Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Info page]

INFORMATIONAL
Internet Engineering Task Force (IETF)                       G. LebovitzRequest for Comments: 6518                                     M. BhatiaCategory: Informational                                   Alcatel-LucentISSN: 2070-1721                                            February 2012Keying and Authentication for Routing Protocols (KARP)Design GuidelinesAbstract   This document is one of a series concerned with defining a roadmap of   protocol specification work for the use of modern cryptographic   mechanisms and algorithms for message authentication in routing   protocols.  In particular, it defines the framework for a key   management protocol that may be used to create and manage session   keys for message authentication and integrity.Status of This Memo   This document is not an Internet Standards Track specification; it is   published for informational purposes.   This document is a product of the Internet Engineering Task Force   (IETF).  It represents the consensus of the IETF community.  It has   received public review and has been approved for publication by the   Internet Engineering Steering Group (IESG).  Not all documents   approved by the IESG are a candidate for any level of Internet   Standard; seeSection 2 of RFC 5741.   Information about the current status of this document, any errata,   and how to provide feedback on it may be obtained athttp://www.rfc-editor.org/info/rfc6518.Lebovitz & Bhatia             Informational                     [Page 1]

RFC 6518                 KARP Design Guidelines            February 2012Copyright Notice   Copyright (c) 2012 IETF Trust and the persons identified as the   document authors.  All rights reserved.   This document is subject toBCP 78 and the IETF Trust's Legal   Provisions Relating to IETF Documents   (http://trustee.ietf.org/license-info) in effect on the date of   publication of this document.  Please review these documents   carefully, as they describe your rights and restrictions with respect   to this document.  Code Components extracted from this document must   include Simplified BSD License text as described in Section 4.e of   the Trust Legal Provisions and are provided without warranty as   described in the Simplified BSD License.Table of Contents1. Introduction ....................................................31.1. Conventions Used in This Document ..........................42. Categorizing Routing Protocols ..................................52.1. Category: Message Transaction Type .........................52.2. Category: Peer versus Group Keying .........................63. Consider the Future Existence of a Key Management Protocol ......63.1. Consider Asymmetric Keys ...................................73.2. Cryptographic Keys Life Cycle ..............................84. Roadmap .........................................................94.1. Work Phases on Any Particular Protocol .....................94.2. Work Items per Routing Protocol ...........................115. Routing Protocols in Categories ................................136. Supporting Incremental Deployment ..............................167. Denial-of-Service Attacks ......................................178. Gap Analysis ...................................................189. Security Considerations ........................................209.1. Use Strong Keys ...........................................219.2. Internal versus External Operation ........................229.3. Unique versus Shared Keys .................................229.4. Key Exchange Mechanism ....................................2410. Acknowledgments ...............................................2611. References ....................................................2611.1. Normative References ....................................2611.2. Informative References ..................................26Lebovitz & Bhatia             Informational                     [Page 2]

RFC 6518                 KARP Design Guidelines            February 20121.  Introduction   In March 2006, the Internet Architecture Board (IAB) held a workshop   on the topic of "Unwanted Internet Traffic".  The report from that   workshop is documented inRFC 4948 [RFC4948].Section 8.1 of that   document states that "A simple risk analysis would suggest that an   ideal attack target of minimal cost but maximal disruption is the   core routing infrastructure".Section 8.2 calls for "[t]ightening   the security of the core routing infrastructure".  Four main steps   were identified for that tightening:   o  Increase the security mechanisms and practices for operating      routers.   o  Clean up the Internet Routing Registry [IRR] repository, and      securing both the database and the access, so that it can be used      for routing verifications.   o  Create specifications for cryptographic validation of routing      message content.   o  Secure the routing protocols' packets on the wire.   The first bullet is being addressed in the OPSEC working group.  The   second bullet should be addressed through liaisons with those running   the IRR's globally.  The third bullet is being addressed in the SIDR   working group.   This document addresses the last bullet, securing the packets on the   wire of the routing protocol exchanges.  Thus, it is concerned with   guidelines for describing issues and techniques for protecting the   messages between directly communicating peers.  This may overlap   with, but is strongly distinct from, protection designed to ensure   that routing information is properly authorized relative to sources   of this information.  Such authorizations are provided by other   mechanisms and are outside the scope of this document and the work   that relies on it.   This document uses the terminology "on the wire" to talk about the   information used by routing systems.  This term is widely used in   RFCs, but is used in several different ways.  In this document, it is   used to refer both to information exchanged between routing protocol   instances and to underlying protocols that may also need to be   protected in specific circumstances.  Other documents that will   analyze individual protocols will need to indicate how they use the   term "on the wire".Lebovitz & Bhatia             Informational                     [Page 3]

RFC 6518                 KARP Design Guidelines            February 2012   The term "routing transport" is used to refer to the layer that   exchanges the routing protocols.  This can be TCP, UDP, or even   direct link-level messaging in the case of some routing protocols.   The term is used here to allow a referent for discussing both common   and disparate issues that affect or interact with this dimension of   the routing systems.  The term is used here to refer generally to the   set of mechanisms and exchanges underneath the routing protocol,   whatever that is in specific cases.   Keying and Authentication for Routing Protocols (KARP) will focus on   an abstraction for keying information that describes the interface   between routing protocols, operators, and automated key management.   Conceptually, when routing protocols send or receive messages, they   will look up the key to use in this abstract key table.   Conceptually, there will be an interface for a routing protocol to   make requests of automated key management when it is being used; when   keys become available, they will be made available in the key table.   There is no requirement that this abstraction be used for   implementation; the abstraction serves the needs of standardization   and management.  Specifically, as part of the KARP work plan:   1) KARP will design the key table abstraction, the interface between      key management protocols and routing protocols, and possibly      security protocols at other layers.   2) For each routing protocol, KARP will define the mapping between      how the protocol represents key material and the protocol-      independent key table abstraction.  When routing protocols share a      common mechanism for authentication, such as the TCP      Authentication Option, the same mapping is likely to be reused      between protocols.  An implementation may be able to move much of      the keying logic into code related to this shared authentication      primitive rather than code specific to routing protocols.   3) When designing automated key management for both symmetric keys      and group keys, we will only use the abstractions designed in      point 1 above to communicate between automated key management and      routing protocols.   Readers must refer to [THTS-REQS] for a clear definition of the   scope, goals, non-goals, and the audience for the design work being   undertaken in the KARP WG.1.1.  Conventions Used in This Document   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this   document are to be interpreted as described inRFC 2119 [RFC2119].Lebovitz & Bhatia             Informational                     [Page 4]

RFC 6518                 KARP Design Guidelines            February 20122.  Categorizing Routing Protocols   This document places the routing protocols into two categories   according to their requirements for authentication.  We hope these   categories will allow design teams to focus on security mechanisms   for a given category.  Further, we hope that each protocol in the   group will be able to reuse the authentication mechanism.  It is also   hoped that, down the road, we can create one Key Management Protocol   (KMP) per category (if not for several categories), so that the work   can be easily leveraged for use in the various routing protocol   groupings.  KMPs are useful for allowing simple, automated updates of   the traffic keys used in a base protocol.  KMPs replace the need for   humans, or operational support systems (OSS) routines, to   periodically replace keys on running systems.  It also removes the   need for a chain of manual keys to be chosen or configured on such   systems.  When configured properly, a KMP will enforce the key   freshness policy among peers by keeping track of the key's lifetime   and negotiating a new key at the defined interval.2.1.  Category: Message Transaction Type   The first category defines three types of messaging transactions used   on the wire by the base routing protocol.  They are as follows:      One-to-One         One peer router directly and intentionally delivers a route         update specifically to one other peer router.  Examples are BGP         [RFC4271]; LDP [RFC5036]; BFD [RFC5880]; and RSVP-TE [RFC3209],         [RFC3473], [RFC4726], and [RFC5151].  Point-to-point modes of         both IS-IS [RFC1195] and OSPF [RFC2328], when sent over both         traditional point-to-point links and when using multi-access         layers, may both also fall into this category.      One-to-Many         A router peers with multiple other routers on a single network         segment -- i.e., on link local -- such that it creates and         sends one route update message that is intended for multiple         peers.  Examples would be OSPF and IS-IS in their broadcast,         non-point-to-point mode and Routing Information Protocol (RIP)         [RFC2453].      Multicast         Multicast protocols have unique security properties because         they are inherently group-based protocols; thus, they have         group keying requirements at the routing level where link-localLebovitz & Bhatia             Informational                     [Page 5]

RFC 6518                 KARP Design Guidelines            February 2012         routing messages are multicasted.  Also, at least in the case         of Protocol Independent Multicast - Sparse Mode (PIM-SM)         [RFC4601], some messages are sent unicast to a given peer(s),         as is the case with router-close-to-sender and the "Rendezvous         Point".  Some work for application-layer message security has         been done in the Multicast Security (MSEC) working group and         may be helpful to review, but it is not directly applicable.   These categories affect both the routing protocol view of the   communication and the actual message transfer.  As a result, some   message transaction types for a few routing protocols may be   mixtures, for example, using broadcast where multicast might be   expected or using unicast to deliver what looks to the routing   protocol like broadcast or multicast.   Protocol security analysis documents produced in the KARP working   group need to pay attention both to the semantics of the   communication and the techniques that are used for the message   exchanges.2.2.  Category: Peer versus Group Keying   The second category is the keying mechanism that will be used to   distribute the session keys to the routing transports.  They are as   follows:   Peer Keying      One router sends the keying messages only to one other router,      such that a one-to-one, uniquely keyed security association (SA)      is established between the two routers (e.g., BGP, BFD and LDP).   Group Keying      One router creates and distributes a single keying message to      multiple peers.  In this case, a group SA will be established and      used among multiple peers simultaneously.  Group keying exists for      protocols like OSPF [RFC2328] and for multicast protocols like      PIM-SM [RFC4601].3.  Consider the Future Existence of a Key Management Protocol   When it comes time for the KARP WG to design a reusable model for a   Key Management Protocol (KMP), [RFC4107] should be consulted.Lebovitz & Bhatia             Informational                     [Page 6]

RFC 6518                 KARP Design Guidelines            February 2012   When conducting the design work on a manually keyed version of a   routing protocol's authentication mechanism, consideration must be   made for the eventual use of a KMP.  In particular, design teams must   consider what parameters would need to be handed to the routing   protocols by a KMP.   Examples of parameters that might need to be passed are as follows: a   security association identifier (e.g., IPsec Security Parameter Index   (SPI) or the TCP Authentication Option's (TCP-AO's) KeyID), a key   lifetime (which may be represented in either bytes or seconds), the   cryptographic algorithms being used, the keys themselves, and the   directionality of the keys (i.e., receiving versus the sending keys).3.1.  Consider Asymmetric Keys   The use of asymmetric keys can be a very powerful way to authenticate   machine peers as used in routing protocol peer exchanges.  If   generated on the machine, and never moved off the machine, these keys   will not need to be changed if an administrator leaves the   organization.  Since the keys are random, they are far less   susceptible to off-line dictionary and guessing attacks.   An easy and simple way to use asymmetric keys is to start by having   the router generate a public/private key pair.  At the time of this   writing, the recommended key size for algorithms based on integer   factorization cryptography like RSA is 1024 bits and 2048 bits for   extremely valuable keys like the root key pair used by a   certification authority.  It is believed that a 1024-bit RSA key is   equivalent in strength to 80-bit symmetric keys and 2048-bit RSA keys   to 112-bit symmetric keys [RFC3766].  Elliptic Curve Cryptography   (ECC) [RFC4492] appears to be secure with shorter keys than those   needed by other asymmetric key algorithms.  National Institute of   Standards and Technology (NIST) guidelines [NIST-800-57] state that   ECC keys should be twice the length of equivalent strength symmetric   key algorithms.  Thus, a 224-bit ECC key would roughly have the same   strength as a 112-bit symmetric key.   Many routers have the ability to be remotely managed using Secure   Shell (SSH) Protocol [RFC4252] and [RFC4253].  As such, routers will   also have the ability to generate and store an asymmetric key pair,   because this is the common authentication method employed by SSH when   an administrator connects to a router for management sessions.Lebovitz & Bhatia             Informational                     [Page 7]

RFC 6518                 KARP Design Guidelines            February 2012   Once an asymmetric key pair is generated, the KMP generating security   association parameters and keys for routing protocol may use the   machine's asymmetric keys for the authentication mechanism.  The form   of the identity proof could be raw keys, the more easily   administrable self-signed certificate format, or a PKI-issued   [RFC5280] certificate credential.   Regardless of which credential is standardized, the authentication   mechanism can be as simple as a strong hash over a string of human-   readable and transferable form of ASCII characters.  More complex,   but also more secure, the identity proof could be verified through   the use of a PKI system's revocation checking mechanism, (e.g.,   Certificate Revocation List (CRL) or Online Certificate Status   Protocol (OCSP) responder).  If the SHA-1 fingerprint is used, the   solution could be as simple as loading a set of neighbor routers'   peer ID strings into a table and listing the associated fingerprint   string for each ID string.  In most organizations or peering points,   this list will not be longer than a thousand or so routers, and often   the list will be much shorter.  In other words, the entire list for a   given organization's router ID and hash could be held in a router's   configuration file, uploaded, downloaded, and moved about at will.   Additionally, it doesn't matter who sees or gains access to these   fingerprints, because they can be distributed publicly as it needn't   be kept secret.3.2.  Cryptographic Keys Life Cycle   Cryptographic keys should have a limited lifetime and may need to be   changed when an operator who had access to them leaves.  Using a key   chain, a set of keys derived from the same keying material and used   one after the other, also does not help as one still has to change   all the keys in the key chain when an operator having access to all   those keys leaves the company.  Additionally, key chains will not   help if the routing transport subsystem does not support rolling over   to the new keys without bouncing the routing sessions and   adjacencies.  So the first step is to fix the routing stack so that   routing protocols can change keys without breaking or bouncing the   adjacencies.   An often cited reason for limiting the lifetime of a key is to   minimize the damage from a compromised key.  It could be argued that   it is likely a user will not discover an attacker has compromised the   key if the attacker remains "passive"; thus, relatively frequent key   changes will limit any potential damage from compromised keys.Lebovitz & Bhatia             Informational                     [Page 8]

RFC 6518                 KARP Design Guidelines            February 2012   Another threat against the long-lived key is that one of the systems   storing the key, or one of the users entrusted with the key, will be   subverted.  So, while there may not be cryptographic motivations of   changing the keys, there could be system security motivations for   rolling the key.   Although manual key distribution methods are subject to human error   and frailty, more frequent manual key changes might actually increase   the risk of exposure, as it is during the time that the keys are   being changed that they are likely to be disclosed.  In these cases,   especially when very strong cryptography is employed, it may be more   prudent to have fewer, well-controlled manual key distributions   rather than more frequent, poorly controlled manual key   distributions.  In general, where strong cryptography is employed,   physical, procedural, and logical access protection considerations   often have more impact on the key life than do algorithm and key size   factors.   For incremental deployments, we could start by associating life times   with the send and the receive keys in the key chain for the long-   lived keys.  This is an incremental approach that we could use until   the cryptographic keying material for individual sessions is derived   from the keying material stored in a database of long-lived   cryptographic keys as described in [CRPT-TAB].  A key derivation   function (KDF) and its inputs are also specified in the database of   long-lived cryptographic keys; session-specific values based on the   routing protocol are input to the KDF.  Protocol-specific key   identifiers may be assigned to the cryptographic keying material for   individual sessions if needed.   The long-lived cryptographic keys used by the routing protocols can   either be inserted manually in a database or make use of an automated   key management protocol to do this.4.  Roadmap4.1.  Work Phases on Any Particular Protocol   It is believed that improving security for any routing protocol will   be a two-phase process.  The first phase would be to modify routing   protocols to support modern cryptography algorithms and key agility.   The second phase would be to design and move to an automated key   management mechanism.  This is like a crawl, walk, and run process.   In order for operators to accept these phases, we believe that the   key management protocol should be clearly separated from the routing   transport.  This would mean that the routing transport subsystem is   oblivious to how the keys are derived, exchanged, and downloaded as   long as there is something that it can use.  It is like having aLebovitz & Bhatia             Informational                     [Page 9]

RFC 6518                 KARP Design Guidelines            February 2012   routing-protocol-configuration switch that requests the security   module for the "KARP security parameters" so that it can refer to   some module written, maintained, and operated by security experts and   insert those parameters in the routing exchange.   The desired end state for the KARP work contains several items.   First, the people desiring to deploy securely authenticated and   integrity validated packets between routing peers have the tools   specified, implemented, and shipped in order to deploy.  These tools   should be fairly simple to implement and not more complex than the   security mechanisms to which the operators are already accustomed.   (Examples of security mechanisms to which router operators are   accustomed include: the use of asymmetric keys for authentication in   SSH for router configuration, the use of pre-shared keys (PSKs) in   TCP MD5 for BGP protection, the use of self-signed certificates for   HTTP Secure (HTTPS) access to device Web-based user interfaces, the   use of strongly constructed passwords and/or identity tokens for user   identification when logging into routers and management systems.)   While the tools that we intend to specify may not be able to stop a   deployment from using "foobar" as an input key for every device   across their entire routing domain, we intend to make a solid, modern   security system that is not too much more difficult than that.  In   other words, simplicity and deployability are keys to success.  The   routing protocols will specify modern cryptographic algorithms and   security mechanisms.  Routing peers will be able to employ unique,   pair-wise keys per peering instance, with reasonable key lifetimes,   and updating those keys on a regular basis will be operationally   easy, causing no service interruption.   Achieving the above described end state using manual keys may be   pragmatic only in very small deployments.  However, manual keying in   larger deployments will be too burdensome for operators.  Thus, the   second goal is to support key life cycle management with a KMP.  We   expect that both manual and automated key management will coexist in   the real world.   In accordance with the desired end state just described, we define   two main work phases for each routing protocol:   1.  Enhance the routing protocol's current authentication       mechanism(s).  This work involves enhancing a routing protocol's       current security mechanisms in order to achieve a consistent,       modern level of security functionality within its existing key       management framework.  It is understood and accepted that the       existing key management frameworks are largely based on manual       keys.  Since many operators have already built operational       support systems (OSS) around these manual key implementations,       there is some automation available for an operator to leverage inLebovitz & Bhatia             Informational                    [Page 10]

RFC 6518                 KARP Design Guidelines            February 2012       that way, if the underlying mechanisms are themselves secure.  In       this phase, we explicitly exclude embedding or creating a KMP.       Refer to [THTS-REQS] for the list of the requirements for Phase 1       work.   2.  Develop an automated key management framework.  The second phase       will focus on the development of an automated keying framework to       facilitate unique pair-wise (group-wise, where applicable) keys       per peering instance.  This involves the use of a KMP.  The use       of automatic key management mechanisms offers a number of       benefits over manual keying.  Most important, it provides fresh       traffic keying material for each session, thus helping to prevent       inter-connection replay attacks.  In an inter-connection replay       attack, protocol packets from the earlier protocol session are       replayed affecting the current execution of the protocol.  A KMP       is also helpful because it negotiates unique, pair-wise, random       keys, without administrator involvement.  It negotiates several       SA parameters like algorithms, modes, and parameters required for       the secure connection, thus providing interoperability between       endpoints with disparate capabilities and configurations.  In       addition it could also include negotiating the key lifetimes.       The KMP can thus keep track of those lifetimes using counters and       can negotiate new keys and parameters before they expire, again,       without administrator interaction.  Additionally, in the event of       a breach, changing the KMP key will immediately cause a rekey to       occur for the traffic key, and those new traffic keys will be       installed and used in the current connection.  In summary, a KMP       provides a protected channel between the peers through which they       can negotiate and pass important data required to exchange proof       of identities, derive traffic keys, determine rekeying,       synchronize their keying state, signal various keying events,       notify with error messages, etc.4.2.  Work Items per Routing Protocol   Each routing protocol will have a team (the Routing_Protocol-KARP   team, e.g., the OSPF-KARP team) working on incrementally improving   the security of a routing protocol.  These teams will have the   following main work items:   PHASE 1:      Characterize the Routing Protocol         Assess the routing protocol to see what authentication and         integrity mechanisms it has today.  Does it need significant         improvement to its existing mechanisms or not?  This willLebovitz & Bhatia             Informational                    [Page 11]

RFC 6518                 KARP Design Guidelines            February 2012         include determining if modern, strong security algorithms and         parameters are present and if the protocol supports key agility         without bouncing adjacencies.      Define Optimal State         List the requirements for the routing protocol's session key         usage and format to contain modern, strong security algorithms         and mechanisms, per the Requirements document [THTS-REQS].  The         goal here is to determine what is needed for the routing         protocol to be used securely with at least manual key         management.      Gap Analysis         Enumerate the requirements for this protocol to move from its         current security state, the first bullet, to its optimal state,         as listed just above.      Transition and Deployment Considerations         Document the operational transition plan for moving from the         old to the new security mechanism.  Will adjacencies need to         bounce?  What new elements/servers/services in the         infrastructure will be required?  What is an example work flow         that an operator will take?  The best possible case is if the         adjacency does not break, but this may not always be possible.      Define, Assign, Design         Create a deliverables list of the design and specification         work, with milestones.  Define owners.  Release one or more         documents.   PHASE 2:      KMP Analysis         Review requirements for KMPs.  Identify any nuances for this         particular routing protocol's needs and its use cases for a         KMP.  List the requirements that this routing protocol has for         being able to be used in conjunction with a KMP.  Define the         optimal state and check how easily it can be decoupled from the         KMP.Lebovitz & Bhatia             Informational                    [Page 12]

RFC 6518                 KARP Design Guidelines            February 2012      Gap Analysis         Enumerate the requirements for this protocol to move from its         current security state to its optimal state, with respect to         the key management.      Define, Assign, Design         Create a deliverables list of the design and specification         work, with milestones.  Define owners.  Generate the design and         document work for a KMP to be able to generate the routing         protocol's session keys for the packets on the wire.  These         will be the arguments passed in the API to the KMP in order to         bootstrap the session keys for the routing protocol.         There will also be a team formed to work on the base framework         mechanisms for each of the main categories.5.  Routing Protocols in Categories   This section groups the routing protocols into categories according   to attributes set forth in the Categories' Section (Section 2).  Each   group will have a design team tasked with improving the security of   the routing protocol mechanisms and defining the KMP requirements for   their group, then rolling both into a roadmap document upon which   they will execute.   BGP, LDP, PCEP, and MSDP      These routing protocols fall into the category of the one-to-one      peering messages and will use peer keying protocols.  Border      Gateway Protocol (BGP) [RFC4271], Path Computation Element      Communication Protocol (PCEP) [RFC5440], and Multicast Source      Discovery Protocol (MSDP) [RFC3618] messages are transmitted over      TCP, while Label Distribution Protocol (LDP) [RFC5036] uses both      UDP and TCP.  A team will work on one mechanism to cover these TCP      unicast protocols.  Much of the work on the routing protocol      update for its existing authentication mechanism has already      occurred in the TCPM working group, on the TCP-AO [RFC5925]      document, as well as its cryptography-helper document, TCP-AO-      CRYPTO [RFC5926].  However, TCP-AO cannot be used for discovery      exchanges carried in LDP as those are carried over UDP.  A      separate team might want to look at LDP.  Another exception is the      mode where LDP is used directly on the LAN.  The work for this may      go into the group keying category (along with OSPF) as mentioned      below.Lebovitz & Bhatia             Informational                    [Page 13]

RFC 6518                 KARP Design Guidelines            February 2012   OSPF, IS-IS, and RIP      The routing protocols that fall into the category group keying      (with one-to-many peering) includes OSPF [RFC2328], IS-IS      [RFC1195] and RIP [RFC2453].  Not surprisingly, all these routing      protocols have two other things in common.  First, they are run on      a combination of the OSI datalink Layer 2, and the OSI network      Layer 3.  By this we mean that they have a component of how the      routing protocol works, which is specified in Layer 2 as well as      in Layer 3.  Second, they are all internal gateway protocols      (IGPs).  The keying mechanisms will be much more complicated to      define for these than for a one-to-one messaging protocol.   BFD      Because it is less of a routing protocol, per se, and more of a      peer liveness detection mechanism, Bidirectional Forwarding      Detection (BFD) [RFC5880] will have its own team.  BFD is also      different from the other protocols covered here as it works on      millisecond timers and would need separate considerations to      mitigate the potential for Denial-of-Service (DoS) attacks.  It      also raises interesting issues [RFC6039] with respect to the      sequence number scheme that is generally deployed to protect      against replay attacks as this space can roll over quite      frequently because of the rate at which BFD packets are generated.   RSVP and RSVP-TE      The Resource reSerVation Protocol (RSVP) [RFC2205] allows hop-by-      hop authentication of RSVP neighbors, as specified in [RFC2747].      In this mode, an integrity object is attached to each RSVP message      to transmit a keyed message digest.  This message digest allows      the recipient to verify the identity of the RSVP node that sent      the message and to validate the integrity of the message.  Through      the inclusion of a sequence number in the scope of the digest, the      digest also offers replay protection.      [RFC2747] does not dictate how the key for the integrity operation      is derived.  Currently, most implementations of RSVP use a      statically configured key, on a per-interface or per-neighbor      basis.      RSVP relies on a per-peer authentication mechanism where each hop      authenticates its neighbor using a shared key or a certificate.      Trust in this model is transitive.  Each RSVP node trusts,      explicitly, only its RSVP next-hop peers through the message      digest contained in the INTEGRITY object [RFC2747].  The next-hopLebovitz & Bhatia             Informational                    [Page 14]

RFC 6518                 KARP Design Guidelines            February 2012      RSVP speaker, in turn, trusts its own peers, and so on.  See also      the document "RSVP Security Properties" [RFC4230] for more      background.      The keys used for protecting the RSVP messages can be group keys      (for example, distributed via the Group Domain of Interpretation      (GDOI) [RFC6407], as discussed in [GDOI-MAC]).      The trust an RSVP node has with another RSVP node has an explicit      and implicit component.  Explicitly, the node trusts the other      node to maintain the integrity (and, optionally, the      confidentiality) of RSVP messages depending on whether      authentication or encryption (or both) are used.  This means that      the message has not been altered or its contents seen by another,      non-trusted node.  Implicitly, each node trusts the other node to      maintain the level of protection specified within that security      domain.  Note that in any group key management scheme, like GDOI,      each node trusts all the other members of the group with regard to      data origin authentication.      RSVP-TE [RFC3209], [RFC3473], [RFC4726], and [RFC5151] is an      extension of the RSVP protocol for traffic engineering.  It      supports the reservation of resources across an IP network and is      used for establishing MPLS label switch paths (LSPs), taking into      consideration network constraint parameters such as available      bandwidth and explicit hops.  RSVP-TE signaling is used to      establish both intra- and inter-domain TE LSPs.      When signaling an inter-domain RSVP-TE LSP, operators may make use      of the security features already defined for RSVP-TE [RFC3209].      This may require some coordination between domains to share keys      ([RFC2747][RFC3097]), and care is required to ensure that the keys      are changed sufficiently frequently.  Note that this may involve      additional synchronization, should the domain border nodes be      protected with Fast Reroute, since the merge point (MP) and point      of local repair (PLR) should also share the key.      For inter-domain signaling for MPLS-TE, the administrators of      neighboring domains must satisfy themselves as to the existence of      a suitable trust relationship between the domains.  In the absence      of such a relationship, the administrators should decide not to      deploy inter-domain signaling and should disable RSVP-TE on any      inter-domain interfaces.      KARP will currently be working only on RSVP-TE, as the native RSVP      lies outside the scope of the WG charter.Lebovitz & Bhatia             Informational                    [Page 15]

RFC 6518                 KARP Design Guidelines            February 2012   PIM-SM and PIM-DM      Finally, the multicast protocols Protocol Independent Multicast -      Sparse Mode (PIM-SM) [RFC4601] and Protocol Independent Multicast      - Dense Mode (PIM-DM) [RFC3973] will be grouped together.  PIM-SM      multicasts routing information (Hello, Join/Prune, Assert) on a      link-local basis, using a defined multicast address.  In addition,      it specifies unicast communication for exchange of information      (Register, Register-Stop) between the router closest to a group      sender and the "Rendezvous Point".  The Rendezvous Point is      typically not "on-link" for a particular router.  While much work      has been done on multicast security for application-layer groups,      little has been done to address the problem of managing hundreds      or thousands of small one-to-many groups with link-local scope.      Such an authentication mechanism should be considered along with      the router-to-Rendezvous Point authentication mechanism.  The most      important issue is ensuring that only the "authorized neighbors"      get the keys for source/group (S,G), so that rogue routers cannot      participate in the exchanges.  Another issue is that some of the      communication may occur intra-domain, e.g., the link-local      messages in an enterprise, while others for the same (*,G) may      occur inter-domain, e.g., the router-to-Rendezvous Point messages      may be from one enterprise's router to another.      One possible solution proposes a region-wide "master" key server      (possibly replicated), and one "local" key server per speaking      router.  There is no issue with propagating the messages outside      the link, because link-local messages, by definition, are not      forwarded.  This solution is offered only as an example of how      work may progress; further discussion should occur in this work      team.  Specification of a link-local protection mechanism for PIM-      SM is defined in [RFC4601], and this mechanism has been updated in      PIM-SM-LINKLOCAL [RFC5796].  However, the KMP part is completely      unspecified and will require work outside the expertise of the PIM      working group to accomplish, another example of why this roadmap      is being created.6.  Supporting Incremental Deployment   It is imperative that the new authentication and security mechanisms   defined support incremental deployment, as it is not feasible to   deploy a new routing protocol authentication mechanism throughout the   network instantaneously.  One of the goals of the KARP WG is to add   incremental security to existing mechanisms rather than replacing   them.  Delivering better deployable solutions to which vendors and   operators can migrate is more important than getting a perfect   security solution.  It may also not be possible to deploy such a   mechanism to all routers in a large Autonomous System (AS) at oneLebovitz & Bhatia             Informational                    [Page 16]

RFC 6518                 KARP Design Guidelines            February 2012   time.  This means that the designers must work on this aspect of the   authentication mechanism for the routing protocol on which they are   working.  The mechanisms must provide backward compatibility in the   message formatting, transmission, and processing of routing   information carried through a mixed security environment.7.  Denial-of-Service Attacks   DoS attacks must be kept in mind when designing KARP solutions.   [THTS-REQS] describes DoS attacks that are in scope for the KARP   work.  Protocol designers should ensure that the new cryptographic   validation mechanisms must not provide an attacker with an   opportunity for DoS attacks.  Cryptographic validation, while   typically cheaper than signing, is still an incremental cost.  If an   attacker can force a system to validate many packets multiple times,   then this could be a potential DoS attack vector.  On the other hand,   if the authentication procedure is itself quite CPU intensive, then   overwhelming the CPU with multiple bogus packets can bring down the   system.  In this case, the authentication procedure itself aids the   DoS attack.   There are some known techniques to reduce the cryptographic   computation load.  Packets can include non-cryptographic consistency   checks.  For example, [RFC5082] provides a mechanism that uses the IP   header to limit the attackers that can inject packets that will be   subject to cryptographic validation.  In the design, Phase 2, once an   automated key management protocol is developed, it may be possible to   determine the peer IP addresses that are valid participants.  Only   the packets from the verified sources could be subject to   cryptographic validation.   Protocol designers must ensure that a device never needs to check   incoming protocol packets using multiple keys, as this can overwhelm   the CPU, leading to a DoS attack.  KARP solutions should indicate the   checks that are appropriate prior to performing cryptographic   validation.  KARP solutions should indicate where information about   valid neighbors can be used to limit the scope of the attacks.   Particular care needs to be paid to the design of automated key   management schemes.  It is often desirable to force a party   attempting to authenticate to do work and to maintain state until   that work is done.  That is, the initiator of the authentication   should maintain the cost of any state required by the authentication   for as long as possible.  This also helps when an attacker sends an   overwhelming load of keying protocol initiations from bogus sources.Lebovitz & Bhatia             Informational                    [Page 17]

RFC 6518                 KARP Design Guidelines            February 2012   Another important class of attack is denial of service against the   routing protocol where an attacker can manipulate either the routing   protocol or the cryptographic authentication mechanism to disrupt   routing adjacencies.   Without KARP solutions, many routing protocols are subject to   disruption simply by injecting an invalid packet or a packet for the   wrong state.  Even with cryptographic validation, replay attacks are   often a vector where a previously valid packet can be injected to   create a denial of service.   KARP solutions should prevent all cases   where packet replays or other packet injections by an outsider can   disrupt routing sessions.   Some residual denial-of-service risk is always likely.  If an   attacker can generate a large enough number of packets, the routing   protocol can get disrupted.  Even if the routing protocol is not   disrupted, the loss rate on a link may rise to a point where claiming   that traffic can successfully be routed across the link will be   inaccurate.8.  Gap Analysis   The [THTS-REQS] document lists the generic requirements for the   security mechanisms that must exist for the various routing protocols   that come under the purview of KARP.  There will be different design   teams working for each of the categories of routing protocols   defined.   To start, design teams must review the "Threats and Requirements for   Authentication of routing protocols" document [THTS-REQS].  This   document contains detailed descriptions of the threat analysis for   routing protocol authentication and integrity in general.  Note that   it does not contain all the authentication-related threats for any   one routing protocol, or category of routing protocols.  The design   team must conduct a protocol-specific threat analysis to determine if   threats beyond those in the [THTS-REQS] document arise in the context   of the protocol (group) and to describe those threats.   The [THTS-REQS] document also contains many security requirements.   Each routing protocol design team must walk through each section of   the requirements and determine one by one how its protocol either   does or does not relate to each requirement.   Examples include modern, strong, cryptographic algorithms, with at   least one such algorithm listed as a MUST, algorithm agility, secure   use of simple PSKs, intra-connection replay protection, inter-   connection replay protection, etc.Lebovitz & Bhatia             Informational                    [Page 18]

RFC 6518                 KARP Design Guidelines            February 2012   When doing the gap analysis, we must first identify the elements of   each routing protocol that we wish to protect.  In case of protocols   riding on top of IP, we might want to protect the IP header and the   protocol headers, while for those that work on top of TCP, it will be   the TCP header and the protocol payload.  There is patently value in   protecting the IP header and the TCP header if the routing protocols   rely on these headers for some information (for example, identifying   the neighbor that originated the packet).   Then, there will be a set of cryptography requirements that we might   want to look at.  For example, there must be at least one set of   cryptographic algorithms (MD5, SHA, etc.) or constructions (Hashed   MAC (HMAC), etc.) whose use is supported by all implementations and   can be safely assumed to be supported by any implementation of the   authentication option.  The design teams should look for the protocol   on which they are working.  If such algorithms or constructions are   not available, then some should be defined to support   interoperability by having a single default.   Design teams must ensure that the default cryptographic algorithms   and constructions supported by the routing protocols are accepted by   the community.  This means that the protocols must not rely on non-   standard or ad hoc hash functions, keyed-hash constructions,   signature schemes, or other functions, and they must use published   and standard schemes.   Care should also be taken to ensure that the routing protocol   authentication scheme has algorithm agility (i.e., it is capable of   supporting algorithms other than its defaults).  Ideally, the   authentication mechanism should not be affected by packet loss and   reordering.   Design teams should ensure that their protocol's authentication   mechanism is able to accommodate rekeying.  This is essential since   it is well known that keys must periodically be changed.  Also, what   the designers must ensure is that this rekeying event should not   affect the functioning of the routing protocol.  For example, OSPF   rekeying requires coordination among the adjacent routers, while IS-   IS requires coordination among routers in the entire domain.   If new authentication and security mechanisms are needed, then the   design teams must design in such a manner that the routing protocol   authentication mechanism remains oblivious to how the keying material   is derived.  This decouples the authentication mechanism from the key   management system that is employed.Lebovitz & Bhatia             Informational                    [Page 19]

RFC 6518                 KARP Design Guidelines            February 2012   Design teams should also note that many routing protocols require   prioritized treatment of certain protocol packets and authentication   mechanisms should honor this.   Not all routing protocol authentication mechanisms provide support   for replay attacks, and the design teams should identify such   authentication mechanisms and work on them so that this can get   fixed.  The design teams must look at the protocols that they are   working on and see if packets captured from the previous/stale   sessions can be replayed.   What might also influence the design is the rate at which the   protocol packets are originated.  In case of protocols like BFD,   where packets are originated at millisecond intervals, there are some   special considerations that must be kept in mind when defining the   new authentication and security mechanisms.   The designers should also consider whether the current authentication   mechanisms impose considerable processing overhead on a router that's   doing authentication.  Most currently deployed routers do not have   hardware accelerators for cryptographic processing and these   operations can impose a significant processing burden under some   circumstances.  The proposed solutions should be evaluated carefully   with regard to the processing burden that they will impose, since   deployment may be impeded if network operators perceive that a   solution will impose a processing burden which either entails   substantial capital expenses or threatens to destabilize the routers.9.  Security Considerations   As mentioned in the Introduction,RFC 4948 [RFC4948] identifies   additional steps needed to achieve the overall goal of improving the   security of the core routing infrastructure.  Those include   validation of route origin announcements, path validation, cleaning   up the IRR databases for accuracy, and operational security practices   that prevent routers from becoming compromised devices.  The KARP   work is but one step needed to improve core routing infrastructure.   The security of cryptographic-based systems depends on both the   strength of the cryptographic algorithms chosen and the strength of   the keys used with those algorithms.  The security also depends on   the engineering of the protocol used by the system to ensure that   there are no non-cryptographic ways to bypass the security of the   overall system.Lebovitz & Bhatia             Informational                    [Page 20]

RFC 6518                 KARP Design Guidelines            February 20129.1.  Use Strong Keys   Care should be taken to ensure that the selected key is   unpredictable, avoiding any keys known to be weak for the algorithm   in use.  [RFC4086] contains helpful information on both key   generation techniques and cryptographic randomness.   Care should also be taken when choosing the length of the key.   [RFC3766] provides some additional information on asymmetric and   symmetric key sizes and how they relate to system requirements for   attack resistance.   In addition to using a key of appropriate length and randomness,   deployers of KARP should use different keys between different routing   peers whenever operationally possible.  This is especially true when   the routing protocol takes a static traffic key as opposed to a   traffic key derived on a per-connection basis using a KDF.  The   burden for doing so is understandably much higher than using the same   static traffic key across all peering routers.  Depending upon the   specific KMP, it can be argued that generally using a KMP network-   wide increases peer-wise security.  Consider an attacker that learns   or guesses the traffic key used by two peer routers: if the traffic   key is only used between those two routers, then the attacker has   only compromised that one connection not the entire network.   However whenever using manual keys, it is best to design a system   where a given pre-shared key (PSK) will be used in a KDF mixed with   connection-specific material, in order to generate session unique --   and therefore peer-wise -- traffic keys.  Doing so has the following   advantages: the traffic keys used in the per-message authentication   mechanism are peer-wise unique, it provides inter-connection replay   protection, and if the per-message authentication mechanism covers   some connection counter, intra-connection replay protection.   Note that certain key derivation functions (e.g., KDF_AES_128_CMAC)   as used in TCP-AO [RFC5926], the pseudorandom function (PRF) used in   the KDF may require a key of a certain fixed size as an input.   For example, AES_128_CMAC requires a 128-bit (16-byte) key as the   seed.  However, for the convenience of the administrators, a   specification may not want to require the entry of a PSK be of   exactly 16 bytes.  Instead, a specification may call for a key prep   routine that could handle a variable-length PSK, one that might be   less or more than 16 bytes (see[RFC4615], Section 3, as an example).   That key prep routine would derive a key of exactly the required   length, thus, be suitable as a seed to the PRF.  This does NOT mean   that administrators are safe to use weak keys.  Administrators are   encouraged to follow [RFC4086] [NIST-800-118].  We simply attemptedLebovitz & Bhatia             Informational                    [Page 21]

RFC 6518                 KARP Design Guidelines            February 2012   to "put a fence around stupidity", as much as possible as it's hard   to imagine administrators putting in a password that is, say 16 bytes   in length.   A better option, from a security perspective, is to use some   representation of a device-specific asymmetric key pair as the   identity proof, as described in section "Unique versus Shared Keys"   section.9.2.  Internal versus External Operation   Design teams must consider whether the protocol is an internal   routing protocol or an external one, i.e., does it primarily run   between peers within a single domain of control or between two   different domains of control?  Some protocols may be used in both   cases, internally and externally, and as such, various modes of   authentication operation may be required for the same protocol.   While it is preferred that all routing exchanges run with the best   security mechanisms enabled in all deployment contexts, this   exhortation is greater for those protocols running on inter-domain   point-to-point links.  It is greatest for those on shared access link   layers with several different domains interchanging together, because   the volume of attackers are greater from the outside.  Note however,   that the consequences of internal attacks maybe no less severe -- in   fact, they may be quite a bit more severe -- than an external attack.   An example of this internal versus external consideration is BGP,   which has both EBGP and IBGP modes.  Another example is a multicast   protocol where the neighbors are sometimes within a domain of control   and sometimes at an inter-domain exchange point.  In the case of PIM-   SM running on an internal multi-access link, it would be acceptable   to give up some security to get some convenience by using a group key   among the peers on the link.  On the other hand, in the case of PIM-   SM running over a multi-access link at a public exchange point,   operators may favor security over convenience by using unique pair-   wise keys for every peer.  Designers must consider both modes of   operation and ensure the authentication mechanisms fit both.   Operators are encouraged to run cryptographic authentication on all   their adjacencies, but to work from the outside in, i.e., External   BGP (EBGP) links are a higher priority than the Internal BGP (IBGP)   links because they are externally facing, and, as a result, more   likely to be targeted in an attack.9.3.  Unique versus Shared Keys   This section discusses security considerations regarding when it is   appropriate to use the same authentication key inputs for multiple   peers and when it is not.  This is largely a debate of convenienceLebovitz & Bhatia             Informational                    [Page 22]

RFC 6518                 KARP Design Guidelines            February 2012   versus security.  It is often the case that the best secured   mechanism is also the least convenient mechanism.  For example, an   air gap between a host and the network absolutely prevents remote   attacks on the host, but having to copy and carry files using the   "sneaker net" is quite inconvenient and does not scale.   Operators have erred on the side of convenience when it comes to   securing routing protocols with cryptographic authentication.  Many   do not use it at all.  Some use it only on external links, but not on   internal links.  Those that do use it often use the same key for all   peers in a network.  It is common to see the same key in use for   years, e.g., the key was entered when authentication mechanisms were   originally configured or when the routing gear was deployed.   One goal for designers is to create authentication and integrity   mechanisms that are easy for operators to deploy and manage, and   still use unique keys between peers (or small groups on multi-access   links) and for different sessions among the same peers.  Operators   have the impression that they NEED one key shared across the network,   when, in fact, they do not.  What they need is the relative   convenience they experience from deploying cryptographic   authentication with one key (or a few keys) compared to the   inconvenience they would experience if they deployed the same   authentication mechanism using unique pair-wise keys.  An example is   BGP route reflectors.  Here, operators often use the same   authentication key between each client and the route reflector.  The   roadmaps defined from this guidance document should allow for unique   keys to be used between each client and the peer, without sacrificing   much convenience.  Designers should strive to deliver peer-wise   unique keying mechanisms with similar ease-of-deployment properties   as today's one-key method.   Operators must understand the consequences of using the same key   across many peers.  One argument against using the same key is that   if the same key that is used in multiple devices, then a compromise   of any one of the devices will expose the key.  Also, since the same   key is supported on many devices, this is known by many people, which   affects its distribution to all of the devices.   Consider also the attack consequence size, the amount of routing   adjacencies that can be negatively affected once a breach has   occurred, i.e., once the keys have been acquired by the attacker.   Again, if a shared key is used across the internal domain, then the   consequence size is the whole network.  Ideally, unique key pairs   would be used for each adjacency.Lebovitz & Bhatia             Informational                    [Page 23]

RFC 6518                 KARP Design Guidelines            February 2012   In some cases, use of shared keys is needed because of the problem   space.  For example, a multicast packet is sent once but then   consumed by several routing neighbors.  If unique keys were used per   neighbor, the benefit of multicast would be erased because the sender   would have to create a different announcement packet for each   receiver.  Though this may be desired and acceptable in some small   number of use cases, it is not the norm.  Shared (i.e., group) keys   are an acceptable solution here, and much work has been done already   in this area (by the MSEC working group).9.4.  Key Exchange Mechanism   This section discusses the security and use case considerations for   key exchange for routing protocols.  Two options exist: an out-of-   band mechanism or a KMP.  An out-of-band mechanism involves operators   configuring keys in the device through a configuration tool or   management method (e.g., Simple Network Management Protocol (SNMP),   Network Configuration Protocol (NETCONF)).  A KMP is an automated   protocol that exchanges keys without operator intervention.  KMPs can   occur either in-band to the routing protocol or out-of-band to the   routing protocol (i.e., a different protocol).   An example of an out-of-band configuration mechanism could be an   administrator who makes a remote management connection (e.g., using   SSH) to a router and manually enters the keying information, e.g.,   the algorithm, the key(s), the key lifetimes, etc.  Another example   could be an OSS system that inputs the same information by using a   script over an SSH connection or by pushing configuration through   some other management connection, standard (NETCONF-based) or   proprietary.   The drawbacks of an out-of-band configuration mechanism include lack   of scalability, complexity, and speed of changing if a security   breach is suspected.  For example, if an employee who had access to   keys was terminated, or if a machine holding those keys was believed   to be compromised, then the system would be considered insecure and   vulnerable until new keys were generated and distributed.  Those keys   then need to be placed into the OSS system, and the OSS system then   needs to push the new keys -- often during a very limited change   window -- into the relevant devices.  If there are multiple   organizations involved in these connections, because the protected   connections are inter-domain, this process is very complicated.   The principle benefit of out-of-band configuration mechanism is that   once the new keys/parameters are set in OSS system, they can be   pushed automatically to all devices within the OSS's domain.Lebovitz & Bhatia             Informational                    [Page 24]

RFC 6518                 KARP Design Guidelines            February 2012   Operators have mechanisms in place for this already for managing   other router configuration data.  In small environments with few   routers, a manual system is not difficult to employ.   We further define a peer-to-peer KMP as using cryptographically   protected identity verification, session key negotiation, and   security association parameter negotiation between the two routing   peers.  The KMP among peers may also include the negotiation of   parameters, like cryptographic algorithms, cryptographic inputs   (e.g., initialization vectors), key lifetimes, etc.   There are several benefits of a peer-to-peer KMP versus centrally   managed and distributing keys.  It results in key(s) that are   privately generated, and it need not be recorded permanently   anywhere.  Since the traffic keys used in a particular connection are   not a fixed part of a device configuration, no security sensitive   data exists anywhere else in the operator's systems that can be   stolen, e.g., in the case of a terminated or turned employee.  If a   server or other data store is stolen or compromised, the thieves gain   limited or no access to current traffic keys.  They may gain access   to key derivation material, like a PSK, but may not be able to access   the current traffic keys in use.  In this example, these PSKs can be   updated in the device configurations (either manually or through an   OSS) without bouncing or impacting the existing session at all.  In   the case of using raw asymmetric keys or certificates, instead of   PSKs, the data theft (from the data store) would likely not result in   any compromise, as the key pairs would have been generated on the   routers and never leave those routers.  In such a case, no changes   are needed on the routers; the connections will continue to be   secure, uncompromised.  Additionally, with a KMP, regular rekey   operations occur without any operator involvement or oversight.  This   keeps keys fresh.   There are a few drawbacks to using a KMP.  First, a KMP requires more   cryptographic processing for the router at the beginning of a   connection.  This will add some minor start-up time to connection   establishment versus a purely manual key management approach.  Once a   connection with traffic keys has been established via a KMP, the   performance is the same in the KMP and the out-of-band configuration   case.  KMPs also add another layer of protocol and configuration   complexity, which can fail or be misconfigured.  This was more of an   issue when these KMPs were first deployed, but less so as these   implementations and operational experience with them have matured.   One of the goals for KARP is to develop a KMP; an out-of-band   configuration protocol for key exchange is out of scope.Lebovitz & Bhatia             Informational                    [Page 25]

RFC 6518                 KARP Design Guidelines            February 2012   Within this constraint, there are two approaches for a KMP:   The first is to use a KMP that runs independent of the routing and   the signaling protocols.  It would run on its own port and use its   own transport (to avoid interfering with the routing protocol that it   is serving).  When a routing protocol needs a key, it would contact   the local instance of this key management protocol and request a key.   The KMP generates a key that is delivered to the routing protocol for   it to use for authenticating and integrity verification of the   routing protocol packets.  This KMP could either be an existing key   management protocol such as ISAKMP/IKE, GKMP, etc., extended for the   routing protocols, or it could be a new KMP, designed for the routing   protocol context.   The second approach is to define an in-band KMP extension for   existing routing protocols putting the key management mechanisms   inside the protocol itself.  In this case, the key management   messages would be carried within the routing protocol packets,   resulting in very tight coupling between the routing protocols and   the key management protocol.10.  Acknowledgments   Much of the text for this document came originally from "Roadmap for   Cryptographic Authentication of Routing Protocol Packets on the   Wire", authored by Gregory M. Lebovitz.   We would like to thank Sam Hartman, Eric Rescorla, Russ White, Sean   Turner, Stephen Kent, Stephen Farrell, Adrian Farrel, Russ Housley,   Michael Barnes, and Vishwas Manral for their comments on the   document.11.  References11.1.  Normative References   [RFC2119]      Bradner, S., "Key words for use in RFCs to Indicate                  Requirement Levels",BCP 14,RFC 2119, March 1997.   [RFC4948]      Andersson, L., Davies, E., and L. Zhang, "Report from                  the IAB workshop on Unwanted Traffic March 9-10,                  2006",RFC 4948, August 2007.11.2.  Informative References   [RFC1195]      Callon, R., "Use of OSI IS-IS for routing in TCP/IP                  and dual environments",RFC 1195, December 1990.Lebovitz & Bhatia             Informational                    [Page 26]

RFC 6518                 KARP Design Guidelines            February 2012   [RFC2205]      Braden, R., Ed., Zhang, L., Berson, S., Herzog, S.,                  and S. Jamin, "Resource ReSerVation Protocol (RSVP) --                  Version 1 Functional Specification",RFC 2205,                  September 1997.   [RFC2328]      Moy, J., "OSPF Version 2", STD 54,RFC 2328, April                  1998.   [RFC2453]      Malkin, G., "RIP Version 2", STD 56,RFC 2453,                  November 1998.   [RFC2747]      Baker, F., Lindell, B., and M. Talwar, "RSVP                  Cryptographic Authentication",RFC 2747, January 2000.   [RFC3097]      Braden, R. and L. Zhang, "RSVP Cryptographic                  Authentication -- Updated Message Type Value",RFC3097, April 2001.   [RFC3209]      Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan,                  V., and G. Swallow, "RSVP-TE: Extensions to RSVP for                  LSP Tunnels",RFC 3209, December 2001.   [RFC3473]      Berger, L., Ed., "Generalized Multi-Protocol Label                  Switching (GMPLS) Signaling Resource ReserVation                  Protocol-Traffic Engineering (RSVP-TE) Extensions",RFC 3473, January 2003.   [RFC3618]      Fenner, B., Ed., and D. Meyer, Ed., "Multicast Source                  Discovery Protocol (MSDP)",RFC 3618, October 2003.   [RFC3766]      Orman, H. and P. Hoffman, "Determining Strengths For                  Public Keys Used For Exchanging Symmetric Keys",BCP86,RFC 3766, April 2004.   [RFC3973]      Adams, A., Nicholas, J., and W. Siadak, "Protocol                  Independent Multicast - Dense Mode (PIM-DM): Protocol                  Specification (Revised)",RFC 3973, January 2005.   [RFC4086]      Eastlake 3rd, D., Schiller, J., and S. Crocker,                  "Randomness Requirements for Security",BCP 106,RFC4086, June 2005.   [RFC4107]      Bellovin, S. and R. Housley, "Guidelines for                  Cryptographic Key Management",BCP 107,RFC 4107, June                  2005.   [RFC4230]      Tschofenig, H. and R. Graveman, "RSVP Security                  Properties",RFC 4230, December 2005.Lebovitz & Bhatia             Informational                    [Page 27]

RFC 6518                 KARP Design Guidelines            February 2012   [RFC4252]      Ylonen, T. and C. Lonvick, Ed., "The Secure Shell                  (SSH) Authentication Protocol",RFC 4252, January                  2006.   [RFC4253]      Ylonen, T. and C. Lonvick, Ed., "The Secure Shell                  (SSH) Transport Layer Protocol",RFC 4253, January                  2006.   [RFC4271]      Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A                  Border Gateway Protocol 4 (BGP-4)",RFC 4271, January                  2006.   [RFC4492]      Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C.,                  and B. Moeller, "Elliptic Curve Cryptography (ECC)                  Cipher Suites for Transport Layer Security (TLS)",RFC4492, May 2006.   [RFC4601]      Fenner, B., Handley, M., Holbrook, H., and I.                  Kouvelas, "Protocol Independent Multicast - Sparse                  Mode (PIM-SM): Protocol Specification (Revised)",RFC4601, August 2006.   [RFC4615]      Song, J., Poovendran, R., Lee, J., and T. Iwata, "The                  Advanced Encryption Standard-Cipher-based Message                  Authentication Code-Pseudo-Random Function-128 (-                  AES-CMAC-PRF-128) Algorithm for the Internet Key                  Exchange Protocol (IKE)",RFC 4615, August 2006.   [RFC4726]      Farrel, A., Vasseur, J.-P., and A. Ayyangar, "A                  Framework for  Inter-Domain Multiprotocol Label                  Switching Traffic Engineering",RFC 4726, November                  2006.   [RFC5036]      Andersson, L., Ed., Minei, I., Ed., and B. Thomas,                  Ed., "LDP Specification",RFC 5036, October 2007.   [RFC5082]      Gill, V., Heasley, J., Meyer, D., Savola, P., Ed., and                  C. Pignataro, "The Generalized TTL Security Mechanism                  (GTSM)",RFC 5082, October 2007.   [RFC5151]      Farrel, A., Ed., Ayyangar, A., and JP. Vasseur,                  "Inter-Domain MPLS and GMPLS Traffic Engineering --                  Resource Reservation Protocol-Traffic Engineering                  (RSVP-TE) Extensions",RFC 5151, February 2008.Lebovitz & Bhatia             Informational                    [Page 28]

RFC 6518                 KARP Design Guidelines            February 2012   [RFC5280]      Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,                  Housley, R., and W. Polk, "Internet X.509 Public Key                  Infrastructure Certificate and Certificate Revocation                  List (CRL) Profile",RFC 5280, May 2008.   [RFC5440]      Vasseur, JP., Ed., and JL. Le Roux, Ed., "Path                  Computation Element (PCE) Communication Protocol                  (PCEP)",RFC 5440, March 2009.   [RFC5796]      Atwood, W., Islam, S., and M. Siami, "Authentication                  and Confidentiality in Protocol Independent Multicast                  Sparse Mode (PIM-SM) Link-Local Messages",RFC 5796,                  March 2010.   [RFC5880]      Katz, D. and D. Ward, "Bidirectional Forwarding                  Detection (BFD)",RFC 5880, June 2010.   [RFC5925]      Touch, J., Mankin, A., and R. Bonica, "The TCP                  Authentication Option",RFC 5925, June 2010.   [RFC5926]      Lebovitz, G. and E. Rescorla, "Cryptographic                  Algorithms for the TCP Authentication Option (TCP-                  AO)",RFC 5926, June 2010.   [RFC6039]      Manral, V., Bhatia, M., Jaeggli, J., and R. White,                  "Issues with Existing Cryptographic Protection Methods                  for Routing Protocols",RFC 6039, October 2010.   [RFC6407]      Weis, B., Rowles, S., and T. Hardjono, "The Group                  Domain of Interpretation",RFC 6407, October 2011.   [THTS-REQS]    Lebovitz, G., "The Threat Analysis and Requirements                  for Cryptographic Authentication of Routing Protocols'                  Transports", Work in Progress, June 2011.   [CRPT-TAB]     Housley, R. and Polk, T., "Database of Long-Lived                  Symmetric Cryptographic Keys", Work in Progress,                  October 2011   [GDOI-MAC]     Weis, B. and S. Rowles, "GDOI Generic Message                  Authentication Code Policy", Work in Progress,                  September 2011.   [IRR]          Merit Network Inc , "Internet Routing Registry Routing                  Assets Database", 2006,http://www.irr.net/.Lebovitz & Bhatia             Informational                    [Page 29]

RFC 6518                 KARP Design Guidelines            February 2012   [NIST-800-57]  US National Institute of Standards & Technology,                  "Recommendation for Key Management Part 1: General                  (Revised)", March 2007   [NIST-800-118] US National Institute of Standards & Technology,                  "Guide to Enterprise Password Management (Draft)",                  April 2009Authors' Addresses   Gregory M. Lebovitz   Aptos, California   USA 95003   EMail: gregory.ietf@gmail.com   Manav Bhatia   Alcatel-Lucent   Bangalore   India   EMail: manav.bhatia@alcatel-lucent.comLebovitz & Bhatia             Informational                    [Page 30]

[8]ページ先頭

©2009-2025 Movatter.jp