintext P.                                                |   |----------------------------------------------------------------|   |  1. P = CTR-ACPKM-Encrypt(N, K, ICN, C)                        |   |  2. Return P                                                   |   +----------------------------------------------------------------+   The initial counter nonce (ICN) value for each message that is   encrypted under the given initial key K must be chosen in a unique   manner.6.2.3.  GCM-ACPKM Authenticated Encryption Mode   This section defines the GCM-ACPKM authenticated encryption mode that   uses the ACPKM internal re-keying mechanism for the periodical key   transformation.   The GCM-ACPKM mode can be considered as the base authenticated   encryption mode GCM (see [GCM]) extended by the ACPKM re-keying   mechanism.   The GCM-ACPKM authenticated encryption mode can be used with the   following parameters:   o  n in {128, 256}.   o  128 <= k <= 512.   o  The number c of bits in a specific part of the block to be      incremented is such that 1 / 4 n <= c <= 1 / 2 n, c is a multiple      of 8.   o  Authentication tag length t.   o  The maximum message size m_max = min{n * (2^{c-1} - 2), 2^{n/2} -      1}.Smyshlyaev                    Informational                    [Page 26]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   The GCM-ACPKM mode encryption and decryption procedures are defined   as follows:   +-------------------------------------------------------------------+   |  GHASH(X, H)                                                      |   |-------------------------------------------------------------------|   |  Input:                                                           |   |  - bit string X = X_1 | ... | X_m, X_1, ... , X_m in V_n.         |   |  Output:                                                          |   |  - block GHASH(X, H) in V_n.                                      |   |-------------------------------------------------------------------|   |  1. Y_0 = 0^n                                                     |   |  2. For i = 1, ... , m do                                         |   |         Y_i = (Y_{i-1} (xor) X_i) * H                             |   |  3. Return Y_m                                                    |   +-------------------------------------------------------------------+   +-------------------------------------------------------------------+   |  GCTR(N, K, ICB, X)                                               |   |-------------------------------------------------------------------|   |  Input:                                                           |   |  - section size N,                                                |   |  - initial key K,                                                 |   |  - initial counter block ICB,                                     |   |  - X = X_1 | ... | X_b.                                           |   |  Output:                                                          |   |  - Y in V_{|X|}.                                                  |   |-------------------------------------------------------------------|   |  1. If X in V_0, then return Y, where Y in V_0                    |   |  2. GCTR_1 = ICB                                                  |   |  3. For i = 2, ... , b do                                         |   |         GCTR_i = Inc_c(GCTR_{i-1})                                |   |  4. K^1 = K                                                       |   |  5. For j = 2, ... , ceil(|X| / N)                                |   |         K^j = ACPKM(K^{j-1})                                      |   |  6. For i = 1, ... , b do                                         |   |         j = ceil(i * n / N),                                      |   |         G_i = E_{K_j}(GCTR_i)                                     |   |  7. Y = X (xor) MSB_{|X|}(G_1 | ... | G_b)                        |   |  8. Return Y                                                      |   +-------------------------------------------------------------------+Smyshlyaev                    Informational                    [Page 27]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   +-------------------------------------------------------------------+   |  GCM-ACPKM-Encrypt(N, K, ICN, P, A)                               |   |-------------------------------------------------------------------|   |  Input:                                                           |   |  - section size N,                                                |   |  - initial key K,                                                 |   |  - initial counter nonce ICN in V_{n-c},                          |   |  - plaintext P = P_1 | ... | P_b, |P| <= m_max,                   |   |  - additional authenticated data A.                               |   |  Output:                                                          |   |  - ciphertext C,                                                  |   |  - authentication tag T.                                          |   |-------------------------------------------------------------------|   |  1. H = E_{K}(0^n)                                                |   |  2. ICB_0 = ICN | 0^{c-1} | 1                                     |   |  3. C = GCTR(N, K, Inc_c(ICB_0), P)                               |   |  4. u = n * ceil(|C| / n) - |C|                                   |   |     v = n * ceil(|A| / n) - |A|                                   |   |  5. S = GHASH(A | 0^v | C | 0^u | Vec_{n/2}(|A|) |                |   |               | Vec_{n/2}(|C|), H)                                |   |  6. T = MSB_t(E_{K}(ICB_0) (xor) S)                               |   |  7. Return C | T                                                  |   +-------------------------------------------------------------------+   +-------------------------------------------------------------------+   |  GCM-ACPKM-Decrypt(N, K, ICN, A, C, T)                            |   |-------------------------------------------------------------------|   |  Input:                                                           |   |  - section size N,                                                |   |  - initial key K,                                                 |   |  - initial counter block ICN,                                     |   |  - additional authenticated data A,                               |   |  - ciphertext C = C_1 | ... | C_b, |C| <= m_max,                  |   |  - authentication tag T.                                          |   |  Output:                                                          |   |  - plaintext P or FAIL.                                           |   |-------------------------------------------------------------------|   |  1. H = E_{K}(0^n)                                                |   |  2. ICB_0 = ICN | 0^{c-1} | 1                                     |   |  3. P = GCTR(N, K, Inc_c(ICB_0), C)                               |   |  4. u = n * ceil(|C| / n) - |C|                                   |   |     v = n * ceil(|A| / n) - |A|                                   |   |  5. S = GHASH(A | 0^v | C | 0^u | Vec_{n/2}(|A|) |                |   |               | Vec_{n/2}(|C|), H)                                |   |  6. T' = MSB_t(E_{K}(ICB_0) (xor) S)                              |   |  7. If T = T', then return P; else return FAIL                    |   +-------------------------------------------------------------------+Smyshlyaev                    Informational                    [Page 28]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   The * operation on (pairs of) the 2^n possible blocks corresponds to   the multiplication operation for the binary Galois (finite) field of   2^n elements defined by the polynomial f as follows (analogous to   [GCM]):   n = 128:  f = a^128 + a^7 + a^2 + a^1 + 1,   n = 256:  f = a^256 + a^10 + a^5 + a^2 + 1.   The initial counter nonce ICN value for each message that is   encrypted under the given initial key K must be chosen in a unique   manner.   The key for computing values E_{K}(ICB_0) and H is not updated and is   equal to the initial key K.6.3.  Constructions that Require a Master Key   This section describes the block cipher modes that use the ACPKM-   Master re-keying mechanism, which use the initial key K as a master   key, so K is never used directly for data processing but is used for   key derivation.6.3.1.  ACPKM-Master Key Derivation from the Master Key   This section defines periodical key transformation with a master key,   which is called the ACPKM-Master re-keying mechanism.  This mechanism   can be applied to one of the base modes of operation (CTR, GCM, CBC,   CFB, OMAC modes) for getting an extension that uses periodical key   transformation with a master key.  This extension can be considered   as a new mode of operation.   Additional parameters that define the functioning of modes of   operation that use the ACPKM-Master re-keying mechanism are the   section size N, the change frequency T* of the master keys K*_1,   K*_2, ... (see Figure 10), and the size d of the section key   material.  The values of N and T* are measured in bits and are fixed   within a specific protocol based on the requirements of the system   capacity and the key lifetime.  The section size N MUST be divisible   by the block size n.  The master key frequency T* MUST be divisible   by d and by n.Smyshlyaev                    Informational                    [Page 29]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   The main idea behind internal re-keying with a master key is   presented in Figure 10:   Master key frequency T*,   section size N,   maximum message size = m_max.   _____________________________________________________________________                           ACPKM                 ACPKM                K*_1 = K----------> K*_2 ---------...-----> K*_l_max               ___|___            ___|___                 ___|___              |       |          |       |               |       |              v  ...  v          v  ...  v               v  ...v            K[1]     K[t]     K[t+1]  K[2*t]  K[(l_max-1)t+1] K[l_max*t]              |       |          |       |               |       |              |       |          |       |               |       |              v       v          v       v               v       v   M^{1}||======|...|======||======|...|======||...||======|...|==  : ||   M^{2}||======|...|======||======|...|======||...||======|...|====: ||    ... ||      |   |      ||      |   |      ||   ||      |   |    : ||   M^{q}||======|...|======||====  |...|      ||...||      |...|    : ||          section                                                   :         <------>                                                   :           N bit                                                  m_max   _____________________________________________________________________   |K[i]| = d,   t = T* / d,   l_max = ceil(m_max / (N * t)).              Figure 10: Internal Re-keying with a Master Key   During the processing of the input message M with the length m in   some mode of operation that uses ACPKM-Master key transformation with   the initial key K and the master key frequency T*, the message M is   divided into l = ceil(m / N) sections (denoted as M = M_1 | M_2 |   ... | M_l, where M_i is in V_N for i in {1, 2, ... , l - 1} and M_l   is in V_r, r <= N).  The j-th section of each message is processed   with the key material K[j], j in {1, ... , l}, |K[j]| = d, which is   calculated with the ACPKM-Master algorithm as follows:      K[1] | ... | K[l] = ACPKM-Master(T*, K, d, l) = CTR-ACPKM-Encrypt      (T*, K, 1^{n/2}, 0^{d*l}).   Note: The parameters d and l MUST be such that d * l <= n *   2^{n/2-1}.Smyshlyaev                    Informational                    [Page 30]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 20196.3.2.  CTR-ACPKM-Master Encryption Mode   This section defines a CTR-ACPKM-Master encryption mode that uses the   ACPKM-Master internal re-keying mechanism for the periodical key   transformation.   The CTR-ACPKM-Master encryption mode can be considered as the base   encryption mode CTR (see [MODES]) extended by the ACPKM-Master   re-keying mechanism.   The CTR-ACPKM-Master encryption mode can be used with the following   parameters:   o  64 <= n <= 512.   o  128 <= k <= 512.   o  The number c of bits in a specific part of the block to be      incremented is such that 32 <= c <= 3 / 4 n, c is a multiple of 8.   o  The maximum message size m_max = min{N * (n * 2^{n/2-1} / k), n *      2^c}.   The key material K[j] that is used for one-section processing is   equal to K^j, where |K^j| = k bits.Smyshlyaev                    Informational                    [Page 31]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   The CTR-ACPKM-Master mode encryption and decryption procedures are   defined as follows:   +----------------------------------------------------------------+   |  CTR-ACPKM-Master-Encrypt(N, K, T*, ICN, P)                    |   |----------------------------------------------------------------|   |  Input:                                                        |   |  - section size N,                                             |   |  - initial key K,                                              |   |  - master key frequency T*,                                    |   |  - initial counter nonce ICN in V_{n-c},                       |   |  - plaintext P = P_1 | ... | P_b, |P| <= m_max.                |   |  Output:                                                       |   |  - ciphertext C.                                               |   |----------------------------------------------------------------|   |  1. CTR_1 = ICN | 0^c                                          |   |  2. For j = 2, 3, ... , b do                                   |   |         CTR_{j} = Inc_c(CTR_{j-1})                             |   |  3. l = ceil(|P| / N)                                          |   |  4. K^1 | ... | K^l = ACPKM-Master(T*, K, k, l)                |   |  5. For j = 1, 2, ... , b do                                   |   |         i = ceil(j * n / N),                                   |   |         G_j = E_{K^i}(CTR_j)                                   |   |  6. C = P (xor) MSB_{|P|}(G_1 | ... |G_b)                      |   |  7. Return C                                                   |   |----------------------------------------------------------------+   +----------------------------------------------------------------+   |  CTR-ACPKM-Master-Decrypt(N, K, T*, ICN, C)                    |   |----------------------------------------------------------------|   |  Input:                                                        |   |  - section size N,                                             |   |  - initial key K,                                              |   |  - master key frequency T*,                                    |   |  - initial counter nonce ICN in V_{n-c},                       |   |  - ciphertext C = C_1 | ... | C_b, |C| <= m_max.               |   |  Output:                                                       |   |  - plaintext P.                                                |   |----------------------------------------------------------------|   |  1. P = CTR-ACPKM-Master-Encrypt(N, K, T*, ICN, C)             |   |  1. Return P                                                   |   +----------------------------------------------------------------+   The initial counter nonce ICN value for each message that is   encrypted under the given initial key must be chosen in a unique   manner.Smyshlyaev                    Informational                    [Page 32]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 20196.3.3.  GCM-ACPKM-Master Authenticated Encryption Mode   This section defines a GCM-ACPKM-Master authenticated encryption mode   that uses the ACPKM-Master internal re-keying mechanism for the   periodical key transformation.   The GCM-ACPKM-Master authenticated encryption mode can be considered   as the base authenticated encryption mode GCM (see [GCM]) extended by   the ACPKM-Master re-keying mechanism.   The GCM-ACPKM-Master authenticated encryption mode can be used with   the following parameters:   o  n in {128, 256}.   o  128 <= k <= 512.   o  The number c of bits in a specific part of the block to be      incremented is such that 1 / 4 n <= c <= 1 / 2 n, c is a multiple      of 8.   o  authentication tag length t.   o  the maximum message size m_max = min{N * ( n * 2^{n/2-1} / k), n *      (2^c - 2), 2^{n/2} - 1}.   The key material K[j] that is used for the j-th section processing is   equal to K^j, |K^j| = k bits.   The GCM-ACPKM-Master mode encryption and decryption procedures are   defined as follows:   +-------------------------------------------------------------------+   |  GHASH(X, H)                                                      |   |-------------------------------------------------------------------|   |  Input:                                                           |   |  - bit string X = X_1 | ... | X_m, X_i in V_n for i in {1, ... ,m}|   |  Output:                                                          |   |  - block GHASH(X, H) in V_n                                       |   |-------------------------------------------------------------------|   |  1. Y_0 = 0^n                                                     |   |  2. For i = 1, ... , m do                                         |   |         Y_i = (Y_{i-1} (xor) X_i) * H                             |   |  3. Return Y_m                                                    |   +-------------------------------------------------------------------+Smyshlyaev                    Informational                    [Page 33]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   +-------------------------------------------------------------------+   |  GCTR(N, K, T*, ICB, X)                                           |   |-------------------------------------------------------------------|   |  Input:                                                           |   |  - section size N,                                                |   |  - initial key K,                                                 |   |  - master key frequency T*,                                       |   |  - initial counter block ICB,                                     |   |  - X = X_1 | ... | X_b.                                           |   |  Output:                                                          |   |  - Y in V_{|X|}.                                                  |   |-------------------------------------------------------------------|   |  1. If X in V_0, then return Y, where Y in V_0                    |   |  2. GCTR_1 = ICB                                                  |   |  3. For i = 2, ... , b do                                         |   |         GCTR_i = Inc_c(GCTR_{i-1})                                |   |  4. l = ceil(|X| / N)                                             |   |  5. K^1 | ... | K^l = ACPKM-Master(T*, K, k, l)                   |   |  6. For j = 1, ... , b do                                         |   |         i = ceil(j * n / N),                                      |   |         G_j = E_{K^i}(GCTR_j)                                     |   |  7. Y = X (xor) MSB_{|X|}(G_1 | ... | G_b)                        |   |  8. Return Y                                                      |   +-------------------------------------------------------------------+Smyshlyaev                    Informational                    [Page 34]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   +-------------------------------------------------------------------+   |  GCM-ACPKM-Master-Encrypt(N, K, T*, ICN, P, A)                    |   |-------------------------------------------------------------------|   |  Input:                                                           |   |  - section size N,                                                |   |  - initial key K,                                                 |   |  - master key frequency T*,                                       |   |  - initial counter nonce ICN in V_{n-c},                          |   |  - plaintext P = P_1 | ... | P_b, |P| <= m_max.                   |   |  - additional authenticated data A.                               |   |  Output:                                                          |   |  - ciphertext C,                                                  |   |  - authentication tag T.                                          |   |-------------------------------------------------------------------|   |  1. K^1 = ACPKM-Master(T*, K, k, 1)                               |   |  2. H = E_{K^1}(0^n)                                              |   |  3. ICB_0 = ICN | 0^{c-1} | 1                                     |   |  4. C = GCTR(N, K, T*, Inc_c(ICB_0), P)                           |   |  5. u = n * ceil(|C| / n) - |C|                                   |   |     v = n * ceil(|A| / n) - |A|                                   |   |  6. S = GHASH(A | 0^v | C | 0^u | Vec_{n/2}(|A|) |                |   |               | Vec_{n/2}(|C|), H)                                |   |  7. T = MSB_t(E_{K^1}(ICB_0) (xor) S)                             |   |  8. Return C | T                                                  |   +-------------------------------------------------------------------+Smyshlyaev                    Informational                    [Page 35]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   +-------------------------------------------------------------------+   |  GCM-ACPKM-Master-Decrypt(N, K, T*, ICN, A, C, T)                 |   |-------------------------------------------------------------------|   |  Input:                                                           |   |  - section size N,                                                |   |  - initial key K,                                                 |   |  - master key frequency T*,                                       |   |  - initial counter nonce ICN in V_{n-c},                          |   |  - additional authenticated data A.                               |   |  - ciphertext C = C_1 | ... | C_b, |C| <= m_max,                  |   |  - authentication tag T.                                          |   |  Output:                                                          |   |  - plaintext P or FAIL.                                           |   |-------------------------------------------------------------------|   |  1. K^1 = ACPKM-Master(T*, K, k, 1)                               |   |  2. H = E_{K^1}(0^n)                                              |   |  3. ICB_0 = ICN | 0^{c-1} | 1                                     |   |  4. P = GCTR(N, K, T*, Inc_c(ICB_0), C)                           |   |  5. u = n * ceil(|C| / n) - |C|                                   |   |     v = n * ceil(|A| / n) - |A|                                   |   |  6. S = GHASH(A | 0^v | C | 0^u | Vec_{n/2}(|A|) |                |   |               | Vec_{n/2}(|C|), H)                                |   |  7. T' = MSB_t(E_{K^1}(ICB_0) (xor) S)                            |   |  8. If T = T', then return P; else return FAIL.                   |   +-------------------------------------------------------------------+   The * operation on (pairs of) the 2^n possible blocks corresponds to   the multiplication operation for the binary Galois (finite) field of   2^n elements defined by the polynomial f as follows (by analogy with   [GCM]):   n = 128:  f = a^128 + a^7 + a^2 + a^1 + 1,   n = 256:  f = a^256 + a^10 + a^5 + a^2 + 1.   The initial counter nonce ICN value for each message that is   encrypted under the given initial key must be chosen in a unique   manner.Smyshlyaev                    Informational                    [Page 36]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 20196.3.4.  CBC-ACPKM-Master Encryption Mode   This section defines a CBC-ACPKM-Master encryption mode that uses the   ACPKM-Master internal re-keying mechanism for the periodical key   transformation.   The CBC-ACPKM-Master encryption mode can be considered as the base   encryption mode CBC (see [MODES]) extended by the ACPKM-Master   re-keying mechanism.   The CBC-ACPKM-Master encryption mode can be used with the following   parameters:   o  64 <= n <= 512.   o  128 <= k <= 512.   o  The maximum message size m_max = N * (n * 2^{n/2-1} / k).   In the specification of the CBC-ACPKM-Master mode, the plaintext and   ciphertext must be a sequence of one or more complete data blocks.   If the data string to be encrypted does not initially satisfy this   property, then it MUST be padded to form complete data blocks.  The   padding methods are out of the scope of this document.  An example of   a padding method can be found inAppendix A of [MODES].   The key material K[j] that is used for the j-th section processing is   equal to K^j, |K^j| = k bits.   We use D_{K} to denote the decryption function that is a permutation   inverse to E_{K}.Smyshlyaev                    Informational                    [Page 37]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   The CBC-ACPKM-Master mode encryption and decryption procedures are   defined as follows:   +----------------------------------------------------------------+   |  CBC-ACPKM-Master-Encrypt(N, K, T*, IV, P)                     |   |----------------------------------------------------------------|   |  Input:                                                        |   |  - section size N,                                             |   |  - initial key K,                                              |   |  - master key frequency T*,                                    |   |  - initialization vector IV in V_n,                            |   |  - plaintext P = P_1 | ... | P_b, |P_b| = n, |P| <= m_max.     |   |  Output:                                                       |   |  - ciphertext C.                                               |   |----------------------------------------------------------------|   |  1. l = ceil(|P| / N)                                          |   |  2. K^1 | ... | K^l = ACPKM-Master(T*, K, k, l)                |   |  3. C_0 = IV                                                   |   |  4. For j = 1, 2, ... , b do                                   |   |         i = ceil(j * n / N),                                   |   |         C_j = E_{K^i}(P_j (xor) C_{j-1})                       |   |  5. Return C = C_1 | ... | C_b                                 |   |----------------------------------------------------------------+   +----------------------------------------------------------------+   |  CBC-ACPKM-Master-Decrypt(N, K, T*, IV, C)                     |   |----------------------------------------------------------------|   |  Input:                                                        |   |  - section size N,                                             |   |  - initial key K,                                              |   |  - master key frequency T*,                                    |   |  - initialization vector IV in V_n,                            |   |  - ciphertext C = C_1 | ... | C_b, |C_b| = n, |C| <= m_max.    |   |  Output:                                                       |   |  - plaintext P.                                                |   |----------------------------------------------------------------|   |  1. l = ceil(|C| / N)                                          |   |  2. K^1 | ... | K^l = ACPKM-Master(T*, K, k, l)                |   |  3. C_0 = IV                                                   |   |  4. For j = 1, 2, ... , b do                                   |   |         i = ceil(j * n / N)                                    |   |         P_j = D_{K^i}(C_j) (xor) C_{j-1}                       |   |  5. Return P = P_1 | ... | P_b                                 |   +----------------------------------------------------------------+   The initialization vector IV for any particular execution of the   encryption process must be unpredictable.Smyshlyaev                    Informational                    [Page 38]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 20196.3.5.  CFB-ACPKM-Master Encryption Mode   This section defines a CFB-ACPKM-Master encryption mode that uses the   ACPKM-Master internal re-keying mechanism for the periodical key   transformation.   The CFB-ACPKM-Master encryption mode can be considered as the base   encryption mode CFB (see [MODES]) extended by the ACPKM-Master   re-keying mechanism.   The CFB-ACPKM-Master encryption mode can be used with the following   parameters:   o  64 <= n <= 512.   o  128 <= k <= 512.   o  The maximum message size m_max = N * (n * 2^{n/2-1} / k).   The key material K[j] that is used for the j-th section processing is   equal to K^j, |K^j| = k bits.   The CFB-ACPKM-Master mode encryption and decryption procedures are   defined as follows:   +-------------------------------------------------------------+   |  CFB-ACPKM-Master-Encrypt(N, K, T*, IV, P)                  |   |-------------------------------------------------------------|   |  Input:                                                     |   |  - section size N,                                          |   |  - initial key K,                                           |   |  - master key frequency T*,                                 |   |  - initialization vector IV in V_n,                         |   |  - plaintext P = P_1 | ... | P_b, |P| <= m_max.             |   |  Output:                                                    |   |  - ciphertext C.                                            |   |-------------------------------------------------------------|   |  1. l = ceil(|P| / N)                                       |   |  2. K^1 | ... | K^l = ACPKM-Master(T*, K, k, l)             |   |  3. C_0 = IV                                                |   |  4. For j = 1, 2, ... , b - 1 do                            |   |         i = ceil(j * n / N),                                |   |         C_j = E_{K^i}(C_{j-1}) (xor) P_j                    |   |  5. C_b = MSB_{|P_b|}(E_{K^l}(C_{b-1})) (xor) P_b           |   |  6. Return C = C_1 | ... | C_b                              |   |-------------------------------------------------------------+Smyshlyaev                    Informational                    [Page 39]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   +-------------------------------------------------------------+   |  CFB-ACPKM-Master-Decrypt(N, K, T*, IV, C)                  |   |-------------------------------------------------------------|   |  Input:                                                     |   |  - section size N,                                          |   |  - initial key K,                                           |   |  - master key frequency T*,                                 |   |  - initialization vector IV in V_n,                         |   |  - ciphertext C = C_1 | ... | C_b, |C| <= m_max.            |   |  Output:                                                    |   |  - plaintext P.                                             |   |-------------------------------------------------------------|   |  1. l = ceil(|C| / N)                                       |   |  2. K^1 | ... | K^l = ACPKM-Master(T*, K, k, l)             |   |  3. C_0 = IV                                                |   |  4. For j = 1, 2, ... , b - 1 do                            |   |         i = ceil(j * n / N),                                |   |         P_j = E_{K^i}(C_{j-1}) (xor) C_j                    |   |  5. P_b = MSB_{|C_b|}(E_{K^l}(C_{b-1})) (xor) C_b           |   |  6. Return P = P_1 | ... | P_b                              |   +-------------------------------------------------------------+   The initialization vector IV for any particular execution of the   encryption process must be unpredictable.6.3.6.  OMAC-ACPKM-Master Authentication Mode   This section defines an OMAC-ACPKM-Master message authentication code   calculation mode that uses the ACPKM-Master internal re-keying   mechanism for the periodical key transformation.   The OMAC-ACPKM-Master mode can be considered as the base message   authentication code calculation mode OMAC1, which is also known as   CMAC (see [RFC4493]), extended by the ACPKM-Master re-keying   mechanism.   The OMAC-ACPKM-Master message authentication code calculation mode   can be used with the following parameters:   o  n in {64, 128, 256}.   o  128 <= k <= 512.   o  The maximum message size m_max = N * (n * 2^{n/2-1} / (k + n)).   The key material K[j] that is used for one-section processing is   equal to K^j | K^j_1, where |K^j| = k bits and |K^j_1| = n bits.Smyshlyaev                    Informational                    [Page 40]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   The following is a specification of the subkey generation process of   OMAC:   +-------------------------------------------------------------------+   | Generate_Subkey(K1, r)                                            |   |-------------------------------------------------------------------|   | Input:                                                            |   |  - key K1.                                                        |   |  Output:                                                          |   |  - key SK.                                                        |   |-------------------------------------------------------------------|   |   1. If r = n, then return K1                                     |   |   2. If r < n, then                                               |   |          if MSB_1(K1) = 0                                         |   |              return K1 << 1                                       |   |          else                                                     |   |              return (K1 << 1) (xor) R_n                           |   +-------------------------------------------------------------------+   Here, R_n takes the following values:   o  n = 64: R_{64} = 0^{59} | 11011.   o  n = 128: R_{128} = 0^{120} | 10000111.   o  n = 256: R_{256} = 0^{145} | 10000100101.Smyshlyaev                    Informational                    [Page 41]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   The OMAC-ACPKM-Master message authentication code calculation mode is   defined as follows:   +-------------------------------------------------------------------+   | OMAC-ACPKM-Master(K, N, T*, M)                                    |   |-------------------------------------------------------------------|   | Input:                                                            |   |  - section size N,                                                |   |  - initial key K,                                                 |   |  - master key frequency T*,                                       |   |  - plaintext M = M_1 | ... | M_b, |M| <= m_max.                   |   |  Output:                                                          |   |  - message authentication code T.                                 |   |-------------------------------------------------------------------|   | 1. C_0 = 0^n                                                      |   | 2. l = ceil(|M| / N)                                              |   | 3. K^1 | K^1_1 | ... | K^l | K^l_1 =                              |                     = ACPKM-Master(T*, K, (k + n), l)                 |   | 4. For j = 1, 2, ... , b - 1 do                                   |   |        i = ceil(j * n / N),                                       |   |        C_j = E_{K^i}(M_j (xor) C_{j-1})                           |   | 5. SK = Generate_Subkey(K^l_1, |M_b|)                             |   | 6. If |M_b| = n, then M*_b = M_b                                  |   |                  else M*_b = M_b | 1 | 0^{n - 1 -|M_b|}           |   | 7. T = E_{K^l}(M*_b (xor) C_{b-1} (xor) SK)                       |   | 8. Return T                                                       |   +-------------------------------------------------------------------+7.  Joint Usage of External and Internal Re-keying   Both external re-keying and internal re-keying have their own   advantages and disadvantages, which are discussed inSection 1.  For   instance, using external re-keying can essentially limit the message   length, while in the case of internal re-keying, the section size,   which can be chosen as the maximal possible for operational   properties, limits the number of separate messages.  Therefore, the   choice of re-keying mechanism (either external or internal) depends   on particular protocol features.  However, some protocols may have   features that require the advantages of both the external and   internal re-keying mechanisms: for example, the protocol mainly   transmits short messages, but it must additionally support processing   of very long messages.  In such situations, it is necessary to use   external and internal re-keying jointly, since these techniques   negate each other's disadvantages.   For composition of external and internal re-keying techniques, any   mechanism described inSection 5 can be used with any mechanism   described inSection 6.Smyshlyaev                    Informational                    [Page 42]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   For example, consider the GCM-ACPKM mode with external serial   re-keying based on a KDF on a hash function.  Denote the number of   messages in each frame (in the case of the implicit approach to the   key lifetime control) for external re-keying as a frame size.   Let L be a key lifetime limitation.  The section size N for internal   re-keying and the frame size q for external re-keying must be chosen   in such a way that q * N must not exceed L.   Suppose that t messages (ICN_i, P_i, A_i), with initial counter nonce   ICN_i, plaintext P_i, and additional authenticated data A_i will be   processed before renegotiation.   For authenticated encryption of each message (ICN_i, P_i, A_i), i =   1, ..., t, the following algorithm can be applied:   1. j = ceil(i / q),   2. K^j = ExtSerialH(K, j),   3. C_i | T_i = GCM-ACPKM-Encrypt(N, K^j, ICN_i, P_i, A_i).   Note that nonces ICN_i that are used under the same frame key must be   unique for each message.8.  Security Considerations   Re-keying should be used to increase a priori security properties of   ciphers in hostile environments (e.g., with side-channel   adversaries).  If efficient attacks on a cipher are known, the cipher   must not be used.  Thus, re-keying cannot be used as a patch for   vulnerable ciphers.  Base cipher properties must be well analyzed   because the security of re-keying mechanisms is based on the security   of a block cipher as a pseudorandom function.   Re-keying is not intended to solve any postquantum security issues   for symmetric cryptography, since the reduction of security caused by   Grover's algorithm is not connected with a size of plaintext   transformed by a cipher -- only a negligible (sufficient for key   uniqueness) material is needed -- and the aim of re-keying is to   limit the size of plaintext transformed under one initial key.   Re-keying can provide backward security only if previous key material   is securely deleted after usage by all parties.9.  IANA Considerations   This document has no IANA actions.Smyshlyaev                    Informational                    [Page 43]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 201910.  References10.1.  Normative References   [CMS]      Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,RFC 5652, DOI 10.17487/RFC5652, September 2009,              <https://www.rfc-editor.org/info/rfc5652>.   [DTLS]     Rescorla, E. and N. Modadugu, "Datagram Transport Layer              Security Version 1.2",RFC 6347, DOI 10.17487/RFC6347,              January 2012, <https://www.rfc-editor.org/info/rfc6347>.   [ESP]      Kent, S., "IP Encapsulating Security Payload (ESP)",RFC 4303, DOI 10.17487/RFC4303, December 2005,              <https://www.rfc-editor.org/info/rfc4303>.   [GCM]      Dworkin, M., "Recommendation for Block Cipher Modes of              Operation: Galois/Counter Mode (GCM) and GMAC", NIST              Special Publication 800-38D, DOI 10.6028/NIST.SP.800-38D,              November 2007,              <http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf>.   [MODES]    Dworkin, M., "Recommendation for Block Cipher Modes of              Operation: Methods and Techniques", NIST Special              Publication 800-38A, DOI 10.6028/NIST.SP.800-38A, December              2001.   [NISTSP800-108]              National Institute of Standards and Technology,              "Recommendation for Key Derivation Using Pseudorandom              Functions", NIST Special Publication 800-108, October              2009, <http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-108.pdf>.   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate              Requirement Levels",BCP 14,RFC 2119,              DOI 10.17487/RFC2119, March 1997,              <https://www.rfc-editor.org/info/rfc2119>.   [RFC4493]  Song, JH., Poovendran, R., Lee, J., and T. Iwata, "The              AES-CMAC Algorithm",RFC 4493, DOI 10.17487/RFC4493, June              2006, <https://www.rfc-editor.org/info/rfc4493>.   [RFC5869]  Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand              Key Derivation Function (HKDF)",RFC 5869,              DOI 10.17487/RFC5869, May 2010,              <https://www.rfc-editor.org/info/rfc5869>.Smyshlyaev                    Informational                    [Page 44]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   [RFC7836]  Smyshlyaev, S., Ed., Alekseev, E., Oshkin, I., Popov, V.,              Leontiev, S., Podobaev, V., and D. Belyavsky, "Guidelines              on the Cryptographic Algorithms to Accompany the Usage of              Standards GOST R 34.10-2012 and GOST R 34.11-2012",RFC 7836, DOI 10.17487/RFC7836, March 2016,              <https://www.rfc-editor.org/info/rfc7836>.   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase inRFC2119 Key Words",BCP 14,RFC 8174, DOI 10.17487/RFC8174,              May 2017, <https://www.rfc-editor.org/info/rfc8174>.   [SSH]      Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)              Transport Layer Protocol",RFC 4253, DOI 10.17487/RFC4253,              January 2006, <https://www.rfc-editor.org/info/rfc4253>.   [TLS]      Rescorla, E., "The Transport Layer Security (TLS) Protocol              Version 1.3",RFC 8446, DOI 10.17487/RFC8446, August 2018,              <https://www.rfc-editor.org/info/rfc8446>.10.2.  Informative References   [AAOS2017] Ahmetzyanova, L., Alekseev, E., Oshkin, I., and S.              Smyshlyaev, "Increasing the Lifetime of Symmetric Keys for              the GCM Mode by Internal Re-keying", Cryptology ePrint              Archive, Report 2017/697, 2017,              <https://eprint.iacr.org/2017/697.pdf>.   [AbBell]   Abdalla, M. and M. Bellare, "Increasing the Lifetime of a              Key: A Comparative Analysis of the Security of Re-keying              Techniques", ASIACRYPT 2000, Lecture Notes in Computer              Science, Volume 1976, pp. 546-559,              DOI 10.1007/3-540-44448-3_42, October 2000.   [AESDUKPT] American National Standards Institute, "Retail Financial              Services Symmetric Key Management - Part 3: Derived Unique              Key Per Transaction", ANSI X9.24-3-2017, October 2017.   [FKK2005]  Fu, K., Kamara, S., and T. Kohno, "Key Regression:              Enabling Efficient Key Distribution for Secure Distributed              Storage", November 2005, <https://homes.cs.washington.edu/~yoshi/papers/KR/NDSS06.pdf>.Smyshlyaev                    Informational                    [Page 45]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   [FPS2012]  Faust, S., Pietrzak, K., and J. Schipper, "Practical              Leakage-Resilient Symmetric Cryptography", Cryptographic              Hardware and Embedded Systems (CHES), Lecture Notes in              Computer Science, Volume 7428, pp. 213-232,              DOI 10.1007/978-3-642-33027-8_13, 2012,              <https://link.springer.com/content/pdf/10.1007%2F978-3-642-33027-8_13.pdf>.   [FRESHREKEYING]              Dziembowski, S., Faust, S., Herold, G., Journault, A.,              Masny, D., and F. Standaert, "Towards Sound Fresh              Re-Keying with Hard (Physical) Learning Problems",              Cryptology ePrint Archive, Report 2016/573, June 2016,              <https://eprint.iacr.org/2016/573>.   [GGM]      Goldreich, O., Goldwasser, S., and S. Micali, "How to              Construct Random Functions", Journal of the Association              for Computing Machinery, Volume 33, No. 4, pp. 792-807,              DOI 10.1145/6490.6503, October 1986,              <https://dl.acm.org/citation.cfm?doid=6490.6503>.   [KMNT2003] Kim, Y., Maino, F., Narasimha, M., and G. Tsudik, "Secure              Group Services for Storage Area Networks",              IEEE Communications Magazine 41, Number 8, pp. 92-99,              DOI 10.1109/SISW.2002.1183514, August 2003,              <https://ieeexplore.ieee.org/document/1183514>.   [LDC]      Heys, H., "A Tutorial on Linear and Differential              Cryptanalysis", 2001, <https://citeseerx.ist.psu.edu/viewdoc/citations?doi=10.1.1.2.2759>.   [OWT]      Joye, M. and S. Yen, "One-Way Cross-Trees and Their              Applications", Public Key Cryptography (PKC), Lecture              Notes in Computer Science, Volume 2274,              DOI 10.1007/3-540-45664-3_25, February 2002,              <https://link.springer.com/content/pdf/10.1007%2F3-540-45664-3_25.pdf>.   [P3]       Alexander, P., "Subject: [Cfrg] Dynamic Key Changes on              Encrypted Sessions. - Draft I-D Attached", message to              the CFRG mailing list, 4 November 2017,              <https://mailarchive.ietf.org/arch/msg/cfrg/ecTR3Hb-DFfrPCVmY0ghyYOEcxU>.Smyshlyaev                    Informational                    [Page 46]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   [Pietrzak2009]              Pietrzak, K., "A Leakage-Resilient Mode of Operation",              EUROCRYPT 2009, Lecture Notes in Computer Science, Volume              5479, pp. 462-482, DOI 10.1007/978-3-642-01001-9_27, April              2009, <https://iacr.org/archive/eurocrypt2009/54790461/54790461.pdf>.   [SIGNAL]   Perrin, T., Ed. and M. Marlinspike, "The Double Ratchet              Algorithm", November 2016, <https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf>.   [Sweet32]  Bhargavan, K. and G. Leurent, "On the Practical              (In-)Security of 64-bit Block Ciphers: Collision Attacks              on HTTP over TLS and OpenVPN", Proceedings of the 2016 ACM              SIGSAC Conference on Computer and Communications              Security, pp. 456-467, DOI 10.1145/2976749.2978423,              October 2016, <https://sweet32.info/SWEET32_CCS16.pdf>.   [TAHA]     Taha, M. and P. Schaumont, "Key Updating for Leakage              Resiliency With Application to AES Modes of Operation",              IEEE Transactions on Information Forensics and Security,              DOI 10.1109/TIFS.2014.2383359, December 2014,              <http://ieeexplore.ieee.org/document/6987331/>.   [TEMPEST]  Ramsay, C. and J. Lohuis, "TEMPEST attacks against AES.              Covertly stealing keys for 200 euro", June 2017,              <https://www.fox-it.com/en/wp-content/uploads/sites/11/Tempest_attacks_against_AES.pdf>.   [U2F]      Chang, D., Mishra, S., Sanadhya, S., and A. Singh, "On              Making U2F Protocol Leakage-Resilient via Re-keying",              Cryptology ePrint Archive, Report 2017/721, August 2017,              <https://eprint.iacr.org/2017/721.pdf>.Smyshlyaev                    Informational                    [Page 47]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019Appendix A.  Test ExamplesA.1.  Test Examples for External Re-keyingA.1.1.  External Re-keying with a Parallel Construction   External re-keying with a parallel construction based on AES-256   ****************************************************************   k = 256   t = 128   Initial key:   00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F   0F 0E 0D 0C 0B 0A 09 08 07 06 05 04 03 02 01 00   K^1:   51 16 8A B6 C8 A8 38 65 54 85 31 A5 D2 BA C3 86   64 7D 5C D5 1C 3D 62 98 BC 09 B1 D8 64 EC D9 B1   K^2:   6F ED F5 D3 77 57 48 75 35 2B 5F 4D B6 5B E0 15   B8 02 92 32 D8 D3 8D 73 FE DC DD C6 C8 36 78 BD   K^3:   B6 40 24 85 A4 24 BD 35 B4 26 43 13 76 26 70 B6   5B F3 30 3D 3B 20 EB 14 D1 3B B7 91 74 E3 DB EC   ...   K^126:   2F 3F 15 1B 53 88 23 CD 7D 03 FC 3D FD B3 57 5E   23 E4 1C 4E 46 FF 6B 33 34 12 27 84 EF 5D 82 23   K^127:   8E 51 31 FB 0B 64 BB D0 BC D4 C5 7B 1C 66 EF FD   97 43 75 10 6C AF 5D 5E 41 E0 17 F4 05 63 05 ED   K^128:   77 4F BF B3 22 60 C5 3B A3 8E FE B1 96 46 76 41   94 49 AF 84 2D 84 65 A7 F4 F7 2C DC A4 9D 84 F9   External re-keying with a parallel construction based on SHA-256   ****************************************************************   k = 256   t = 128   label:   SHA2labelSmyshlyaev                    Informational                    [Page 48]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   Initial key:   00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F   0F 0E 0D 0C 0B 0A 09 08 07 06 05 04 03 02 01 00   K^1:   C1 A1 4C A0 30 29 BE 43 9F 35 3C 79 1A 51 48 57   26 7A CD 5A E8 7D E7 D1 B2 E2 C7 AF A4 29 BD 35   K^2:   03 68 BB 74 41 2A 98 ED C4 7B 94 CC DF 9C F4 9E   A9 B8 A9 5F 0E DC 3C 1E 3B D2 59 4D D1 75 82 D4   K^3:   2F D3 68 D3 A7 8F 91 E6 3B 68 DC 2B 41 1D AC 80   0A C3 14 1D 80 26 3E 61 C9 0D 24 45 2A BD B1 AE   ...   K^126:   55 AC 2B 25 00 78 3E D4 34 2B 65 0E 75 E5 8B 76   C8 04 E9 D3 B6 08 7D C0 70 2A 99 A4 B5 85 F1 A1   K^127:   77 4D 15 88 B0 40 90 E5 8C 6A D7 5D 0F CF 0A 4A   6C 23 F1 B3 91 B1 EF DF E5 77 64 CD 09 F5 BC AF   K^128:   E5 81 FF FB 0C 90 88 CD E5 F4 A5 57 B6 AB D2 2E   94 C3 42 06 41 AB C1 72 66 CC 2F 59 74 9C 86 B3A.1.2.  External Re-keying with a Serial Construction   External re-keying with a serial construction based on AES-256   **************************************************************   AES 256 examples:   k = 256   t = 128   Initial key:   00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F   0F 0E 0D 0C 0B 0A 09 08 07 06 05 04 03 02 01 00   K*_1:   00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F   0F 0E 0D 0C 0B 0A 09 08 07 06 05 04 03 02 01 00Smyshlyaev                    Informational                    [Page 49]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   K^1:   66 B8 BD E5 90 6C EC DF FA 8A B2 FD 92 84 EB F0   51 16 8A B6 C8 A8 38 65 54 85 31 A5 D2 BA C3 86   K*_2:   64 7D 5C D5 1C 3D 62 98 BC 09 B1 D8 64 EC D9 B1   6F ED F5 D3 77 57 48 75 35 2B 5F 4D B6 5B E0 15   K^2:   66 B8 BD E5 90 6C EC DF FA 8A B2 FD 92 84 EB F0   51 16 8A B6 C8 A8 38 65 54 85 31 A5 D2 BA C3 86   K*_3:   64 7D 5C D5 1C 3D 62 98 BC 09 B1 D8 64 EC D9 B1   6F ED F5 D3 77 57 48 75 35 2B 5F 4D B6 5B E0 15   K^3:   66 B8 BD E5 90 6C EC DF FA 8A B2 FD 92 84 EB F0   51 16 8A B6 C8 A8 38 65 54 85 31 A5 D2 BA C3 86   ...   K*_126:   64 7D 5C D5 1C 3D 62 98 BC 09 B1 D8 64 EC D9 B1   6F ED F5 D3 77 57 48 75 35 2B 5F 4D B6 5B E0 15   K^126:   66 B8 BD E5 90 6C EC DF FA 8A B2 FD 92 84 EB F0   51 16 8A B6 C8 A8 38 65 54 85 31 A5 D2 BA C3 86   K*_127:   64 7D 5C D5 1C 3D 62 98 BC 09 B1 D8 64 EC D9 B1   6F ED F5 D3 77 57 48 75 35 2B 5F 4D B6 5B E0 15   K^127:   66 B8 BD E5 90 6C EC DF FA 8A B2 FD 92 84 EB F0   51 16 8A B6 C8 A8 38 65 54 85 31 A5 D2 BA C3 86   K*_128:   64 7D 5C D5 1C 3D 62 98 BC 09 B1 D8 64 EC D9 B1   6F ED F5 D3 77 57 48 75 35 2B 5F 4D B6 5B E0 15   K^128:   66 B8 BD E5 90 6C EC DF FA 8A B2 FD 92 84 EB F0   51 16 8A B6 C8 A8 38 65 54 85 31 A5 D2 BA C3 86Smyshlyaev                    Informational                    [Page 50]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   External re-keying with a serial construction based on SHA-256   **************************************************************   k = 256   t = 128   Initial key:   00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F   0F 0E 0D 0C 0B 0A 09 08 07 06 05 04 03 02 01 00   label1:   SHA2label1   label2:   SHA2label2   K*_1:   00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F   0F 0E 0D 0C 0B 0A 09 08 07 06 05 04 03 02 01 00   K^1:   2D A8 D1 37 6C FD 52 7F F7 36 A4 E2 81 C6 0A 9B   F3 8E 66 97 ED 70 4F B5 FB 10 33 CC EC EE D5 EC   K*_2:   14 65 5A D1 7C 19 86 24 9B D3 56 DF CC BE 73 6F   52 62 4A 9D E3 CC 40 6D A9 48 DA 5C D0 68 8A 04   K^2:   2F EA 8D 57 2B EF B8 89 42 54 1B 8C 1B 3F 8D B1   84 F9 56 C7 FE 01 11 99 1D FB 98 15 FE 65 85 CF   K*_3:   18 F0 B5 2A D2 45 E1 93 69 53 40 55 43 70 95 8D   70 F0 20 8C DF B0 5D 67 CD 1B BF 96 37 D3 E3 EB   K^3:   53 C7 4E 79 AE BC D1 C8 24 04 BF F6 D7 B1 AC BF   F9 C0 0E FB A8 B9 48 29 87 37 E1 BA E7 8F F7 92   ...   K*_126:   A3 6D BF 02 AA 0B 42 4A F2 C0 46 52 68 8B C7 E6   5E F1 62 C3 B3 2F DD EF E4 92 79 5D BB 45 0B CA   K^126:   6C 4B D6 22 DC 40 48 0F 29 C3 90 B8 E5 D7 A7 34   23 4D 34 65 2C CE 4A 76 2C FE 2A 42 C8 5B FE 9ASmyshlyaev                    Informational                    [Page 51]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   K*_127:   84 5F 49 3D B8 13 1D 39 36 2B BE D3 74 8F 80 A1   05 A7 07 37 BA 15 72 E0 73 49 C2 67 5D 0A 28 A1   K^127:   57 F0 BD 5A B8 2A F3 6B 87 33 CF F7 22 62 B4 D0   F0 EE EF E1 50 74 E5 BA 13 C1 23 68 87 36 29 A2   K*_128:   52 F2 0F 56 5C 9C 56 84 AF 69 AD 45 EE B8 DA 4E   7A A6 04 86 35 16 BA 98 E4 CB 46 D2 E8 9A C1 09   K^128:   9B DD 24 7D F3 25 4A 75 E0 22 68 25 68 DA 9D D5   C1 6D 2D 2B 4F 3F 1F 2B 5E 99 82 7F 15 A1 4F A4A.2.  Test Examples for Internal Re-keyingA.2.1.  Internal Re-keying Mechanisms that Do Not Require a Master Key   CTR-ACPKM mode with AES-256   ***************************   k = 256   n = 128   c = 64   N = 256   Initial key K:   00000:   88 99 AA BB CC DD EE FF 00 11 22 33 44 55 66 77   00010:   FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF   Plaintext P:   00000:   11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88   00010:   00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A   00020:   11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00   00030:   22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11   00040:   33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22   00050:   44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33   00060:   55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33 44   ICN:   12 34 56 78 90 AB CE F0 A1 B2 C3 D4 E5 F0 01 12   23 34 45 56 67 78 89 90 12 13 14 15 16 17 18 19   D_1:   00000:   80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8FSmyshlyaev                    Informational                    [Page 52]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   D_2:   00000:   90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F   Section_1   Section key K^1:   00000:   88 99 AA BB CC DD EE FF 00 11 22 33 44 55 66 77   00010:   FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF   Input block CTR_1:   00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 00   Output block G_1:   00000:   FD 7E F8 9A D9 7E A4 B8 8D B8 B5 1C 1C 9D 6D D0   Input block CTR_2:   00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 01   Output block G_2:   00000:   19 98 C5 71 76 37 FB 17 11 E4 48 F0 0C 0D 60 B2   Section_2   Section key K^2:   00000:   F6 80 D1 21 2F A4 3D F4 EC 3A 91 DE 2A B1 6F 1B   00010:   36 B0 48 8A 4F C1 2E 09 98 D2 E4 A8 88 E8 4F 3D   Input block CTR_3:   00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 02   Output block G_3:   00000:   E4 88 89 4F B6 02 87 DB 77 5A 07 D9 2C 89 46 EA   Input block CTR_4:   00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 03   Output block G_4:   00000:   BC 4F 87 23 DB F0 91 50 DD B4 06 C3 1D A9 7C A4   Section_3   Section key K^3:   00000:   8E B9 7E 43 27 1A 42 F1 CA 8E E2 5F 5C C7 C8 3B   00010:   1A CE 9E 5E D0 6A A5 3B 57 B9 6A CF 36 5D 24 B8   Input block CTR_5:   00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 04Smyshlyaev                    Informational                    [Page 53]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   Output block G_5:   00000:   68 6F 22 7D 8F B2 9C BD 05 C8 C3 7D 22 FE 3B B7   Input block CTR_6:   00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 05   Output block G_6:   00000:   C0 1B F9 7F 75 6E 12 2F 80 59 55 BD DE 2D 45 87   Section_4   Section key K^4:   00000:   C5 71 6C C9 67 98 BC 2D 4A 17 87 B7 8A DF 94 AC   00010:   E8 16 F8 0B DB BC AD 7D 60 78 12 9C 0C B4 02 F5   Block number 7:   Input block CTR_7:   00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 06   Output block G_7:   00000:   03 DE 34 74 AB 9B 65 8A 3B 54 1E F8 BD 2B F4 7D   The result G = G_1 | G_2 | G_3 | G_4 | G_5 | G_6 | G_7:   00000:   FD 7E F8 9A D9 7E A4 B8 8D B8 B5 1C 1C 9D 6D D0   00010:   19 98 C5 71 76 37 FB 17 11 E4 48 F0 0C 0D 60 B2   00020:   E4 88 89 4F B6 02 87 DB 77 5A 07 D9 2C 89 46 EA   00030:   BC 4F 87 23 DB F0 91 50 DD B4 06 C3 1D A9 7C A4   00040:   68 6F 22 7D 8F B2 9C BD 05 C8 C3 7D 22 FE 3B B7   00050:   C0 1B F9 7F 75 6E 12 2F 80 59 55 BD DE 2D 45 87   00060:   03 DE 34 74 AB 9B 65 8A 3B 54 1E F8 BD 2B F4 7D   The result ciphertext C = P (xor) MSB_{|P|}(G):   00000:   EC 5C CB DE 8C 18 D3 B8 72 56 68 D0 A7 37 F4 58   00010:   19 89 E7 42 32 62 9D 60 99 7D E2 4B C0 E3 9F B8   00020:   F5 AA BA 0B E3 64 F0 53 EE F0 BC 15 C2 76 4C EA   00030:   9E 7C C3 76 BD 87 19 C9 77 0F CA 2D E2 A3 7C B5   00040:   5B 2B 77 1B F8 3A 05 17 BE 04 2D 82 28 FE 2A 95   00050:   84 4E 9F 08 FD F7 B8 94 4C B7 AA B7 DE 3C 67 B4   00060:   56 B8 43 FC 32 31 DE 46 D5 AB 14 F8 AC 09 C7 39Smyshlyaev                    Informational                    [Page 54]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   GCM-ACPKM mode with AES-128   ***************************   k = 128   n = 128   c = 32   N = 256   Initial key K:   00000:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   Additional data A:   00000:   11 22 33   Plaintext:   00000:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   00010:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   00020:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   ICN:   00000:   00 00 00 00 00 00 00 00 00 00 00 00   Number of sections: 2   Section key K^1:   00000:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   Section key K^2:   00000:   15 1A 9F B0 B6 AC C5 97 6A FB 50 31 D1 DE C8 41   Encrypted GCTR_1 | GCTR_2 | GCTR_3:   00000:   03 88 DA CE 60 B6 A3 92 F3 28 C2 B9 71 B2 FE 78   00010:   F7 95 AA AB 49 4B 59 23 F7 FD 89 FF 94 8B C1 E0   00020:   D6 B3 12 46 E9 CE 9F F1 3A B3 42 7E E8 91 96 AD   Ciphertext C:   00000:   03 88 DA CE 60 B6 A3 92 F3 28 C2 B9 71 B2 FE 78   00010:   F7 95 AA AB 49 4B 59 23 F7 FD 89 FF 94 8B C1 E0   00020:   D6 B3 12 46 E9 CE 9F F1 3A B3 42 7E E8 91 96 AD   GHASH input:   00000:   11 22 33 00 00 00 00 00 00 00 00 00 00 00 00 00   00010:   03 88 DA CE 60 B6 A3 92 F3 28 C2 B9 71 B2 FE 78   00020:   F7 95 AA AB 49 4B 59 23 F7 FD 89 FF 94 8B C1 E0   00030:   D6 B3 12 46 E9 CE 9F F1 3A B3 42 7E E8 91 96 AD   00040:   00 00 00 00 00 00 00 18 00 00 00 00 00 00 01 80   GHASH output S:   00000:   E8 ED E9 94 9A DD 55 30 B0 F4 4E F5 00 FC 3E 3CSmyshlyaev                    Informational                    [Page 55]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   Authentication tag  T:   00000:   B0 0F 15 5A 60 A3 65 51 86 8B 53 A2 A4 1B 7B 66   The result C | T:   00000:   03 88 DA CE 60 B6 A3 92 F3 28 C2 B9 71 B2 FE 78   00010:   F7 95 AA AB 49 4B 59 23 F7 FD 89 FF 94 8B C1 E0   00020:   D6 B3 12 46 E9 CE 9F F1 3A B3 42 7E E8 91 96 AD   00030:   B0 0F 15 5A 60 A3 65 51 86 8B 53 A2 A4 1B 7B 66A.2.2.  Internal Re-keying Mechanisms with a Master Key   CTR-ACPKM-Master mode with AES-256   **********************************   k = 256   n = 128   c for CTR-ACPKM mode = 64   c for CTR-ACPKM-Master mode = 64   N = 256   T* = 512   Initial key K:   00000:   88 99 AA BB CC DD EE FF 00 11 22 33 44 55 66 77   00010:   FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF   Initial vector ICN:   00000:   12 34 56 78 90 AB CE F0 A1 B2 C3 D4 E5 F0 01 12   Plaintext P:   00000:   11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88   00010:   00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A   00020:   11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00   00030:   22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11   00040:   33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22   00050:   44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33   00060:   55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33 44   K^1 | K^2 | K^3 | K^4:   00000:   9F 10 BB F1 3A 79 FB BD 4A 4C A8 64 C4 90 74 64   00010:   39 FE 50 6D 4B 86 9B 21 03 A3 B6 A4 79 28 3C 60   00020:   77 91 17 50 E0 D1 77 E5 9A 13 78 2B F1 89 08 D0   00030:   AB 6B 59 EE 92 49 05 B3 AB C7 A4 E3 69 65 76 C3   00040:   E8 76 2B 30 8B 08 EB CE 3E 93 9A C2 C0 3E 76 D4   00050:   60 9A AB D9 15 33 13 D3 CF D3 94 E7 75 DF 3A 94   00060:   F2 EE 91 45 6B DC 3D E4 91 2C 87 C3 29 CF 31 A9   00070:   2F 20 2E 5A C4 9A 2A 65 31 33 D6 74 8C 4F F9 12Smyshlyaev                    Informational                    [Page 56]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   Section_1   K^1:   00000:   9F 10 BB F1 3A 79 FB BD 4A 4C A8 64 C4 90 74 64   00010:   39 FE 50 6D 4B 86 9B 21 03 A3 B6 A4 79 28 3C 60   Input block CTR_1:   00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 00   Output block G_1:   00000:   8C A2 B6 82 A7 50 65 3F 8E BF 08 E7 9F 99 4D 5C   Input block CTR_2:   00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 01   Output block G_2:   00000:   F6 A6 A5 BA 58 14 1E ED 23 DC 31 68 D2 35 89 A1   Section_2   K^2:   00000:   77 91 17 50 E0 D1 77 E5 9A 13 78 2B F1 89 08 D0   00010:   AB 6B 59 EE 92 49 05 B3 AB C7 A4 E3 69 65 76 C3   Input block CTR_3:   00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 02   Output block G_3:   00000:   4A 07 5F 86 05 87 72 94 1D 8E 7D F8 32 F4 23 71   Input block CTR_4:   00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 03   Output block G_4:   00000:   23 35 66 AF 61 DD FE A7 B1 68 3F BA B0 52 4A D7   Section_3   K^3:   00000:   E8 76 2B 30 8B 08 EB CE 3E 93 9A C2 C0 3E 76 D4   00010:   60 9A AB D9 15 33 13 D3 CF D3 94 E7 75 DF 3A 94   Input block CTR_5:   00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 04Smyshlyaev                    Informational                    [Page 57]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   Output block G_5:   00000:   A8 09 6D BC E8 BB 52 FC DE 6E 03 70 C1 66 95 E8   Input block CTR_6:   00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 05   Output block G_6:   00000:   C6 E3 6E 8E 5B 82 AA C4 A6 6C 14 8D B1 F6 9B EF   Section_4   K^4:   00000:   F2 EE 91 45 6B DC 3D E4 91 2C 87 C3 29 CF 31 A9   00010:   2F 20 2E 5A C4 9A 2A 65 31 33 D6 74 8C 4F F9 12   Input block CTR_7:   00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 06   Output block G_7:   00000:   82 2B E9 07 96 37 44 95 75 36 3F A7 07 F8 40 22   The result G = G_1 | G_2 | G_3 | G_4 | G_5 | G_6 | G_7:   00000:   8C A2 B6 82 A7 50 65 3F 8E BF 08 E7 9F 99 4D 5C   00010:   F6 A6 A5 BA 58 14 1E ED 23 DC 31 68 D2 35 89 A1   00020:   4A 07 5F 86 05 87 72 94 1D 8E 7D F8 32 F4 23 71   00030:   23 35 66 AF 61 DD FE A7 B1 68 3F BA B0 52 4A D7   00040:   A8 09 6D BC E8 BB 52 FC DE 6E 03 70 C1 66 95 E8   00050:   C6 E3 6E 8E 5B 82 AA C4 A6 6C 14 8D B1 F6 9B EF   00060:   82 2B E9 07 96 37 44 95 75 36 3F A7 07 F8 40 22   The result ciphertext C = P (xor) MSB_{|P|}(G):   00000:   9D 80 85 C6 F2 36 12 3F 71 51 D5 2B 24 33 D4 D4   00010:   F6 B7 87 89 1C 41 78 9A AB 45 9B D3 1E DB 76 AB   00020:   5B 25 6C C2 50 E1 05 1C 84 24 C6 34 DC 0B 29 71   00030:   01 06 22 FA 07 AA 76 3E 1B D3 F3 54 4F 58 4A C6   00040:   9B 4D 38 DA 9F 33 CB 56 65 A2 ED 8F CB 66 84 CA   00050:   82 B6 08 F9 D3 1B 00 7F 6A 82 EB 87 B1 E7 B9 DC   00060:   D7 4D 9E 8F 0F 9D FF 59 9B C9 35 A7 16 DA 73 66Smyshlyaev                    Informational                    [Page 58]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   GCM-ACPKM-Master mode with AES-256   **********************************   k = 192   n = 128   c for the CTR-ACPKM mode = 64   c for the GCM-ACPKM-Master mode = 32   T* = 384   N = 256   Initial key K:   00000:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   00010:   00 00 00 00 00 00 00 00   Additional data A:   00000:   11 22 33   Plaintext:   00000:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   00010:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   00020:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   00030:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   00040:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00   ICN:   00000:   00 00 00 00 00 00 00 00 00 00 00 00   Number of sections: 3   K^1 | K^2 | K^3:   00000:   93 BA AF FB 35 FB E7 39 C1 7C 6A C2 2E EC F1 8F   00010:   7B 89 F0 BF 8B 18 07 05 96 48 68 9F 36 A7 65 CC   00020:   CD 5D AC E2 0D 47 D9 18 D7 86 D0 41 A8 3B AB 99   00030:   F5 F8 B1 06 D2 71 78 B1 B0 08 C9 99 0B 72 E2 87   00040:   5A 2D 3C BE F1 6E 67 3C   Encrypted GCTR_1 | ... | GCTR_5   00000:   43 FA 71 81 64 B1 E3 D7 1E 7B 65 39 A7 02 1D 52   00010:   69 9B 9E 1B 43 24 B7 52 95 74 E7 90 F2 BE 60 E8   00020:   11 62 C9 90 2A 2B 77 7F D9 6A D6 1A 99 E0 C6 DE   00030:   4B 91 D4 29 E3 1A 8C 11 AF F0 BC 47 F6 80 AF 14   00040:   40 1C C1 18 14 63 8E 76 24 83 37 75 16 34 70 08   Ciphertext C:   00000:   43 FA 71 81 64 B1 E3 D7 1E 7B 65 39 A7 02 1D 52   00010:   69 9B 9E 1B 43 24 B7 52 95 74 E7 90 F2 BE 60 E8   00020:   11 62 C9 90 2A 2B 77 7F D9 6A D6 1A 99 E0 C6 DE   00030:   4B 91 D4 29 E3 1A 8C 11 AF F0 BC 47 F6 80 AF 14   00040:   40 1C C1 18 14 63 8E 76 24 83 37 75 16 34 70 08Smyshlyaev                    Informational                    [Page 59]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   GHASH input:   00000:   11 22 33 00 00 00 00 00 00 00 00 00 00 00 00 00   00010:   43 FA 71 81 64 B1 E3 D7 1E 7B 65 39 A7 02 1D 52   00020:   69 9B 9E 1B 43 24 B7 52 95 74 E7 90 F2 BE 60 E8   00030:   11 62 C9 90 2A 2B 77 7F D9 6A D6 1A 99 E0 C6 DE   00040:   4B 91 D4 29 E3 1A 8C 11 AF F0 BC 47 F6 80 AF 14   00050:   40 1C C1 18 14 63 8E 76 24 83 37 75 16 34 70 08   00060:   00 00 00 00 00 00 00 18 00 00 00 00 00 00 02 80   GHASH output S:   00000:   6E A3 4B D5 6A C5 40 B7 3E 55 D5 86 D1 CC 09 7D   Authentication tag  T:   00050:   CC 3A BA 11 8C E7 85 FD 77 78 94 D4 B5 20 69 F8   The result C | T:   00000:   43 FA 71 81 64 B1 E3 D7 1E 7B 65 39 A7 02 1D 52   00010:   69 9B 9E 1B 43 24 B7 52 95 74 E7 90 F2 BE 60 E8   00020:   11 62 C9 90 2A 2B 77 7F D9 6A D6 1A 99 E0 C6 DE   00030:   4B 91 D4 29 E3 1A 8C 11 AF F0 BC 47 F6 80 AF 14   00040:   40 1C C1 18 14 63 8E 76 24 83 37 75 16 34 70 08   00050:   CC 3A BA 11 8C E7 85 FD 77 78 94 D4 B5 20 69 F8   CBC-ACPKM-Master mode with AES-256   **********************************   k = 256   n = 128   c for the CTR-ACPKM mode = 64   N = 256   T* = 512   Initial key K:   00000:   88 99 AA BB CC DD EE FF 00 11 22 33 44 55 66 77   00010:   FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF   Initial vector IV:   00000:   12 34 56 78 90 AB CE F0 A1 B2 C3 D4 E5 F0 01 12   Plaintext P:   00000:   11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88   00010:   00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A   00020:   11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00   00030:   22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11   00040:   33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22   00050:   44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33   00060:   55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33 44Smyshlyaev                    Informational                    [Page 60]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   K^1 | K^2 | K^3 | K^4:   00000:   9F 10 BB F1 3A 79 FB BD 4A 4C A8 64 C4 90 74 64   00010:   39 FE 50 6D 4B 86 9B 21 03 A3 B6 A4 79 28 3C 60   00020:   77 91 17 50 E0 D1 77 E5 9A 13 78 2B F1 89 08 D0   00030:   AB 6B 59 EE 92 49 05 B3 AB C7 A4 E3 69 65 76 C3   00040:   E8 76 2B 30 8B 08 EB CE 3E 93 9A C2 C0 3E 76 D4   00050:   60 9A AB D9 15 33 13 D3 CF D3 94 E7 75 DF 3A 94   00060:   F2 EE 91 45 6B DC 3D E4 91 2C 87 C3 29 CF 31 A9   00070:   2F 20 2E 5A C4 9A 2A 65 31 33 D6 74 8C 4F F9 12   Section_1   K^1:   00000:   9F 10 BB F1 3A 79 FB BD 4A 4C A8 64 C4 90 74 64   00010:   39 FE 50 6D 4B 86 9B 21 03 A3 B6 A4 79 28 3C 60   Plaintext block P_1:   00000:   11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88   Input block P_1 (xor) C_0:   00000:   03 16 65 3C C5 CD B9 F0 5E 5C 1E 18 5E 5A 98 9A   Output block C_1:   00000:   59 CB 5B CA C2 69 2C 60 0D 46 03 A0 C7 40 C9 7C   Plaintext block P_2:   00000:   00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A   Input block P_2 (xor) C_1:   00000:   59 DA 79 F9 86 3C 4A 17 85 DF A9 1B 0B AE 36 76   Output block C_2:   00000:   80 B6 02 74 54 8B F7 C9 78 1F A1 05 8B F6 8B 42   Section_2   K^2:   00000:   77 91 17 50 E0 D1 77 E5 9A 13 78 2B F1 89 08 D0   00010:   AB 6B 59 EE 92 49 05 B3 AB C7 A4 E3 69 65 76 C3   Plaintext block P_3:   00000:   11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00   Input block P_3 (xor) C_2:   00000:   91 94 31 30 01 ED 80 41 E1 B5 1A C9 65 09 81 42   Output block C_3:   00000:   8C 24 FB CF 68 15 B1 AF 65 FE 47 75 95 B4 97 59Smyshlyaev                    Informational                    [Page 61]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   Plaintext block P_4:   00000:   22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11   Input block P_4 (xor) C_3:   00000:   AE 17 BF 9A 0E 62 39 36 CF 45 8B 9B 6A BE 97 48   Output block C_4:   00000:   19 65 A5 00 58 0D 50 23 72 1B E9 90 E1 83 30 E9   Section_3   K^3:   00000:   E8 76 2B 30 8B 08 EB CE 3E 93 9A C2 C0 3E 76 D4   00010:   60 9A AB D9 15 33 13 D3 CF D3 94 E7 75 DF 3A 94   Plaintext block P_5:   00000:   33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22   Input block P_5 (xor) C_4:   00000:   2A 21 F0 66 2F 85 C9 89 C9 D7 07 6F EB 83 21 CB   Output block C_5:   00000:   56 D8 34 F4 6F 0F 4D E6 20 53 A9 5C B5 F6 3C 14   Plaintext block P_6:   00000:   44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33   Input block P_6 (xor) C_5:   00000:   12 8D 52 83 E7 96 E7 5D EC BD 56 56 B5 E7 1E 27   Output block C_6:   00000:   66 68 2B 8B DD 6E B2 7E DE C7 51 D6 2F 45 A5 45   Section_4   K^4:   00000:   F2 EE 91 45 6B DC 3D E4 91 2C 87 C3 29 CF 31 A9   00010:   2F 20 2E 5A C4 9A 2A 65 31 33 D6 74 8C 4F F9 12   Plaintext block P_7:   00000:   55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33 44   Input block P_7 (xor) C_6:   00000:   33 0E 5C 03 44 C4 09 B2 30 38 5B D6 3E 67 96 01   Output block C_7:   00000:   7F 4D 87 F9 CA E9 56 09 79 C4 FA FE 34 0B 45 34Smyshlyaev                    Informational                    [Page 62]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   Ciphertext C:   00000:   59 CB 5B CA C2 69 2C 60 0D 46 03 A0 C7 40 C9 7C   00010:   80 B6 02 74 54 8B F7 C9 78 1F A1 05 8B F6 8B 42   00020:   8C 24 FB CF 68 15 B1 AF 65 FE 47 75 95 B4 97 59   00030:   19 65 A5 00 58 0D 50 23 72 1B E9 90 E1 83 30 E9   00040:   56 D8 34 F4 6F 0F 4D E6 20 53 A9 5C B5 F6 3C 14   00050:   66 68 2B 8B DD 6E B2 7E DE C7 51 D6 2F 45 A5 45   00060:   7F 4D 87 F9 CA E9 56 09 79 C4 FA FE 34 0B 45 34   CFB-ACPKM-Master mode with AES-256   **********************************   k = 256   n = 128   c for the CTR-ACPKM mode = 64   N = 256   T* = 512   Initial key K:   00000:   88 99 AA BB CC DD EE FF 00 11 22 33 44 55 66 77   00010:   FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF   Initial vector IV:   00000:   12 34 56 78 90 AB CE F0 A1 B2 C3 D4 E5 F0 01 12   Plaintext P:   00000:   11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88   00010:   00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A   00020:   11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00   00030:   22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11   00040:   33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22   00050:   44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33   00060:   55 66 77 88 99 AA BB CC   K^1 | K^2 | K^3 | K^4   00000:   9F 10 BB F1 3A 79 FB BD 4A 4C A8 64 C4 90 74 64   00010:   39 FE 50 6D 4B 86 9B 21 03 A3 B6 A4 79 28 3C 60   00020:   77 91 17 50 E0 D1 77 E5 9A 13 78 2B F1 89 08 D0   00030:   AB 6B 59 EE 92 49 05 B3 AB C7 A4 E3 69 65 76 C3   00040:   E8 76 2B 30 8B 08 EB CE 3E 93 9A C2 C0 3E 76 D4   00050:   60 9A AB D9 15 33 13 D3 CF D3 94 E7 75 DF 3A 94   00060:   F2 EE 91 45 6B DC 3D E4 91 2C 87 C3 29 CF 31 A9   00070:   2F 20 2E 5A C4 9A 2A 65 31 33 D6 74 8C 4F F9 12Smyshlyaev                    Informational                    [Page 63]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   Section_1   K^1:   00000:   9F 10 BB F1 3A 79 FB BD 4A 4C A8 64 C4 90 74 64   00010:   39 FE 50 6D 4B 86 9B 21 03 A3 B6 A4 79 28 3C 60   Plaintext block P_1:   00000:   11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88   Encrypted block E_{K^1}(C_0):   00000:   1C 39 9D 59 F8 5D 91 91 A9 D2 12 9F 63 15 90 03   Output block C_1 = E_{K^1}(C_0) (xor) P_1:   00000:   0D 1B AE 1D AD 3B E6 91 56 3C CF 53 D8 BF 09 8B   Plaintext block P_2:   00000:   00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A   Encrypted block E_{K^1}(C_1):   00000:   6B A2 C5 42 52 69 C6 0B 15 14 06 87 90 46 F6 2E   Output block C_2 = E_{K^1}(C_1) (xor) P_2:   00000:   6B B3 E7 71 16 3C A0 7C 9D 8D AC 3C 5C A8 09 24   Section_2   K^2:   00000:   77 91 17 50 E0 D1 77 E5 9A 13 78 2B F1 89 08 D0   00010:   AB 6B 59 EE 92 49 05 B3 AB C7 A4 E3 69 65 76 C3   Plaintext block P_3:   00000:   11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00   Encrypted block E_{K^2}(C_2):   00000:   95 45 5F DB C3 9E 0A 13 9F CB 10 F5 BD 79 A3 88   Output block C_3 = E_{K^2}(C_2) (xor) P_3:   00000:   84 67 6C 9F 96 F8 7D 9B 06 61 AB 39 53 86 A9 88   Plaintext block P_4:   00000:   22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11   Encrypted block E_{K^2}(C_3):   00000:   E0 AA 32 5D 80 A4 47 95 BA 42 BF 63 F8 4A C8 B2   Output block C_4 = E_{K^2}(C_3) (xor) P_4:   00000:   C2 99 76 08 E6 D3 CF 0C 10 F9 73 8D 07 40 C8 A3Smyshlyaev                    Informational                    [Page 64]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   Section_3   K^3:   00000:   E8 76 2B 30 8B 08 EB CE 3E 93 9A C2 C0 3E 76 D4   00010:   60 9A AB D9 15 33 13 D3 CF D3 94 E7 75 DF 3A 94   Plaintext block P_5:   00000:   33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22   Encrypted block E_{K^3}(C_4):   00000:   FE 42 8C 70 C2 51 CE 13 36 C1 BF 44 F8 49 66 89   Output block C_5 = E_{K^3}(C_4) (xor) P_5:   00000:   CD 06 D9 16 B5 D9 57 B9 8D 0D 51 BB F2 49 77 AB   Plaintext block P_6:   00000:   44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33   Encrypted block E_{K^3}(C_5):   00000:   01 24 80 87 86 18 A5 43 11 0A CC B5 0A E5 02 A3   Output block C_6 = E_{K^3}(C_5) (xor) P_6:   00000:   45 71 E6 F0 0E 81 0F F8 DD E4 33 BF 0A F4 20 90   Section_4   K^4:   00000:   F2 EE 91 45 6B DC 3D E4 91 2C 87 C3 29 CF 31 A9   00010:   2F 20 2E 5A C4 9A 2A 65 31 33 D6 74 8C 4F F9 12   Plaintext block P_7:   00000:   55 66 77 88 99 AA BB CC   Encrypted block MSB_{|P_7|}(E_{K^4}(C_6)):   00000:   97 5C 96 37 55 1E 8C 7F   Output block C_7 = MSB_{|P_7|}(E_{K^4}(C_6)) (xor) P_7   00000:   C2 3A E1 BF CC B4 37 B3   Ciphertext C:   00000:   0D 1B AE 1D AD 3B E6 91 56 3C CF 53 D8 BF 09 8B   00010:   6B B3 E7 71 16 3C A0 7C 9D 8D AC 3C 5C A8 09 24   00020:   84 67 6C 9F 96 F8 7D 9B 06 61 AB 39 53 86 A9 88   00030:   C2 99 76 08 E6 D3 CF 0C 10 F9 73 8D 07 40 C8 A3   00040:   CD 06 D9 16 B5 D9 57 B9 8D 0D 51 BB F2 49 77 AB   00050:   45 71 E6 F0 0E 81 0F F8 DD E4 33 BF 0A F4 20 90   00060:   C2 3A E1 BF CC B4 37 B3Smyshlyaev                    Informational                    [Page 65]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   OMAC-ACPKM-Master mode with AES-256   ***********************************   k = 256   n = 128   c for the CTR-ACPKM mode = 64   N = 256   T* = 768   Initial key K:   00000:   88 99 AA BB CC DD EE FF 00 11 22 33 44 55 66 77   00010:   FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF   Plaintext M:   00000:   11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88   00010:   00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A   00020:   11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00   00030:   22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11   00040:   33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22   K^1 | K^1_1 | K^2 | K^2_1 | K^3 | K^3_1:   00000:   9F 10 BB F1 3A 79 FB BD 4A 4C A8 64 C4 90 74 64   00010:   39 FE 50 6D 4B 86 9B 21 03 A3 B6 A4 79 28 3C 60   00020:   77 91 17 50 E0 D1 77 E5 9A 13 78 2B F1 89 08 D0   00030:   AB 6B 59 EE 92 49 05 B3 AB C7 A4 E3 69 65 76 C3   00040:   9D CC 66 42 0D FF 45 5B 21 F3 93 F0 D4 D6 6E 67   00050:   BB 1B 06 0B 87 66 6D 08 7A 9D A7 49 55 C3 5B 48   00060:   F2 EE 91 45 6B DC 3D E4 91 2C 87 C3 29 CF 31 A9   00070:   2F 20 2E 5A C4 9A 2A 65 31 33 D6 74 8C 4F F9 12   00080:   78 21 C7 C7 6C BD 79 63 56 AC F8 8E 69 6A 00 07   Section_1   K^1:   00000:   9F 10 BB F1 3A 79 FB BD 4A 4C A8 64 C4 90 74 64   00010:   39 FE 50 6D 4B 86 9B 21 03 A3 B6 A4 79 28 3C 60   K^1_1:   00000:   77 91 17 50 E0 D1 77 E5 9A 13 78 2B F1 89 08 D0   Plaintext block M_1:   00000:   11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88   Input block M_1 (xor) C_0:   00000:   11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88   Output block C_1:   00000:   0B A5 89 BF 55 C1 15 42 53 08 89 76 A0 FE 24 3ESmyshlyaev                    Informational                    [Page 66]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   Plaintext block M_2:   00000:   00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A   Input block M_2 (xor) C_1:   00000:   0B B4 AB 8C 11 94 73 35 DB 91 23 CD 6C 10 DB 34   Output block C_2:   00000:   1C 53 DD A3 6D DC E1 17 ED 1F 14 09 D8 6A F3 2C   Section_2   K^2:   00000:   AB 6B 59 EE 92 49 05 B3 AB C7 A4 E3 69 65 76 C3   00010:   9D CC 66 42 0D FF 45 5B 21 F3 93 F0 D4 D6 6E 67   K^2_1:   00000:   BB 1B 06 0B 87 66 6D 08 7A 9D A7 49 55 C3 5B 48   Plaintext block M_3:   00000:   11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00   Input block M_3 (xor) C_2:   00000:   0D 71 EE E7 38 BA 96 9F 74 B5 AF C5 36 95 F9 2C   Output block C_3:   00000:   4E D4 BC A6 CE 6D 6D 16 F8 63 85 13 E0 48 59 75   Plaintext block M_4:   00000:   22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11   Input block M_4 (xor) C_3:   00000:   6C E7 F8 F3 A8 1A E5 8F 52 D8 49 FD 1F 42 59 64   Output block C_4:   00000:   B6 83 E3 96 FD 30 CD 46 79 C1 8B 24 03 82 1D 81   Section_3   K^3:   00000:   F2 EE 91 45 6B DC 3D E4 91 2C 87 C3 29 CF 31 A9   00010:   2F 20 2E 5A C4 9A 2A 65 31 33 D6 74 8C 4F F9 12   K^3_1:   00000:   78 21 C7 C7 6C BD 79 63 56 AC F8 8E 69 6A 00 07   MSB1(K1) == 0 -> K2 = K1 << 1Smyshlyaev                    Informational                    [Page 67]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019   K1:   00000:   78 21 C7 C7 6C BD 79 63 56 AC F8 8E 69 6A 00 07   K2:   00000:   F0 43 8F 8E D9 7A F2 C6 AD 59 F1 1C D2 D4 00 0E   Plaintext M_5:   00000:   33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22   Using K1, padding is not required   Input block M_5 (xor) C_4:   00000:   FD E6 71 37 E6 05 2D 8F 94 A1 9D 55 60 E8 0C A4   Output block C_5:   00000:   B3 AD B8 92 18 32 05 4C 09 21 E7 B8 08 CF A0 B8   Message authentication code T:   00000:   B3 AD B8 92 18 32 05 4C 09 21 E7 B8 08 CF A0 B8Smyshlyaev                    Informational                    [Page 68]

RFC 8645         Re-keying Mechanisms for Symmetric Keys     August 2019Acknowledgments   We thank Mihir Bellare, Scott Fluhrer, Dorothy Cooley, Yoav Nir, Jim   Schaad, Paul Hoffman, Dmitry Belyavsky, Yaron Sheffer, Alexey   Melnikov, and Spencer Dawkins for their useful comments.Contributors   Russ Housley   Vigil Security, LLC   housley@vigilsec.com   Evgeny Alekseev   CryptoPro   alekseev@cryptopro.ru   Ekaterina Smyshlyaeva   CryptoPro   ess@cryptopro.ru   Shay Gueron   University of Haifa, Israel   Intel Corporation, Israel Development Center, Israel   shay.gueron@gmail.com   Daniel Fox Franke   Akamai Technologies   dfoxfranke@gmail.com   Lilia Ahmetzyanova   CryptoPro   lah@cryptopro.ruAuthor's Address   Stanislav Smyshlyaev (editor)   CryptoPro   18, Suschevskiy val   Moscow  127018   Russian Federation   Phone: +7 (495) 995-48-20   Email: svs@cryptopro.ruSmyshlyaev                    Informational                    [Page 69]

[8]ページ先頭

©2009-2025 Movatter.jp