Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Errata] [Info page]

INFORMATIONAL
Errata Exist
Internet Engineering Task Force (IETF)                         G. HudsonRequest for Comments: 6803                       MIT Kerberos ConsortiumCategory: Informational                                    November 2012ISSN: 2070-1721Camellia Encryption for Kerberos 5Abstract   This document specifies two encryption types and two corresponding   checksum types for the Kerberos cryptosystem framework defined inRFC3961.  The new types use the Camellia block cipher in CBC mode with   ciphertext stealing and the CMAC algorithm for integrity protection.Status of This Memo   This document is not an Internet Standards Track specification; it is   published for informational purposes.   This document is a product of the Internet Engineering Task Force   (IETF).  It represents the consensus of the IETF community.  It has   received public review and has been approved for publication by the   Internet Engineering Steering Group (IESG).  Not all documents   approved by the IESG are a candidate for any level of Internet   Standard; seeSection 2 of RFC 5741.   Information about the current status of this document, any errata,   and how to provide feedback on it may be obtained athttp://www.rfc-editor.org/info/rfc6803.Copyright Notice   Copyright (c) 2012 IETF Trust and the persons identified as the   document authors.  All rights reserved.   This document is subject toBCP 78 and the IETF Trust's Legal   Provisions Relating to IETF Documents   (http://trustee.ietf.org/license-info) in effect on the date of   publication of this document.  Please review these documents   carefully, as they describe your rights and restrictions with respect   to this document.  Code Components extracted from this document must   include Simplified BSD License text as described in Section 4.e of   the Trust Legal Provisions and are provided without warranty as   described in the Simplified BSD License.Hudson                        Informational                     [Page 1]

RFC 6803           Camellia Encryption for Kerberos 5      November 20121.  Introduction   The Camellia block cipher, described in [RFC3713], has a 128-bit   block size and a 128-bit, 192-bit, or 256-bit key size, similar to   AES.  This document specifies Kerberos encryption and checksum types   for Camellia using 128-bit or 256-bit keys.  The new types conform to   the framework specified in [RFC3961] but do not use the simplified   profile.   Like the simplified profile, the new types use key derivation to   produce keys for encryption, integrity protection, and checksum   operations.  Instead of the key derivation function described in[RFC3961], Section 5.1, the new types use a key derivation function   from the family specified in [SP800-108].   The new types use the CMAC algorithm for integrity protection and   checksum operations.  As a consequence, they do not rely on a hash   algorithm except when generating keys from strings.   Like the AES encryption types [RFC3962], the new encryption types use   CBC mode with ciphertext stealing [RFC3962] to avoid the need for   padding.  They also use the same PBKDF2 algorithm for key generation   from strings, with a modification to the salt string to ensure that   different keys are generated for Camellia and AES encryption types.2.  Protocol Key Representation   The Camellia key space is dense, so we use random octet strings   directly as keys.  The first bit of the Camellia bit string is the   high bit of the first byte of the random octet string.3.  Key Derivation   We use a key derivation function from the family specified in   [SP800-108], Section 5.2, "KDF in Feedback Mode".  The PRF parameter   of the key derivation function is CMAC with Camellia-128 or   Camellia-256 as the underlying block cipher; this PRF has an output   size of 128 bits.  A block counter is used with a length of 4 bytes,   represented in big-endian order.  The length of the output key in   bits (denoted as k) is also represented as a 4-byte string in big-   endian order.  The label input to the KDF is the usage constant   supplied to the key derivation function, and the context is unused.   In the following summary, | indicates concatenation.  The random-to-   key function is the identity function, as defined inSection 6.  The   k-truncate function is defined in[RFC3961], Section 5.1.Hudson                        Informational                     [Page 2]

RFC 6803           Camellia Encryption for Kerberos 5      November 2012   n = ceiling(k / 128)   K(0) = zeros   K(i) = CMAC(key, K(i-1) | i | constant | 0x00 | k)   DR(key, constant) = k-truncate(K(1) | K(2) | ... | K(n))   KDF-FEEDBACK-CMAC(key, constant) = random-to-key(DR(key, constant))   The constants used for key derivation are the same as those used in   the simplified profile.4.  Key Generation from Strings   We use a variation on the key generation algorithm specified in[RFC3962], Section 4.   First, to ensure that different long-term keys are used with Camellia   and AES, we prepend the enctype name to the salt string, separated by   a null byte.  The enctype name is "camellia128-cts-cmac" or   "camellia256-cts-cmac" (without the quotes).   Second, the final key derivation step uses the algorithm described inSection 3 instead of the key derivation algorithm used by the   simplified profile.   Third, if no string-to-key parameters are specified, the default   number of iterations is raised to 32768.   saltp = enctype-name | 0x00 | salt   tkey = random-to-key(PBKDF2-HMAC-SHA1(passphrase, saltp,                                         iter_count, keylength))   key = KDF-FEEDBACK-CMAC(tkey, "kerberos")5.  CMAC Checksum Algorithm   For integrity protection and checksums, we use the CMAC function   defined in [SP800-38B], with Camellia-128 or Camellia-256 as the   underlying block cipher.  The output length (Tlen) is 128 bits for   both key sizes.6.  Encryption Algorithm Parameters   The following parameters, required by[RFC3961], Section 3, apply to   the encryption types camellia128-cts-cmac, which uses a 128-bit   protocol key, and camellia256-cts-cmac, which uses a 256-bit protocol   key.   Protocol key format: as defined inSection 2.   Specific key structure: three protocol format keys: { Kc, Ke, Ki }.Hudson                        Informational                     [Page 3]

RFC 6803           Camellia Encryption for Kerberos 5      November 2012   Required checksum mechanism: as defined inSection 7.   Key generation seed length: the key size (128 or 256 bits).   String-to-key function: as defined inSection 4.   Random-to-key function: identity function.   Key-derivation function: as indicated below, with usage represented   as 4 octets in big-endian order.   String-to-key parameter format: 4 octets indicating a 32-bit   iteration count in big-endian order.  Implementations may limit the   count as specified in[RFC3962], Section 4.   Default string-to-key parameters: 00 00 80 00.   Kc = KDF-FEEDBACK-CMAC(base-key, usage | 0x99)   Ke = KDF-FEEDBACK-CMAC(base-key, usage | 0xAA)   Ki = KDF-FEEDBACK-CMAC(base-key, usage | 0x55)   Cipher state: a 128-bit CBC initialization vector.   Initial cipher state: all bits zero.   Encryption function: as follows, where E() is Camellia encryption in   CBC-CTS mode, with the next-to-last block used as the CBC-style ivec,   or the last block if there is only one.   conf = Random string of 128 bits   (C, newstate) = E(Ke, conf | plaintext, oldstate)   M = CMAC(Ki, conf | plaintext)   ciphertext = C | M   Decryption function: as follows, where D() is Camellia decryption in   CBC-CTS mode, with the ivec treated as in E().  To separate the   ciphertext into C and M components, use the final 16 bytes for M and   all of the preceding bytes for C.   (C, M) = ciphertext   (P, newIV) = D(Ke, C, oldstate)   if (M != CMAC(Ki, P)) report error   newstate = newIV   Pseudo-random function: as follows.   Kp = KDF-FEEDBACK-CMAC(protocol-key, "prf")   PRF = CMAC(Kp, octet-string)Hudson                        Informational                     [Page 4]

RFC 6803           Camellia Encryption for Kerberos 5      November 20127.  Checksum Parameters   The following parameters, required by[RFC3961], Section 4, apply to   the checksum types cmac-camellia128 and cmac-camellia256, which are   the associated checksum for camellia128-cts-cmac and camellia256-cts-   cmac, respectively.   Associated cryptosystem: Camellia-128 or Camellia-256 as appropriate   for the checksum type.   get_mic: CMAC(Kc, message).   verify_mic: get_mic and compare.8.  Security Considerations   Chapter 4 of [CRYPTOENG] discusses weaknesses of the CBC cipher mode.   An attacker who can observe enough messages generated with the same   key to encounter a collision in ciphertext blocks could recover the   XOR of the plaintexts of the previous blocks.  Observing such a   collision becomes likely as the number of blocks observed approaches   2^64.  This consideration applies to all previously standardized   Kerberos encryption types and all uses of CBC encryption with 128-bit   block ciphers in other protocols.  Kerberos deployments can mitigate   this concern by rolling over keys often enough to make observing 2^64   messages unlikely.   Because the new checksum types are deterministic, an attacker could   pre-compute checksums for a known plain-text message in 2^64 randomly   chosen protocol keys.  The attacker could then observe checksums   legitimately computed in different keys until a collision with one of   the pre-computed keys is observed; this becomes likely after the   number of observed checksums approaches 2^64.  Observing such a   collision allows the attacker to recover the protocol key.  This   consideration applies to most previously standardized Kerberos   checksum types and most uses of 128-bit checksums in other protocols.   Kerberos deployments should not migrate to the Camellia encryption   types simply because they are newer, but should use them only if   business needs require the use of Camellia, or if a serious flaw is   discovered in AES which does not apply to Camellia.   The security considerations described in[RFC3962], Section 8,   regarding the string-to-key algorithm also apply to the Camellia   encryption types.Hudson                        Informational                     [Page 5]

RFC 6803           Camellia Encryption for Kerberos 5      November 2012   At the time of writing this document, there are no known weak keys   for Camellia, and no security problem has been found on Camellia (see   [NESSIE], [CRYPTREC], and [LNCS5867]).9.  IANA Considerations   IANA has assigned the following numbers from the Encryption Type   Numbers and Checksum Type Numbers registries defined in[RFC3961],   Section 11.                             Encryption types               +-------+----------------------+-----------+               | etype | encryption type      | Reference |               +-------+----------------------+-----------+               | 25    | camellia128-cts-cmac | [RFC6803] |               | 26    | camellia256-cts-cmac | [RFC6803] |               +-------+----------------------+-----------+                              Checksum types     +---------------+------------------+---------------+-----------+     | sumtype value | Checksum type    | checksum size | Reference |     +---------------+------------------+---------------+-----------+     | 17            | cmac-camellia128 | 16            | [RFC6803] |     | 18            | cmac-camellia256 | 16            | [RFC6803] |     +---------------+------------------+---------------+-----------+10.  Test Vectors   Sample results for string-to-key conversion:   Iteration count = 1   Pass phrase = "password"   Salt = "ATHENA.MIT.EDUraeburn"   128-bit Camellia key:       57 D0 29 72 98 FF D9 D3 5D E5 A4 7F B4 BD E2 4B   256-bit Camellia key:       B9 D6 82 8B 20 56 B7 BE 65 6D 88 A1 23 B1 FA C6       82 14 AC 2B 72 7E CF 5F 69 AF E0 C4 DF 2A 6D 2CHudson                        Informational                     [Page 6]

RFC 6803           Camellia Encryption for Kerberos 5      November 2012   Iteration count = 2   Pass phrase = "password"   Salt = "ATHENA.MIT.EDUraeburn"   128-bit Camellia key:       73 F1 B5 3A A0 F3 10 F9 3B 1D E8 CC AA 0C B1 52   256-bit Camellia key:       83 FC 58 66 E5 F8 F4 C6 F3 86 63 C6 5C 87 54 9F       34 2B C4 7E D3 94 DC 9D 3C D4 D1 63 AD E3 75 E3   Iteration count = 1200   Pass phrase = "password"   Salt = "ATHENA.MIT.EDUraeburn"   128-bit Camellia key:       8E 57 11 45 45 28 55 57 5F D9 16 E7 B0 44 87 AA   256-bit Camellia key:       77 F4 21 A6 F2 5E 13 83 95 E8 37 E5 D8 5D 38 5B       4C 1B FD 77 2E 11 2C D9 20 8C E7 2A 53 0B 15 E6   Iteration count = 5   Pass phrase = "password"   Salt=0x1234567878563412   128-bit Camellia key:       00 49 8F D9 16 BF C1 C2 B1 03 1C 17 08 01 B3 81   256-bit Camellia key:       11 08 3A 00 BD FE 6A 41 B2 F1 97 16 D6 20 2F 0A       FA 94 28 9A FE 8B 27 A0 49 BD 28 B1 D7 6C 38 9A   Iteration count = 1200   Pass phrase = (64 characters)     "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"   Salt="pass phrase equals block size"   128-bit Camellia key:       8B F6 C3 EF 70 9B 98 1D BB 58 5D 08 68 43 BE 05   256-bit Camellia key:       11 9F E2 A1 CB 0B 1B E0 10 B9 06 7A 73 DB 63 ED       46 65 B4 E5 3A 98 D1 78 03 5D CF E8 43 A6 B9 B0   Iteration count = 1200   Pass phrase = (65 characters)     "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"   Salt = "pass phrase exceeds block size"   128-bit Camellia key:       57 52 AC 8D 6A D1 CC FE 84 30 B3 12 87 1C 2F 74   256-bit Camellia key:       61 4D 5D FC 0B A6 D3 90 B4 12 B8 9A E4 D5 B0 88       B6 12 B3 16 51 09 94 67 9D DB 43 83 C7 12 6D DFHudson                        Informational                     [Page 7]

RFC 6803           Camellia Encryption for Kerberos 5      November 2012   Iteration count = 50   Pass phrase = g-clef (0xf09d849e)   Salt = "EXAMPLE.COMpianist"   128-bit Camellia key:       CC 75 C7 FD 26 0F 1C 16 58 01 1F CC 0D 56 06 16   256-bit Camellia key:       16 3B 76 8C 6D B1 48 B4 EE C7 16 3D F5 AE D7 0E       20 6B 68 CE C0 78 BC 06 9E D6 8A 7E D3 6B 1E CC   Sample results for key derivation:   128-bit Camellia key:       57 D0 29 72 98 FF D9 D3 5D E5 A4 7F B4 BD E2 4B   Kc value for key usage 2 (constant = 0x0000000299):       D1 55 77 5A 20 9D 05 F0 2B 38 D4 2A 38 9E 5A 56   Ke value for key usage 2 (constant = 0x00000002AA):       64 DF 83 F8 5A 53 2F 17 57 7D 8C 37 03 57 96 AB   Ki value for key usage 2 (constant = 0x0000000255):       3E 4F BD F3 0F B8 25 9C 42 5C B6 C9 6F 1F 46 35   256-bit Camellia key:       B9 D6 82 8B 20 56 B7 BE 65 6D 88 A1 23 B1 FA C6       82 14 AC 2B 72 7E CF 5F 69 AF E0 C4 DF 2A 6D 2C   Kc value for key usage 2 (constant = 0x0000000299):       E4 67 F9 A9 55 2B C7 D3 15 5A 62 20 AF 9C 19 22       0E EE D4 FF 78 B0 D1 E6 A1 54 49 91 46 1A 9E 50   Ke value for key usage 2 (constant = 0x00000002AA):       41 2A EF C3 62 A7 28 5F C3 96 6C 6A 51 81 E7 60       5A E6 75 23 5B 6D 54 9F BF C9 AB 66 30 A4 C6 04   Ki value for key usage 2 (constant = 0x0000000255):       FA 62 4F A0 E5 23 99 3F A3 88 AE FD C6 7E 67 EB       CD 8C 08 E8 A0 24 6B 1D 73 B0 D1 DD 9F C5 82 B0   Sample encryptions (all using the default cipher state):   Plaintext: (empty)   128-bit Camellia key:       1D C4 6A 8D 76 3F 4F 93 74 2B CB A3 38 75 76 C3   Random confounder:       B6 98 22 A1 9A 6B 09 C0 EB C8 55 7D 1F 1B 6C 0A   Ciphertext:       C4 66 F1 87 10 69 92 1E DB 7C 6F DE 24 4A 52 DB       0B A1 0E DC 19 7B DB 80 06 65 8C A3 CC CE 6E B8Hudson                        Informational                     [Page 8]

RFC 6803           Camellia Encryption for Kerberos 5      November 2012   Plaintext: 1   Random confounder:       6F 2F C3 C2 A1 66 FD 88 98 96 7A 83 DE 95 96 D9   128-bit Camellia key:       50 27 BC 23 1D 0F 3A 9D 23 33 3F 1C A6 FD BE 7C   Ciphertext:       84 2D 21 FD 95 03 11 C0 DD 46 4A 3F 4B E8 D6 DA       88 A5 6D 55 9C 9B 47 D3 F9 A8 50 67 AF 66 15 59       B8   Plaintext: 9 bytesss   Random confounder:       A5 B4 A7 1E 07 7A EE F9 3C 87 63 C1 8F DB 1F 10   128-bit Camellia key:       A1 BB 61 E8 05 F9 BA 6D DE 8F DB DD C0 5C DE A0   Ciphertext:       61 9F F0 72 E3 62 86 FF 0A 28 DE B3 A3 52 EC 0D       0E DF 5C 51 60 D6 63 C9 01 75 8C CF 9D 1E D3 3D       71 DB 8F 23 AA BF 83 48 A0   Plaintext: 13 bytes byte   Random confounder:       19 FE E4 0D 81 0C 52 4B 5B 22 F0 18 74 C6 93 DA   128-bit Camellia key:       2C A2 7A 5F AF 55 32 24 45 06 43 4E 1C EF 66 76   Ciphertext:       B8 EC A3 16 7A E6 31 55 12 E5 9F 98 A7 C5 00 20       5E 5F 63 FF 3B B3 89 AF 1C 41 A2 1D 64 0D 86 15       C9 ED 3F BE B0 5A B6 AC B6 76 89 B5 EA   Plaintext: 30 bytes bytes bytes bytes byt   Random confounder:       CA 7A 7A B4 BE 19 2D AB D6 03 50 6D B1 9C 39 E2   128-bit Camellia key:       78 24 F8 C1 6F 83 FF 35 4C 6B F7 51 5B 97 3F 43   Ciphertext:       A2 6A 39 05 A4 FF D5 81 6B 7B 1E 27 38 0D 08 09       0C 8E C1 F3 04 49 6E 1A BD CD 2B DC D1 DF FC 66       09 89 E1 17 A7 13 DD BB 57 A4 14 6C 15 87 CB A4       35 66 65 59 1D 22 40 28 2F 58 42 B1 05 A5Hudson                        Informational                     [Page 9]

RFC 6803           Camellia Encryption for Kerberos 5      November 2012   Plaintext: (empty)   Random confounder:       3C BB D2 B4 59 17 94 10 67 F9 65 99 BB 98 92 6C   256-bit Camellia key:       B6 1C 86 CC 4E 5D 27 57 54 5A D4 23 39 9F B7 03       1E CA B9 13 CB B9 00 BD 7A 3C 6D D8 BF 92 01 5B   Ciphertext:       03 88 6D 03 31 0B 47 A6 D8 F0 6D 7B 94 D1 DD 83       7E CC E3 15 EF 65 2A FF 62 08 59 D9 4A 25 92 66   Plaintext: 1   Random confounder:       DE F4 87 FC EB E6 DE 63 46 D4 DA 45 21 BB A2 D2   256-bit Camellia key:       1B 97 FE 0A 19 0E 20 21 EB 30 75 3E 1B 6E 1E 77       B0 75 4B 1D 68 46 10 35 58 64 10 49 63 46 38 33   Ciphertext:       2C 9C 15 70 13 3C 99 BF 6A 34 BC 1B 02 12 00 2F       D1 94 33 87 49 DB 41 35 49 7A 34 7C FC D9 D1 8A       12   Plaintext: 9 bytesss   Random confounder:       AD 4F F9 04 D3 4E 55 53 84 B1 41 00 FC 46 5F 88   256-bit Camellia key:       32 16 4C 5B 43 4D 1D 15 38 E4 CF D9 BE 80 40 FE       8C 4A C7 AC C4 B9 3D 33 14 D2 13 36 68 14 7A 05   Ciphertext:       9C 6D E7 5F 81 2D E7 ED 0D 28 B2 96 35 57 A1 15       64 09 98 27 5B 0A F5 15 27 09 91 3F F5 2A 2A 9C       8E 63 B8 72 F9 2E 64 C8 39   Plaintext: 13 bytes byte   Random confounder:       CF 9B CA 6D F1 14 4E 0C 0A F9 B8 F3 4C 90 D5 14   256-bit Camellia key:       B0 38 B1 32 CD 8E 06 61 22 67 FA B7 17 00 66 D8       8A EC CB A0 B7 44 BF C6 0D C8 9B CA 18 2D 07 15   Ciphertext:       EE EC 85 A9 81 3C DC 53 67 72 AB 9B 42 DE FC 57       06 F7 26 E9 75 DD E0 5A 87 EB 54 06 EA 32 4C A1       85 C9 98 6B 42 AA BE 79 4B 84 82 1B EEHudson                        Informational                    [Page 10]

RFC 6803           Camellia Encryption for Kerberos 5      November 2012   Plaintext: 30 bytes bytes bytes bytes byt   Random confounder:       64 4D EF 38 DA 35 00 72 75 87 8D 21 68 55 E2 28   256-bit Camellia key:       CC FC D3 49 BF 4C 66 77 E8 6E 4B 02 B8 EA B9 24       A5 46 AC 73 1C F9 BF 69 89 B9 96 E7 D6 BF BB A7   Ciphertext:       0E 44 68 09 85 85 5F 2D 1F 18 12 52 9C A8 3B FD       8E 34 9D E6 FD 9A DA 0B AA A0 48 D6 8E 26 5F EB       F3 4A D1 25 5A 34 49 99 AD 37 14 68 87 A6 C6 84       57 31 AC 7F 46 37 6A 05 04 CD 06 57 14 74   Sample checksums:   Plaintext: abcdefghijk   Checksum type: cmac-camellia128   128-bit Camellia key:       1D C4 6A 8D 76 3F 4F 93 74 2B CB A3 38 75 76 C3   Key usage: 7   Checksum:       11 78 E6 C5 C4 7A 8C 1A E0 C4 B9 C7 D4 EB 7B 6B   Plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ   Checksum type: cmac-camellia128   128-bit Camellia key:       50 27 BC 23 1D 0F 3A 9D 23 33 3F 1C A6 FD BE 7C   Key usage: 8   Checksum:       D1 B3 4F 70 04 A7 31 F2 3A 0C 00 BF 6C 3F 75 3A   Plaintext: 123456789   Checksum type: cmac-camellia256   256-bit Camellia key:       B6 1C 86 CC 4E 5D 27 57 54 5A D4 23 39 9F B7 03       1E CA B9 13 CB B9 00 BD 7A 3C 6D D8 BF 92 01 5B   Key usage: 9   Checksum:       87 A1 2C FD 2B 96 21 48 10 F0 1C 82 6E 77 44 B1   Plaintext: !@#$%^&*()!@#$%^&*()!@#$%^&*()   Checksum type: cmac-camellia256   256-bit Camellia key:       32 16 4C 5B 43 4D 1D 15 38 E4 CF D9 BE 80 40 FE       8C 4A C7 AC C4 B9 3D 33 14 D2 13 36 68 14 7A 05   Key usage: 10   Checksum:       3F A0 B4 23 55 E5 2B 18 91 87 29 4A A2 52 AB 64Hudson                        Informational                    [Page 11]

RFC 6803           Camellia Encryption for Kerberos 5      November 201211.  References11.1.  Normative References   [RFC3713]    Matsui, M., Nakajima, J., and S. Moriai, "A Description                of the Camellia Encryption Algorithm",RFC 3713,                April 2004.   [RFC3961]    Raeburn, K., "Encryption and Checksum Specifications for                Kerberos 5",RFC 3961, February 2005.   [RFC3962]    Raeburn, K., "Advanced Encryption Standard (AES)                Encryption for Kerberos 5",RFC 3962, February 2005.   [SP800-108]  Chen, L., "Recommendation for Key Derivation Using                Pseudorandom Functions", NIST Special Publication 800&                nhby;108, October 2009.   [SP800-38B]  Dworkin, M., "Recommendation for Block Cipher Modes of                Operation: The CMAC Mode for Authentication", NIST                Special Publication 800-38B, October 2009.11.2.  Informative References   [CRYPTOENG]  Schneier, B., "Cryptography Engineering", March 2010.   [CRYPTREC]   Information-technology Promotion Agency (IPA), Japan,                "Cryptography Research and Evaluation Committees",                <http://www.ipa.go.jp/security/enc/CRYPTREC/index-e.html>.   [LNCS5867]   Mala, H., Shakiba, M., Dakhilalian, M., and G.                Bagherikaram, "New Results on Impossible Different                Cryptanalysis of Reduced-Round Camellia-128", Lecture                Notes in Computer Science, Vol. 5867, November 2009,                <http://www.springerlink.com/content/e55783u422436g77/>.   [NESSIE]     The NESSIE Project, "New European Schemes for                Signatures, Integrity, and Encryption",                <http://www.cosic.esat.kuleuven.be/nessie/>.Hudson                        Informational                    [Page 12]

RFC 6803           Camellia Encryption for Kerberos 5      November 2012Appendix A.  Acknowledgements   The author would like to thank Ken Raeburn, Satoru Kanno, Jeffrey   Hutzelman, Nico Williams, Sam Hartman, and Tom Yu for their help in   reviewing and providing feedback on this document.Author's Address   Greg Hudson   MIT Kerberos Consortium   EMail: ghudson@mit.eduHudson                        Informational                    [Page 13]

[8]ページ先頭

©2009-2025 Movatter.jp