Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Info page]

EXPERIMENTAL
Internet Engineering Task Force (IETF)                           M. KomuRequest for Comments: 6317                              Aalto UniversityCategory: Experimental                                      T. HendersonISSN: 2070-1721                                       The Boeing Company                                                               July 2011Basic Socket Interface Extensions forthe Host Identity Protocol (HIP)Abstract   This document defines extensions to the current sockets API for the   Host Identity Protocol (HIP).  The extensions focus on the use of   public-key-based identifiers discovered via DNS resolution, but also   define interfaces for manual bindings between Host Identity Tags   (HITs) and locators.  With the extensions, the application can also   support more relaxed security models where communication can be non-   HIP-based, according to local policies.  The extensions in this   document are experimental and provide basic tools for further   experimentation with policies.Status of This Memo   This document is not an Internet Standards Track specification; it is   published for examination, experimental implementation, and   evaluation.   This document defines an Experimental Protocol for the Internet   community.  This document is a product of the Internet Engineering   Task Force (IETF).  It represents the consensus of the IETF   community.  It has received public review and has been approved for   publication by the Internet Engineering Steering Group (IESG).  Not   all documents approved by the IESG are a candidate for any level of   Internet Standard; seeSection 2 of RFC 5741.   Information about the current status of this document, any errata,   and how to provide feedback on it may be obtained athttp://www.rfc-editor.org/info/rfc6317.Komu & Henderson              Experimental                      [Page 1]

RFC 6317              Basic API Extensions for HIP             July 2011Copyright Notice   Copyright (c) 2011 IETF Trust and the persons identified as the   document authors.  All rights reserved.   This document is subject toBCP 78 and the IETF Trust's Legal   Provisions Relating to IETF Documents   (http://trustee.ietf.org/license-info) in effect on the date of   publication of this document.  Please review these documents   carefully, as they describe your rights and restrictions with respect   to this document.  Code Components extracted from this document must   include Simplified BSD License text as described in Section 4.e of   the Trust Legal Provisions and are provided without warranty as   described in the Simplified BSD License.   This document may contain material from IETF Documents or IETF   Contributions published or made publicly available before November   10, 2008.  The person(s) controlling the copyright in some of this   material may not have granted the IETF Trust the right to allow   modifications of such material outside the IETF Standards Process.   Without obtaining an adequate license from the person(s) controlling   the copyright in such materials, this document may not be modified   outside the IETF Standards Process, and derivative works of it may   not be created outside the IETF Standards Process, except to format   it for publication as an RFC or to translate it into languages other   than English.Table of Contents1. Introduction ....................................................32. Terminology .....................................................53. Name Resolution Process .........................................53.1. Interaction with the Resolver ..............................53.2. Interaction without a Resolver .............................64. API Syntax and Semantics ........................................74.1. Socket Family and Address Structure Extensions .............74.2. Extensions to Resolver Data Structures .....................94.3. The Use of getsockname() and getpeername() Functions ......124.4. Selection of Source HIT Type ..............................124.5. Verification of HIT Type ..................................134.6. Explicit Handling of Locators .............................145. Summary of New Definitions .....................................166. Security Considerations ........................................167. Contributors ...................................................178. Acknowledgments ................................................179. References .....................................................179.1. Normative References ......................................179.2. Informative References ....................................18Komu & Henderson              Experimental                      [Page 2]

RFC 6317              Basic API Extensions for HIP             July 20111.  Introduction   This document defines the C-based sockets Application Programming   Interface (API) extensions for handling HIP-based identifiers   explicitly in HIP-aware applications.  It is up to the applications,   or high-level programming languages or libraries, to manage the   identifiers.  The extensions in this document are mainly related to   the use case in which a DNS resolution step has occurred prior to the   creation of a new socket, and assumes that the system has cached or   is otherwise able to resolve identifiers to locators (IP addresses).   The DNS extension for HIP is described in [RFC5205].  The extensions   also cover the case in which an application may want to explicitly   provide suggested locators with the identifiers, including supporting   the opportunistic case in which the system does not know the peer   host identity.   The Host Identity Protocol (HIP) [RFC4423] proposes a new   cryptographic namespace by separating the roles of endpoint   identifiers and locators by introducing a new namespace to the TCP/IP   stack.  Shim6 [RFC5533] is another protocol based on an identity-   locator split.  The APIs specified in this document are specific to   HIP, but have been designed as much as possible to not preclude its   use with other protocols.  The use of these APIs with other protocols   is, nevertheless, for further study.   The APIs in this document are based on Host Identity Tags (HITs) that   are defined as IPv6 addresses with the Overlay Routable Cryptographic   Hash Identifiers (ORCHID) prefix [RFC4843].  ORCHIDs are derived from   Host Identifiers using a hash and fitting the result into an IPv6   address.  Such addresses are called HITs, and they can be   distinguished from other IPv6 addresses via the ORCHID prefix.  Note   that ORCHIDs are presently an experimental allocation by IANA.  If   the ORCHID allocation were to expire and HIT generation were to use a   different prefix in the future, most users of the API would not be   impacted, unless they explicitly checked the ORCHID prefix on   returned HITs.  Users who check (for consistency) that HITs have a   valid ORCHID prefix must monitor the IANA allocation for ORCHIDs and   adapt their software in case the ORCHID allocation were to be removed   at a future date.   Applications can observe the HIP layer and its identifiers in the   networking stacks with varying degrees of visibility.  [RFC5338]   discusses the lowest levels of visibility in which applications are   completely unaware of the underlying HIP layer.  Such HIP-unaware   applications in some circumstances use HIP-based identifiers, such as   Local Scope Identifiers (LSIs) or HITs, instead of IPv4 or IPv6   addresses and cannot observe the identifier-locator bindings.Komu & Henderson              Experimental                      [Page 3]

RFC 6317              Basic API Extensions for HIP             July 2011   This document specifies extensions to [RFC3493] to define a new   socket address family, AF_HIP.  Similarly to other address families,   AF_HIP can be used as an alias for PF_HIP.  The extensions also   describe a new socket address structure for sockets using HITs   explicitly and describe how the socket calls in [RFC3493] are adapted   or extended as a result.   Some applications may accept incoming communications from any   identifier.  Other applications may initiate outgoing communications   without the knowledge of the peer identifier in opportunistic mode   (Section 4.1.6 of [RFC5201]) by just relying on a peer locator.  This   document describes how to address both situations using "wildcards"   as described inSection 4.1.1.   This document references one additional API document [RFC6316] that   defines multihoming and explicit-locator handling.  Most of the   extensions defined in this document can be used independently of the   above document.   The identity-locator split introduced by HIP introduces some policy-   related challenges with datagram-oriented sockets, opportunistic   mode, and manual bindings between HITs and locators.  The extensions   in this document are of an experimental nature and provide basic   tools for experimenting with policies.  Policy-related issues are   left for further experimentation.   To recap, the extensions in this document have three goals.  The   first goal is to allow HIP-aware applications to open sockets to   other hosts based on the HITs alone, presuming that the underlying   system can resolve the HITs to addresses used for initial contact.   The second goal is that applications can explicitly initiate   communications with unknown peer identifiers.  The third goal is to   illustrate how HIP-aware applications can use the Shim API [RFC6316]   to manually map locators to HITs.   This document was published as experimental because a number of its   normative references had experimental status.  The success of this   experiment can be evaluated by a thorough implementation of the APIs   defined.Komu & Henderson              Experimental                      [Page 4]

RFC 6317              Basic API Extensions for HIP             July 20112.  Terminology   The terms used in this document are summarized in Table 1.   +---------+--------------------------------------------------------+   | Term    | Explanation                                            |   +---------+--------------------------------------------------------+   | FQDN    | Fully Qualified Domain Name                            |   | HIP     | Host Identity Protocol                                 |   | HI      | Host Identifier                                        |   | HIT     | Host Identity Tag, a 100-bit hash of a public key with |   |         | a 28-bit prefix                                        |   | LSI     | Local Scope Identifier, a local, 32-bit descriptor for |   |         | a given public key                                     |   | Locator | Routable IPv4 or IPv6 address used at the lower layers |   | RR      | Resource Record                                        |   +---------+--------------------------------------------------------+                                  Table 13.  Name Resolution Process   This section provides an overview of how the API can be used.  First,   the case in which a resolver is involved in name resolution is   described, and then the case in which no resolver is involved is   described.3.1.  Interaction with the Resolver   Before an application can establish network communications with the   entity named by a given FQDN or relative hostname, the application   must translate the name into the corresponding identifier(s).  DNS-   based hostname-to-identifier translation is illustrated in Figure 1.   The application calls the resolver in step (a) to resolve an FQDN to   one or more socket addresses within the PF_HIP family.  The resolver,   in turn, queries the DNS in step (b) to map the FQDN to one or more   HIP RRs with the HIT and HI and possibly the rendezvous server of the   Responder, and also (in parallel or sequentially) to resolve the FQDN   into possibly one or more A and AAAA records.  It should be noted   that the FQDN may map to multiple Host Identifiers and locators, and   this step may involve multiple DNS transactions, including queries   for A, AAAA, HI, and possibly other resource records.  The DNS server   responds with a list of HIP resource records in step (c).   Optionally, in step (d), the resolver caches the HIT-to-locator   mapping with the HIP module.  The resolver converts the HIP records   to HITs and returns the HITs to the application contained in HIP   socket address structures in step (e).  Depending on the parameters   for the resolver call, the resolver may also return other socketKomu & Henderson              Experimental                      [Page 5]

RFC 6317              Basic API Extensions for HIP             July 2011   address structures to the application.  Finally, the application   receives the socket address structure(s) from the resolver and uses   them in socket calls such as connect() in step (f).                                              +----------+                                              |          |                                              |   DNS    |                                              |          |                                              +----------+                                                  ^  |                                   b. QNAME=FQDN  |  | c. HIP and                                                  |  |    A/AAAA                                                  |  v    RR(s)       +-------------+ a. getaddrinfo(<FQDN>)  +----------+       |             |------------------------>|          |       | Application |                         | Resolver |       |             |<------------------------|          |       +-------------+        e. <HITs>        +----------+               |                                    |               |                                    | d. HIP and               | f. connect(<HIT>)                  |    A/AAAA               |    or any other socket call        |    RR(s)               v                                    v        +----------+                           +----------+        |          |                           |          |        |  TCP/IP  |                           |   HIP    |        |  Stack   |                           |          |        +----------+                           +----------+                                 Figure 1   In practice, the resolver functionality can be implemented in   different ways.  For example, it may be implemented in existing   resolver libraries or as a HIP-aware interposing agent.3.2.  Interaction without a Resolver   The extensions in this document focus on the use of the resolver to   map hostnames to HITs and locators in HIP-aware applications.  The   resolver may implicitly associate a HIT with the corresponding   locator(s) by communicating the HIT-to-IP mapping to the HIP daemon.   However, it is possible that an application operates directly on a   peer HIT without interacting with the resolver.  In such a case, theKomu & Henderson              Experimental                      [Page 6]

RFC 6317              Basic API Extensions for HIP             July 2011   application may resort to the system to map the peer HIT to an IP   address.  Alternatively, the application can explicitly map the HIT   to an IP address using socket options as specified inSection 4.6.   Full support for all of the extensions defined in this document   requires a number of shim socket options [RFC6316] to be implemented   by the system.4.  API Syntax and Semantics   In this section, we describe the native HIP APIs using the syntax of   the C programming language.  We limit the description to the   interfaces and data structures that are either modified or completely   new, because the native HIP APIs are otherwise identical to the   sockets API [POSIX].4.1.  Socket Family and Address Structure Extensions   The sockets API extensions define a new protocol family, PF_HIP, and   a new address family, AF_HIP.  The AF_HIP and PF_HIP constants are   aliases to each other.  These definitions shall be defined as a   result of including <sys/socket.h>.   When the socket() function is called with PF_HIP as the first   argument (domain), it attempts to create a socket for HIP   communication.  If HIP is not supported, socket() follows its default   behavior and returns -1, and sets errno to EAFNOSUPPORT.   Figure 2 shows the recommended implementation of the socket address   structure for HIP in Portable Operating System Interface (POSIX)   format.            #include <netinet/hip.h>            typedef struct in6_addr hip_hit_t;            struct sockaddr_hip {                      uint8_t        ship_len;                      sa_family_t    ship_family;                      in_port_t      ship_port;                      uint32_t       ship_flags;                      hip_hit_t      ship_hit;            };                                 Figure 2Komu & Henderson              Experimental                      [Page 7]

RFC 6317              Basic API Extensions for HIP             July 2011   uint8_t ship_len: This field defines the length of the structure.   Implementations that do not define this field typically embed the   information in the following ship_family field.   sa_family_t ship_family: This mandatory field identifies the   structure as a sockaddr_hip structure.  It overlays the sa_family   field of the sockaddr structure.  Its value must be AF_HIP.   in_port_t ship_port: This mandatory field contains the transport   protocol port number.  It is handled in the same way as the sin_port   field of the sockaddr_in structure.  The port number is stored in   network byte order.   uint32_t ship_flags: This mandatory bit field contains auxiliary   flags.  This document does not define any flags.  This field is   included for future extensions.   hip_hit_t ship_hit: This mandatory field contains the endpoint   identifier.  When the system passes a sockaddr_hip structure to the   application, the value of this field is set to a valid HIT, IPv4, or   IPv6 address, as discussed inSection 4.5.  When the application   passes a sockaddr_hip structure to the system, this field must be set   to a HIT or a wildcard address as discussed inSection 4.1.1.   Some applications rely on system-level access control, either   implicit or explicit (such as the accept_filter() function found on   BSD-based systems), but such discussion is out of scope.  Other   applications implement access control themselves by using the HITs.   Applications operating on sockaddr_hip structures can use memcmp() or   a similar function to compare the ship_hit fields.  It should also be   noted that different connection attempts between the same two hosts   can result in different HITs, because a host is allowed to have   multiple HITs.4.1.1.  HIP Wildcard Addresses   HIP wildcard addresses are similar to IPv4 and IPv6 wildcard   addresses.  They can be used instead of specific HITs in the ship_hit   field for local and remote endpoints in sockets API calls such as   bind(), connect(), sendto(), or sendmsg().   In order to bind to all local IPv4 and IPv6 addresses and HIP HITs,   the ship_hit field must be set to HIP_ENDPOINT_ANY.  In order to bind   to all local HITs, ship_hit must contain HIP_HIT_ANY.  To only bind   to all local public HITs, the ship_hit field must be HIP_HIT_ANY_PUB.   The value HIP_HIT_ANY_TMP binds a socket to all local anonymous   identifiers only as specified in [RFC4423].  The system may label   anonymous identifiers as such depending on whether they have beenKomu & Henderson              Experimental                      [Page 8]

RFC 6317              Basic API Extensions for HIP             July 2011   published or not.  After binding a socket via one of the   HIP_HIT_ANY_* wildcard addresses, the application is guaranteed to   receive only HIP-based data flows.  With the HIP_ENDPOINT_ANY   wildcard address, the socket accepts HIP, IPv6, and IPv4-based data   flows.   When a socket is bound or connected via a sockaddr_hip structure,   i.e., the PF_HIP protocol family, the system returns only addresses   of the AF_HIP family, i.e., sockaddr_hip structures, for this socket.   This applies to all functions that provide addresses to the   application, such as accept() or recvfrom().  If the data flow is   based on HIP, the ship_hit field contains the peer's HIT.  For a   non-HIP IPv6 data flow, the field contains the peer's IPv6 address.   For a non-HIP IPv4 data flow, the field contains the peer's IPv4   address in IPv4-mapped IPv6 address format as described inSection 3.7 of [RFC3493].Section 4.5 describes how the application   can verify the type of address returned by the sockets API calls.   An application uses the sockets API as follows to set up a connection   or to send messages in HIP opportunistic mode (cf. [RFC5201]).   First, the application associates a socket with at least one IP   address of the destination peer via setting the   SHIM_LOCLIST_PEER_PREF socket option.  It then uses outgoing socket   functions such as connect(), sendto(), or sendmsg() with the   HIP_ENDPOINT_ANY or HIP_HIT_ANY wildcard address in the ship_hit   field of the sockaddr_hip structure.  With the HIP_HIT_ANY address,   the underlying system allows only HIP-based data flows with the   corresponding socket.  For incoming packets, the system discards all   non-HIP-related traffic arriving at the socket.  For outgoing   packets, the system returns -1 in the socket call and sets errno to   an appropriate error type when the system failed to deliver the   packet over a HIP-based data channel.  The semantics of using   HIP_ENDPOINT_ANY are the subject of further experimentation in the   context of opportunistic mode.  Such use may result in a data flow   either with or without HIP.4.2.  Extensions to Resolver Data Structures   The HIP APIs introduce a new address family, AF_HIP, that HIP-aware   applications can use to control the address type returned from the   getaddrinfo() function [RFC3493] [POSIX].  The getaddrinfo() function   uses a data structure called addrinfo in its "hints" and "res"   arguments, which are described in more detail in the next section.   The addrinfo data structure is illustrated in Figure 3.Komu & Henderson              Experimental                      [Page 9]

RFC 6317              Basic API Extensions for HIP             July 2011        #include <netdb.h>        struct addrinfo {            int       ai_flags;          /* e.g., AI_CANONNAME */            int       ai_family;         /* e.g., AF_HIP */            int       ai_socktype;       /* e.g., SOCK_STREAM */            int       ai_protocol;       /* 0 or IPPROTO_HIP */            socklen_t ai_addrlen;        /* size of *ai_addr  */            struct    sockaddr *ai_addr; /* sockaddr_hip */            char     *ai_canonname;      /* canon. name of the host */            struct    addrinfo *ai_next; /* next endpoint */            int       ai_eflags;         /*RFC 5014 extension */        };                                 Figure 3   An application resolving with the ai_family field set to AF_UNSPEC in   the hints argument may receive any kind of socket address structures,   including sockaddr_hip.  When the application wants to receive only   HITs contained in sockaddr_hip structures, it should set the   ai_family field to AF_HIP.  Otherwise, the resolver does not return   any sockaddr_hip structures.  The resolver returns EAI_FAMILY when   AF_HIP is requested but not supported.   The resolver ignores the AI_PASSIVE flag when the application sets   the family in hints to AF_HIP.   The system may have a HIP-aware interposing DNS agent as described inSection 3.2 of [RFC5338].  In such a case, the DNS agent may,   according to local policy, transparently return LSIs or HITs in   sockaddr_in and sockaddr_in6 structures when available.  A HIP-aware   application can override this local policy in two ways.  First, the   application can set the family to AF_HIP in the hints argument of   getaddrinfo() when it requests only sockaddr_hip structures.  Second,   the application can set the AI_NO_HIT flag to prevent the resolver   from returning HITs in any kind of data structures.   When getaddrinfo() returns resolved outputs in the output "res"   argument, it sets the family to AF_HIP when the related structure is   sockaddr_hip.4.2.1.  Resolver Usage   A HIP-aware application creates the sockaddr_hip structures manually   or obtains them from the resolver.  The explicit configuration of   locators is described in [RFC6316].  This document definesKomu & Henderson              Experimental                     [Page 10]

RFC 6317              Basic API Extensions for HIP             July 2011   "automated" resolver extensions for the getaddrinfo() resolver   [RFC3493].  Other resolver calls, such as gethostbyname() and   getservbyname(), are not defined in this document.  The getaddrinfo()   resolver interface is shown in Figure 4.            #include <netdb.h>            int getaddrinfo(const char *nodename,                            const char *servname,                            const struct addrinfo *hints,                            struct addrinfo **res)            void free_addrinfo(struct addrinfo *res)                                 Figure 4   As described in [RFC3493], the getaddrinfo() function takes nodename,   servname, and hints as its input arguments.  It places the result of   the query into the res output argument.  The return value is zero on   success, or a non-zero error value on error.  The nodename argument   specifies the hostname to be resolved; a NULL argument denotes the   HITs of the local host.  The servname parameter declares the port   number to be set in the socket addresses in the res output argument.   The nodename and servname arguments cannot both be NULL at the same   time.   The input argument "hints" acts like a filter that defines the   attributes required from the resolved endpoints.  A NULL hints   argument indicates that any kind of endpoint is acceptable.   The output argument "res" is dynamically allocated by the resolver.   The application frees the res argument with the free_addrinfo   function.  The res argument contains a linked list of the resolved   endpoints.  The linked list contains only sockaddr_hip structures   when the input argument has the family set to AF_HIP.  When the   family is zero, the list contains sockaddr_hip structures before   sockaddr_in and sockaddr_in6 structures.   The resolver can return a HIT that maps to multiple locators.  The   resolver may cache the locator mappings with the HIP module.  The HIP   module manages the multiple locators according to system policies of   the host.  The multihoming document [RFC6316] describes how an   application can override system default policies.Komu & Henderson              Experimental                     [Page 11]

RFC 6317              Basic API Extensions for HIP             July 2011   It should be noted that the application can configure the HIT   explicitly without setting the locator, or the resolver can fail to   resolve any locator.  In this scenario, the application relies on the   system to map the HIT to an IP address.  When the system fails to   provide the mapping, it returns -1 in the called sockets API function   to the application and sets errno to EADDRNOTAVAIL.4.3.  The Use of getsockname() and getpeername() Functions   The sockaddr_hip structure does not contain a HIT when the   application uses the HIP_HIT_ANY_* or HIP_ENDPOINT_ANY constants.  In   such a case, the application can discover the local and peer HITs   using the getsockname() and getpeername() functions after the socket   is connected.  The functions getsockname() and getpeername() always   output a sockaddr_hip structure when the family of the socket is   AF_HIP.  The application should be prepared to also handle IPv4 and   IPv6 addresses in the ship_hit field, as described inSection 4.1, in   the context of the HIP_ENDPOINT_ANY constant.4.4.  Selection of Source HIT Type   A client-side application can choose its source HIT by, for example,   querying all of the local HITs with getaddrinfo() and associating one   of them with the socket using bind().  This section describes another   method for a client-side application to affect the selection of the   source HIT type where the application does not call bind()   explicitly.  Instead, the application just specifies the preferred   requirements for the source HIT type.   The sockets API for source address selection [RFC5014] defines socket   options to allow applications to influence source address selection   mechanisms.  In some cases, HIP-aware applications may want to   influence source HIT selection, in particular whether an outbound   connection should use a published or anonymous HIT.  Similar to   IPV6_ADDR_PREFERENCES defined in [RFC5014], the socket option   HIT_PREFERENCES is defined for HIP-based sockets.  This socket option   can be used with setsockopt() and getsockopt() calls to set and get   the HIT selection preferences affecting a HIP-enabled socket.  The   socket option value (optval) is a 32-bit unsigned integer argument.   The argument consists of a number of flags where each flag indicates   an address selection preference that modifies one of the rules in the   default HIT selection; these flags are shown in Table 2.Komu & Henderson              Experimental                     [Page 12]

RFC 6317              Basic API Extensions for HIP             July 2011          +---------------------------+-------------------------+          | Socket Option             | Purpose                 |          +---------------------------+-------------------------+          | HIP_PREFER_SRC_HIT_TMP    | Prefer an anonymous HIT |          | HIP_PREFER_SRC_HIT_PUBLIC | Prefer a public HIT     |          +---------------------------+-------------------------+                                  Table 2   If the system is unable to assign the type of HIT that is requested,   at HIT selection time, the socket call (connect(), sendto(), or   sendmsg()) will fail, and errno will be set to EINVAL.  If the   application tries to set both of the above flags for the same socket,   this also results in the error EINVAL.4.5.  Verification of HIT Type   An application that uses the HIP_ENDPOINT_ANY constant may want to   check whether the actual communication was based on HIP or not.   Also, the application may want to verify whether a HIT belonging to   the local host is public or anonymous.  The application accomplishes   this using a new function called sockaddr_is_srcaddr(), which is   illustrated in Figure 5.         #include <netinet/hip.h>         short sockaddr_is_srcaddr(struct sockaddr *srcaddr,                                   uint64_t flags);                                 Figure 5   The sockaddr_is_srcaddr() function operates in the same way as the   inet6_is_srcaddr() function [RFC5014], which can be used to verify   the type of an address belonging to the local host.  The difference   is that the sockaddr_is_srcaddr() function handles sockaddr_hip   structures in addition to sockaddr_in6, and possibly other socket   structures in further extensions.  Also, the length of the flags   argument is 64 bits instead of 32 bits, because the new function   handles the same flags as defined in [RFC5014], in addition to two   HIP-specific flags, HIP_PREFER_SRC_HIT_TMP and   HIP_PREFER_SRC_HIT_PUBLIC.  With these two flags, the application can   distinguish anonymous HITs from public HITs.   When given an AF_INET6 socket, sockaddr_is_srcaddr() behaves the same   way as the inet6_is_srcaddr() function as described in [RFC5014].   With an AF_HIP socket, the function returns 1 when the HIT contained   in the socket address structure corresponds to a valid HIT of the   local host and the HIT satisfies the given flags.  The functionKomu & Henderson              Experimental                     [Page 13]

RFC 6317              Basic API Extensions for HIP             July 2011   returns -1 when the HIT does not belong to the local host or the   flags are not valid.  The function returns 0 when the preference   flags are valid but the HIT does not match the given flags.  The   function also returns 0 on a sockaddr_hip structure containing a   HIP_ENDPOINT_ANY or HIP_HIT_ANY_* wildcard.   The sockaddr_is_srcaddr() interface applies only to local HITs.   Applications can call the function hip_is_hit() to verify that the   given hit_hit_t pointer has the HIT prefix.  The function is   illustrated in Figure 6.         #include <netinet/hip.h>         short hip_is_hit(hip_hit_t *hit);                                 Figure 6   The hip_is_hit() function returns 1 when the given argument contains   the HIT prefix.  The function returns -1 on error and sets errno   appropriately.  The function returns 0 when the argument does not   have the HIT prefix.  The function also returns 0 when the argument   is a HIP_ENDPOINT_ANY or HIP_HIT_ANY_* wildcard.4.6.  Explicit Handling of Locators   The system resolver, or the HIP module, maps HITs to locators   implicitly.  However, some applications may want to specify initial   locator mappings explicitly.  In such a case, the application first   creates a socket with AF_HIP as the domain argument.  Second, the   application may get or set locator information with one of the   following shim socket options as defined in the multihoming   extensions in [RFC6316].  The related socket options are summarized   briefly in Table 3.Komu & Henderson              Experimental                     [Page 14]

RFC 6317              Basic API Extensions for HIP             July 2011   +---------------------+---------------------------------------------+   | optname             | description                                 |   +---------------------+---------------------------------------------+   | SHIM_LOC_LOCAL_PREF | Get or set the preferred locator on the     |   |                     | local side for the context associated with  |   |                     | the socket.                                 |   | SHIM_LOC_PEER_PREF  | Get or set the preferred locator on the     |   |                     | remote side for the context associated with |   |                     | the socket.                                 |   | SHIM_LOCLIST_LOCAL  | Get or set a list of locators associated    |   |                     | with the local Endpoint Identifier (EID).   |   | SHIM_LOCLIST_PEER   | Get or set a list of locators associated    |   |                     | with the peer's EID.                        |   | SHIM_LOC_LOCAL_SEND | Set or get the default source locator of    |   |                     | outgoing IP packets.                        |   | SHIM_LOC_PEER_SEND  | Set or get the default destination locator  |   |                     | of outgoing IP packets.                     |   +---------------------+---------------------------------------------+                                  Table 3   As an example of locator mappings, a connection-oriented application   creates a HIP-based socket and sets the SHIM_LOCLIST_PEER socket   option on the socket.  The HIP module uses the first address   contained in the option if multiple addresses are provided.  If the   application provides one or more addresses in the SHIM_LOCLIST_PEER   setsockopt call, the system should not connect to the host via   another destination address, in case the application intends to   restrict the range of addresses permissible as a policy choice.  The   application can override the default peer locator by setting the   SHIM_LOC_PEER_PREF socket option if necessary.  Finally, the   application provides a specific HIT in the ship_hit field of the   sockaddr_hip in the connect() system call.  If the system cannot   reach the HIT at one of the addresses provided, the outbound sockets   API functions (connect(), sendmsg(), etc.) return -1 and set errno to   EINVALIDLOCATOR.   Applications may also choose to associate local addresses with   sockets.  The procedures specified in [RFC6316] are followed in this   case.   Another use case is to use the opportunistic mode when the   destination HIT is specified as a wildcard.  The application sets one   or more destination addresses using the SHIM_LOCLIST_PEER socket   option as described earlier in this section, and then calls connect()   with the wildcard HIT.  The connect() call returns -1 and sets errno   to EADDRNOTAVAIL when the application connects to a wildcard without   specifying any destination address.Komu & Henderson              Experimental                     [Page 15]

RFC 6317              Basic API Extensions for HIP             July 2011   Applications using datagram-oriented sockets can use ancillary data   to control the locators, as described in detail in [RFC6316].5.  Summary of New Definitions   Table 4 summarizes the new constants and structures defined in this   document.                +-----------------+-----------------------+                | Header          | Definition            |                +-----------------+-----------------------+                | <sys/socket.h>  | AF_HIP                |                | <sys/socket.h>  | PF_HIP                |                | <netinet/in.h>  | IPPROTO_HIP           |                | <netinet/hip.h> | HIP_HIT_ANY           |                | <netinet/hip.h> | HIP_HIT_ANY_PUB       |                | <netinet/hip.h> | HIP_HIT_ANY_TMP       |                | <netinet/hip.h> | HIP_ENDPOINT_ANY      |                | <netinet/hip.h> | HIP_HIT_PREFERENCES   |                | <netinet/hip.h> | hip_hit_t             |                | <netdb.h>       | AI_NO_HIT             |                | <netinet/hip.h> | sockaddr_hip          |                | <netinet/hip.h> | sockaddr_is_srcaddr() |                | <netinet/hip.h> | hip_is_hit()          |                +-----------------+-----------------------+                                  Table 46.  Security Considerations   This document describes an API for HIP and therefore depends on the   mechanisms defined in the HIP protocol suite.  Security concerns   associated with HIP itself are specified in [RFC4423], [RFC4843],   [RFC5201], [RFC5205], and [RFC5338].   The HIP_ENDPOINT_ANY constant can be used to accept incoming data   flows or create outgoing data flows without HIP.  The application   should use the sockaddr_is_srcaddr() function to validate the type of   connection in order to, for example, inform the user of the lack of   HIP-based security.  The use of the HIP_HIT_ANY_* constants is   recommended in security-critical applications and systems.   It should be noted that the wildcards described in this document are   not suitable for identifying end hosts.  Instead, applications should   use getsockname() and getpeername() as described inSection 4.3 to   identify an end host.Komu & Henderson              Experimental                     [Page 16]

RFC 6317              Basic API Extensions for HIP             July 2011   Future proofing of HITs was discussed during the design of this API.   If HITs longer than 128 bits are required at the application layer,   this will require explicit support from the applications, because   they can store or cache HITs with their explicit sizes.  To support   longer HITs, further extensions of this API may define an additional   flag for getaddrinfo() to generate different kinds of socket address   structures for HIP.7.  Contributors   Thanks to Jukka Ylitalo and Pekka Nikander for their original   contributions, time, and effort to the native HIP APIs.  Thanks to   Yoshifuji Hideaki and Stefan Goetz for their contributions to this   document.8.  Acknowledgments   Kristian Slavov, Julien Laganier, Jaakko Kangasharju, Mika Kousa, Jan   Melen, Andrew McGregor, Sasu Tarkoma, Lars Eggert, Joe Touch, Antti   Jarvinen, Anthony Joseph, Teemu Koponen, Jari Arkko, Ari Keranen,   Juha-Matti Tapio, Shinta Sugimoto, Philip Matthews, Joakim Koskela,   Jeff Ahrenholz, Tobias Heer, and Gonzalo Camarillo have provided   valuable ideas and feedback.  Thanks to Nick Stoughton from the   Austin group for POSIX-related comments.  Thanks also to the APPS   area folks, including Stephane Bortzmeyer, Chris Newman, Tony Finch,   "der Mouse", and Keith Moore.9.  References9.1.  Normative References   [POSIX]     "IEEE Std. 1003.1-2008 Standard for Information               Technology -- Portable Operating System Interface               (POSIX).  Open group Technical Standard: Base               Specifications, Issue 7", September 2008,               <http://www.opengroup.org/austin>.   [RFC3493]   Gilligan, R., Thomson, S., Bound, J., McCann, J., and W.               Stevens, "Basic Socket Interface Extensions for IPv6",RFC 3493, February 2003.   [RFC4423]   Moskowitz, R. and P. Nikander, "Host Identity Protocol               (HIP) Architecture",RFC 4423, May 2006.   [RFC4843]   Nikander, P., Laganier, J., and F. Dupont, "An IPv6               Prefix for Overlay Routable Cryptographic Hash               Identifiers (ORCHID)",RFC 4843, April 2007.Komu & Henderson              Experimental                     [Page 17]

RFC 6317              Basic API Extensions for HIP             July 2011   [RFC5014]   Nordmark, E., Chakrabarti, S., and J. Laganier, "IPv6               Socket API for Source Address Selection",RFC 5014,               September 2007.   [RFC5201]   Moskowitz, R., Nikander, P., Jokela, P., Ed., and T.               Henderson, "Host Identity Protocol",RFC 5201, April               2008.   [RFC5205]   Nikander, P. and J. Laganier, "Host Identity Protocol               (HIP) Domain Name System (DNS) Extensions",RFC 5205,               April 2008.   [RFC5338]   Henderson, T., Nikander, P., and M. Komu, "Using the Host               Identity Protocol with Legacy Applications",RFC 5338,               September 2008.   [RFC6316]   Komu, M., Bagnulo, M., Slavov, K., and S. Sugimoto, Ed.,               "Sockets Application Program Interface (API) for               Multihoming Shim",RFC 6316, July 2011.9.2.  Informative References   [RFC5533]   Nordmark, E. and M. Bagnulo, "Shim6: Level 3 Multihoming               Shim Protocol for IPv6",RFC 5533, June 2009.Authors' Addresses   Miika Komu   Aalto University   Espoo   Finland   Phone: +358505734395   Fax:   +358947025014   EMail: miika@iki.fi   URI:http://cse.aalto.fi/research/groups/datacommunications/people/   Thomas Henderson   The Boeing Company   P.O. Box 3707   Seattle, WA   USA   EMail: thomas.r.henderson@boeing.comKomu & Henderson              Experimental                     [Page 18]

[8]ページ先頭

©2009-2025 Movatter.jp