Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Info page]

PROPOSED STANDARD
Network Working Group                                        JL. Le RouxRequest for Comments: 5541                                France TelecomCategory: Standards Track                                    JP. Vasseur                                                       Cisco System Inc.                                                                  Y. Lee                                                                  Huawei                                                               June 2009Encoding of Objective Functions in thePath Computation Element Communication Protocol (PCEP)Status of This Memo   This document specifies an Internet standards track protocol for the   Internet community, and requests discussion and suggestions for   improvements.  Please refer to the current edition of the "Internet   Official Protocol Standards" (STD 1) for the standardization state   and status of this protocol.  Distribution of this memo is unlimited.Copyright Notice   Copyright (c) 2009 IETF Trust and the persons identified as the   document authors.  All rights reserved.   This document is subject toBCP 78 and the IETF Trust's Legal   Provisions Relating to IETF Documents in effect on the date of   publication of this document (http://trustee.ietf.org/license-info).   Please review these documents carefully, as they describe your rights   and restrictions with respect to this document.   This document may contain material from IETF Documents or IETF   Contributions published or made publicly available before November   10, 2008.  The person(s) controlling the copyright in some of this   material may not have granted the IETF Trust the right to allow   modifications of such material outside the IETF Standards Process.   Without obtaining an adequate license from the person(s) controlling   the copyright in such materials, this document may not be modified   outside the IETF Standards Process, and derivative works of it may   not be created outside the IETF Standards Process, except to format   it for publication as an RFC or to translate it into languages other   than English.Le Roux, et al.             Standards Track                     [Page 1]

RFC 5541              Objective Functions in PCEP              June 2009Abstract   The computation of one or a set of Traffic Engineering Label Switched   Paths (TE LSPs) in MultiProtocol Label Switching (MPLS) and   Generalized MPLS (GMPLS) networks is subject to a set of one or more   specific optimization criteria, referred to as objective functions   (e.g., minimum cost path, widest path, etc.).   In the Path Computation Element (PCE) architecture, a Path   Computation Client (PCC) may want a path to be computed for one or   more TE LSPs according to a specific objective function.  Thus, the   PCC needs to instruct the PCE to use the correct objective function.   Furthermore, it is possible that not all PCEs support the same set of   objective functions; therefore, it is useful for the PCC to be able   to automatically discover the set of objective functions supported by   each PCE.   This document defines extensions to the PCE communication Protocol   (PCEP) to allow a PCE to indicate the set of objective functions it   supports.  Extensions are also defined so that a PCC can indicate in   a path computation request the required objective function, and a PCE   can report in a path computation reply the objective function that   was used for path computation.   This document defines objective function code types for six objective   functions previously listed in the PCE requirements work, and   provides the definition of four new metric types that apply to a set   of synchronized requests.Le Roux, et al.             Standards Track                     [Page 2]

RFC 5541              Objective Functions in PCEP              June 2009Table of Contents1. Introduction ....................................................31.1. Conventions Used in This Document ..........................51.2. Terminology ................................................51.3. Message Formats ............................................62. Discovery of PCE Objective Functions ............................62.1. OF-List TLV ................................................62.2. Elements of Procedure ......................................7   3. Objective Function in PCEP Path Computation Request and Reply      Messages ........................................................73.1. OF Object ..................................................73.1.1. Elements of Procedure ...............................83.2. Carrying The OF Object In a PCEP Message ...................93.3. New RP Object Flag ........................................123.3.1. Elements Of Procedure ..............................124. Objective Functions Definition .................................135. New Metric Types ...............................................146. IANA Considerations ............................................156.1. PCE Objective Function Sub-Registry .......................156.2. PCEP Code Points ..........................................166.2.1. OF Object ..........................................166.2.2. OF-List TLV ........................................166.2.3. PCEP Error Values ..................................166.2.4. RP Object Flag .....................................176.2.5. Metric Types .......................................177. Security Considerations ........................................178. Manageability Considerations ...................................188.1. Control of Function and Policy ............................188.2. Information and Data Models ...............................188.3. Liveness Detection and Monitoring .........................188.4. Verify Correct Operations .................................188.5. Requirements On Other Protocols ...........................198.6. Impact On Network Operations ..............................199. Acknowledgments ................................................1910. References ....................................................1910.1. Normative References .....................................1910.2. Informative References ...................................19Appendix A. RBNF Code Fragments ...................................211.  Introduction   The Path Computation Element-based network architecture [RFC4655]   defines a Path Computation Element (PCE) as an entity capable of   computing the paths of Traffic Engineered Label Switched Paths (TE   LSPs) based on a network graph and of applying computational   constraints.  A PCE services path computation requests that are sent   by Path Computation Clients (PCC).Le Roux, et al.             Standards Track                     [Page 3]

RFC 5541              Objective Functions in PCEP              June 2009   The PCE communication Protocol (PCEP), defined in [RFC5440], allows   for communication between a PCC and a PCE or between two PCEs, in   compliance with requirements and guidelines set forth in [RFC4657].   Such interactions include path computation requests and path   computation replies.   The computation of one or a set of TE LSPs is subject to a set of one   or more optimization criteria, called an objective function.  An   objective function is used by the PCE when it computes a path or a   set of paths in order to select the "best" candidate paths.  There is   a variety of objective functions: an objective function could apply   either to a set of non-synchronized path computation requests, or to   a set of synchronized path computation requests.  In the former case,   the objective function refers to an individual path computation   request (e.g., computation of the shortest constrained path where the   metric is the IGP metric, computation of the least loaded constrained   path, etc.).  Conversely, in the latter case, the objective function   refers to a set of path computation requests the computation of which   is synchronized (e.g., minimize the aggregate bandwidth consumption   of all LSPs, minimize the sum of the delays for two diverse paths or   of the delta between those delays, etc.).  Moreover, some objective   functions relate to the optimization of a single metric and others to   the optimization of a set of metrics (organized in a hierarchical   manner, using a weighted function, etc.).   As spelled out in [RFC4674], it may be useful for a PCC to discover   the set of objective functions supported by a PCE.  Furthermore,   [RFC4657] requires the ability for a PCC to indicate in a path   computation request a required/desired objective function, as well as   optional function parameters.   For these purposes, this document extends the PCE communication   Protocol (PCEP).  It defines PCEP extensions that allow a PCE to   advertise a list of supported objective functions, as well as   extensions to carry the objective function in PCEP request and reply   messages.  It complements the PCEP base specification [RFC5440].   Note that OSPF- and IS-IS-based PCE discovery mechanisms are defined   in [RFC5088] and [RFC5089].  These mechanisms are dedicated to the   discovery of a few generic parameters, while more detailed PCE   parameters should be discovered using the PCE communication Protocol.   Objective functions are in this second category; thus, the objective   function discovery procedure is handled by PCEP.   A new PCEP TLV, named the OF-List TLV, is defined inSection 2.  The   OF-List TLV is carried in the PCEP OPEN object and allows a PCE to   list, during PCEP session-setup phase, the objective functions that   it supports.Le Roux, et al.             Standards Track                     [Page 4]

RFC 5541              Objective Functions in PCEP              June 2009   A new PCEP object, the OF object, is defined inSection 3.  The OF   object is carried within a PCReq (Path Computation Request) message   to indicate the required/desired objective function to be applied by   a PCE, or in a PCRep (Path Computation Reply) message to indicate the   objective function that was used for path computation.   Six mandatory objective functions that must be supported by PCEP are   listed in [RFC4657].  This document provides a definition of these   six mandatory objective functions.  Additional objective functions   may be defined in other documents.  Note that additional objective   functions are defined for the PCE Global Concurrent Optimization   (GCO) application, in [PCE-GCO].   This document also provides the definition of four new metric types   that apply to a set of synchronized requests.1.1.  Conventions Used in This Document   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this   document are to be interpreted as described in [RFC2119].1.2.  Terminology   LSR:    Label Switching Router.   OF:     Objective Function.  A set of one or more optimization           criteria used for the computation of a single path (e.g.,           path cost minimization) or for the synchronized computation           of a set of paths (e.g., aggregate bandwidth consumption           minimization, etc.).   PCC:    Path Computation Client.  Any client application requesting a           path computation to be performed by a Path Computation           Element.   PCE:    Path Computation Element.  An entity (component, application,           or network node) that is capable of computing a network path           or route based on a network graph and of applying           computational constraints.   PCEP:   Path Computation Element communication Protocol.   TE LSP: Traffic Engineered Label Switched Path.Le Roux, et al.             Standards Track                     [Page 5]

RFC 5541              Objective Functions in PCEP              June 20091.3.  Message Formats   Message formats in this document are expressed using Reduced BNF as   used in [RFC5440] and defined in [RFC5511].2.  Discovery of PCE Objective Functions   This section defines PCEP extensions (see [RFC5440]) so as to support   the advertisement of the objective functions supported by a PCE.   A new PCEP OF-List (Objective Function list) TLV is defined.  The   PCEP OF-List TLV is carried within an OPEN object.  This way, during   PCEP session-setup phase, a PCE can advertise to a PCEP peer the list   of objective functions it supports.2.1.  OF-List TLV   The PCEP OF-List TLV is optional.  It MAY be carried within an OPEN   object sent by a PCE in an Open message to a PCEP peer so as to   indicate the list of supported objective functions.   The OF-List TLV format is compliant with the PCEP TLV format defined   in [RFC5440].  That is, the TLV is composed of 2 octets for the type,   2 octets specifying the TLV length, and a Value field.  The Length   field defines the length of the value portion in octets.  The TLV is   padded to 4-octet alignment, and padding is not included in the   Length field (e.g., a 3-octet value would have a length of three, but   the total size of the TLV would be eight octets).   The PCEP OF-List TLV has the following format:   TYPE:    4   LENGTH:  N * 2 (where N is the number of objective functions)   VALUE:   list of 2-byte objective function code points, identifying            the objective functions supported by the sender of the Open            message.      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |             OF Code #1        |      OF Code #2               |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     //                                                             //     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |             OF Code #N        |       padding                 |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+Le Roux, et al.             Standards Track                     [Page 6]

RFC 5541              Objective Functions in PCEP              June 2009   OF Code (2 bytes): Objective Function code point identifier.  IANA   manages the "PCE Objective Function" code point registry (seeSection6).2.2.  Elements of Procedure   A PCE MAY include an OF-List TLV within an OPEN object in an Open   message sent to a PCEP peer in order to advertise a set of one or   more objective functions.  The OF-List TLV MUST NOT appear more than   once in an OPEN object.  If it appears more than once, the PCEP   session MUST be rejected with error type 1 and error value 1 (PCEP   session establishment failure / Reception of an invalid Open   message).  The absence of the OF-List TLV in an OPEN object MUST be   interpreted as an absence of information on the list of supported   objective functions by the PCE.   As specified in [RFC5440], a PCEP peer that does not recognize the   OF-List TLV will silently ignore it.3.  Objective Function in PCEP Path Computation Request and Reply    Messages   This section defines PCEP extensions [RFC5440] so as to support the   communication of objective functions in PCEP path computation request   and reply messages.  A new PCEP OF (Objective Function) object is   defined, to be carried within a PCReq message in order for the PCC to   indicate the required/desired objective function.   The PCEP OF object may also be carried within a PCRep message in   order for the PCE to indicate the objective function that was used by   the PCE.   A new flag is defined in the RP (Request Parameters) object.  The   flag is used in a PCReq message to indicate that the PCE MUST include   an OF object in the PCRep message to indicate the objective function   that was used during path computation.   Also, new PCEP error types and values are defined.3.1.  OF Object   The PCEP OF (Objective Function) object is optional.  It MAY be   carried within a PCReq message so as to indicate the desired/required   objective function to be applied by the PCE during path computation   or within a PCRep message so as to indicate the objective function   that was used by the PCE during path computation.Le Roux, et al.             Standards Track                     [Page 7]

RFC 5541              Objective Functions in PCEP              June 2009   The OF object format is compliant with the PCEP object format defined   in [RFC5440].   The OF Object-Class is 21.   The OF Object-Type is 1.   The format of the OF object body is:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |  OF Code                      |     Reserved                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                                                               |   //              Optional TLV(s)                                //   |                                                               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   OF Code (2 bytes): The identifier of the objective function.  IANA   manages the "PCE Objective Function" code point registry (seeSection6).   Reserved (2 bytes): This field MUST be set to zero on transmission   and MUST be ignored on receipt.   Optional TLVs may be defined in the future so as to encode objective   function parameters.3.1.1.  Elements of Procedure   To request the use of a specific objective function by the PCE, a PCC   includes an OF object in the PCReq message.   [RFC5440] specifies a bit flag, referred to as the P bit, carried in   the common PCEP object header.  The P bit is set by a PCC to mandate   that a PCE must take the information carried in the object into   account during the path computation.   If the P bit is set in the OF object, the objective function is   mandatory (required objective function) and the PCE MUST use the   objective function during path computation.  If the P bit is clear in   the OF object, the objective function is optional (desired objective   function) and the PCE SHOULD apply the function if it is supported   but MAY choose to apply a different objective function, according to   local capabilities and policies.Le Roux, et al.             Standards Track                     [Page 8]

RFC 5541              Objective Functions in PCEP              June 2009   On receipt of a PCReq message with an OF object, a PCE MUST proceed   as follows:   - If the OF object is unknown/unsupported, the PCE MUST follow     procedures defined in [RFC5440].  That is, if the P bit is set, the     PCE sends a PCErr message with error type 3 or 4 (Unknown / Not     supported object) and error value 1 or 2 (unknown / unsupported     object class / object type), and the related path computation     request MUST be discarded.  If the P bit is cleared, the PCE is     free to ignore the object.   - If the objective function is unknown/unsupported and the P bit is     set, the PCE MUST send a PCErr message with error type 3 or 4     (Unknown / Not supported object) and error value 4     (Unrecognized/Unsupported parameter), and the related path     computation request MUST be discarded.   - If the objective function is unknown/unsupported and the P bit is     cleared, the PCE SHOULD apply another (default) objective function.   - If the objective function is supported but policy does not permit     applying it and if the P bit is set, the PCE MUST send a PCErr     message with the PCEP error type "policy-violation" (type 5) and a     new error value, "objective function not allowed", which is defined     in this document.   - If the objective function is supported but policy does not allow     applying it and if the P bit is cleared, the PCE SHOULD apply     another (default) objective function.   - If the objective function is supported and policy allows applying     it and if the P bit is set, the PCE MUST apply the requested     objective function.  Otherwise, if the P bit is cleared, the PCE is     free to apply any other objective function.   The default objective function may be locally configured.3.2.  Carrying The OF Object In a PCEP Message   The OF object MAY be carried within a PCReq message.  If an objective   function is to be applied to a set of synchronized path computation   requests, the OF object MUST be carried just after the corresponding   SVEC (Synchronization VECtor) object and MUST NOT be repeated for   each elementary request.Le Roux, et al.             Standards Track                     [Page 9]

RFC 5541              Objective Functions in PCEP              June 2009   Similarly, if a metric is to be applied to a set of synchronized   requests, the METRIC object MUST follow the SVEC object and MUST NOT   be repeated for each elementary request.  Note that metrics applied   to a set of synchronized requests are defined inSection 5.   An OF object specifying an objective function that applies to an   individual path computation request (non-synchronized case) MUST   follow the RP object for which it applies.   The format of the PCReq message is updated as follows.  Please seeAppendix A for a full set of RBNF fragments defined in this document   and the necessary code license.    <PCReq Message> ::= <Common Header>                        [<svec-list>]                        <request-list>   where:        <svec-list> ::= <SVEC>                        [<OF>]                        [<metric-list>]                        [<svec-list>]        <request-list> ::= <request> [<request-list>]        <request> ::= <RP>                      <END-POINTS>                      [<LSPA>]                      [<BANDWIDTH>]                      [<metric-list>]                      [<OF>]                      [<RRO>[<BANDWIDTH>]]                      [<IRO>]                      [<LOAD-BALANCING>]   and where:        <metric-list> ::= <METRIC>[<metric-list>]   The OF object MAY be carried within a PCRep message to indicate the   objective function used by the PCE during path computation.   When the PCE wants to indicate to the PCC the objective function that   was used for the synchronized computation of a set of paths, the   PCRep message MUST include the corresponding SVEC object directly   followed by the OF object, which MUST NOT be repeated for each   elementary request.  If a metric is applicable to the set of paths,   the METRIC object MUST directly follow the SVEC object and MUST NOT   be repeated for each elementary request.Le Roux, et al.             Standards Track                    [Page 10]

RFC 5541              Objective Functions in PCEP              June 2009   An OF object specifying an objective function used for an individual   path computation (non-synchronized case) MUST follow the RP object   for which it applies.   The format of the PCRep message is updated as follows.  Please seeAppendix A for a full set of RBNF fragments defined in this document   and the necessary code license.   <PCRep Message> ::= <Common Header>                       [<svec-list>]                       <response-list>   where:         <svec-list> ::= <SVEC>                         [<OF>]                         [<metric-list>]                         [<svec-list>]        <response-list> ::= <response> [<response-list>]        <response> ::= <RP>                       [<NO-PATH>]                       [<attribute-list>]                       [<path-list>]        <path-list> ::= <path> [<path-list>]        <path> ::= <ERO>                   <attribute-list>   and where:        <attribute-list> ::= [<OF>]                             [<LSPA>]                             [<BANDWIDTH>]                             [<metric-list>]                             [<IRO>]        <metric-list> ::= <METRIC> [<metric-list>]   Note: The OF object MAY be associated to a negative reply, i.e., a   reply with a NO-PATH object.Le Roux, et al.             Standards Track                    [Page 11]

RFC 5541              Objective Functions in PCEP              June 20093.3.  New RP Object Flag   In some cases, where no objective function is specified in the   request or an optional objective function is desired (P flag cleared   in the OF object common header) but the PCE does not follow the   request, the PCC may desire to know the objective function that was   used by the PCE during path computation.  To that end, a new flag is   defined in the RP object, named the OF flag, allowing a PCC to   request for the inclusion in the path computation reply of the   objective function that was used by the PCE during path computation.   The following new bit flag of the RP object is defined:   The Supply OF on response flag (bit number 24).  When set in a PCReq   message, this indicates that the PCE MUST provide the applied   objective function (should a path satisfying the constraints be   found) in the PCRep message.  When set in a PCRep message, this   indicates that the objective function that was used during path   computation is included.3.3.1.  Elements Of Procedure   If the PCC wants to know the objective function used by the PCE   during path computation for a given request, it sets the OF flag in   the RP object.   On receipt of a PCReq message with the OF flag in the RP object set,   the PCE proceeds as follows:   - If policy permits, it MUST include in the PCRep message an OF     object indicating the objective function it used during path     computation.   - If policy does not permit, it MUST send a PCErr message with the     PCEP error code "policy-violation" (type 5) and a new error value,     "objective function indication not allowed", which is defined in     this document.   Note that a legacy PCE might not recognize the OF flag in the RP   object.  According to the definition of the Flags field for the RP   object (Section 7.4.1 of [RFC5440]), the legacy PCE will ignore the   unknown flag, resulting in it sending a PCRep that does not contain   an OF object.  In this case, the PCC's behavior is an implementation   choice.  The PCC might:   - Discard the PCRep because it really wanted the OF object returned.   - Accept the PCRep without the knowledge of the OF that was applied.Le Roux, et al.             Standards Track                    [Page 12]

RFC 5541              Objective Functions in PCEP              June 2009   Note also that these procedures can give rise to the situation where   a PCC receives a PCRep that contains an OF object with an objective   function identifier that the PCC does not recognize.  In this   situation, the PCC behavior is dependent on implementation and   configuration.  The PCC could choose any of the following (or some   other action):   - Ignore the OF object and use the computed path.   - Add the objective function to its view of the PCE's repertoire for     inclusion in future computation requests.   - Discard the PCRep (i.e., the computed path) and send a PCReq to     another PCE.   - Discard the PCRep (i.e., the computed path) and send another PCReq     to the same PCE explicitly requiring the use of some other     objective function (i.e., by setting the P bit in the OF object).4.  Objective Functions Definition   Six objective functions that must be supported by PCEP are listed in   [RFC4657].  Objective function codes have been assigned by IANA and   are described below.   Objective functions are formulated using the following terminology:   - A network comprises a set of N links {Li, (i=1...N)}.   - A path P is a list of K links {Lpi,(i=1...K)}.   - Metric of link L is denoted M(L).  This can be the IGP metric, the     TE metric, or any other metric.   - The cost of a path P is denoted C(P), where C(P) = sum {M(Lpi),     (i=1...K)}.   - Residual bandwidth on link L is denoted r(L).   - Maximum reservable bandwidth on link L is denoted R(L).   There are three objective functions that apply to the computation of   a single path:   Objective Function Code: 1   Name: Minimum Cost Path (MCP)   Description: Find a path P such that C(P) is minimized.Le Roux, et al.             Standards Track                    [Page 13]

RFC 5541              Objective Functions in PCEP              June 2009   Objective Function Code: 2   Name: Minimum Load Path (MLP)   Description: Find a path P such that           ( Max {(R(Lpi) - r(Lpi)) / R(Lpi), i=1...K } ) is minimized.   Objective Function Code: 3   Name: Maximum residual Bandwidth Path (MBP)   Description: Find a path P such that             ( Min { r(Lpi), i=1...K } ) is maximized.   There are three objective functions that apply to a set of path   computation requests the computation of which is synchronized:   Objective Function Code: 4   Name: Minimize aggregate Bandwidth Consumption (MBC)   Description: Find a set of paths such that             ( Sum {R(Li) - r(Li), i=1...N} ) is minimized.   Objective Function Code: 5   Name: Minimize the Load of the most loaded Link (MLL)   Description: Find a set of paths such that             ( Max { (R(Li) - r(Li)) / R(Li), i=1...N}) is minimized.   Objective Function Code: 6   Name: Minimize the Cumulative Cost of a set of paths (MCC)   Description: Find a set of paths {P1...Pm} such that             (Sum { C(Pi), i=1...m}) is minimized.   Other objective functions may be defined in separate documents.5.  New Metric Types   Three metric types are defined in PCEP for the METRIC object: TE   metric, IGP metric, and hop count.  These metric types apply to an   individual request.  Here, we define four new metric types that apply   to a set of synchronized requests:      Type 4: Aggregate bandwidth consumption.      Type 5: Load of the most loaded link.      Type 6: Cumulative IGP cost.      Type 7: Cumulative TE cost.Le Roux, et al.             Standards Track                    [Page 14]

RFC 5541              Objective Functions in PCEP              June 2009   These metrics may be used in a PCReq to indicate a bound (B bit set   in the METRIC object) or to request the computation of a metric (C   bit set in the METRIC object), or in a PCRep to indicate a computed   metric.   A METRIC object with one of these four types follows the SVEC object   for which it applies.6.  IANA Considerations6.1.  PCE Objective Function Sub-Registry   This document defines a 16-bit PCE objective function identifier to   be carried within the PCEP OF object, and also defines the PCEP OF-   List TLV.   IANA created and now manages the 16-bit "PCE Objective Function" code   point registry, starting from 1 and continuing through 32767, as   follows:   - Objective Function code point value   - Objective Function name   - Defining RFC   The same registry is applicable to the OF object and the OF-List TLV   that are defined in this document.   The guidelines (using terms defined in [RFC5226]) for the assignment   of objective function code point values are as follows:   - Function code value 0 is reserved.   - Function code values in the range 1-32767 are assigned as follows:     o Function code values 1 through 1023 are assigned by IANA using       the "IETF Review" policy.     o Function code values 1024 through 32767 are assigned by IANA,       using the "First Come First Served" policy.     o Function code values in the range 32768-65535 are for "Private       Use".Le Roux, et al.             Standards Track                    [Page 15]

RFC 5541              Objective Functions in PCEP              June 2009   Six objective functions are defined inSection 4 of this document and   have been assigned by IANA:      Code Point           Name                     Reference      -------------------------------------------------------          1                MCPRFC 5541          2                MLPRFC 5541          3                MBPRFC 5541          4                MBCRFC 5541          5                MLLRFC 5541          6                MCCRFC 55416.2.  PCEP Code Points6.2.1.  OF Object   IANA manages the PCEP Objects code point registry (see [RFC5440]).   This is maintained as the "PCEP Objects" sub-registry of the "Path   Computation Element Protocol (PCEP) Numbers" registry.   This document defines a new PCEP object, the OF object, to be carried   in PCReq and PCRep messages.  IANA has made the following allocation:      Object    Name     Object    Name                  Reference      Class              Type      ------------------------------------------------------------       21       OF        1       Objective FunctionRFC 55416.2.2.  OF-List TLV   IANA manages the PCEP TLV code point registry (see [RFC5440]).  This   is maintained as the "PCEP TLV Type Indicators" sub-registry of the   "Path Computation Element Protocol (PCEP) Numbers" registry.   This document defines a new PCEP TLV, the OF-List TLV, to be carried   in the OPEN object.  IANA has made the following allocation:      Type      TLV name                   References      -----------------------------------------------       4         OF-ListRFC 55416.2.3.  PCEP Error Values   IANA maintains a registry of Error-types and Error-values for use in   PCEP messages.  This is maintained as the "PCEP-ERROR Object Error   Types and Values" sub-registry of the "Path Computation Element   Protocol (PCEP) Numbers" registry.Le Roux, et al.             Standards Track                    [Page 16]

RFC 5541              Objective Functions in PCEP              June 2009   Two new Error-values are defined for the Error-type "policy   violation" (type 5):      Error-type      Meaning and error values                 Reference      ------------------------------------------------------------------         5            Policy violation                      Error-value=3: objective function notRFC 5541                      allowed (request rejected)                      Error-value=4: OF bit of the RP objectRFC 5541                      set (request rejected)6.2.4.  RP Object Flag   A new flag of the RP object (specified in [RFC5440]) is defined in   this document.  IANA maintains a registry of RP object flags in the   "RP Object Flag Field" sub-registry of the "Path Computation Element   Protocol (PCEP) Numbers" registry.   IANA has made the following allocation:      Bit      Description              Reference      -------------------------------------------      24      Supply OF on responseRFC 55416.2.5.  Metric Types   Four new metric types are defined in this document for the METRIC   object (specified in [RFC5440]).  IANA maintains a registry of metric   types in the "METRIC Object T Field" sub-registry of the "Path   Computation Element Protocol (PCEP) Numbers" registry.   IANA has made the following allocations:   - Type 4: Aggregate bandwidth consumption   - Type 5: Load of the most loaded link   - Type 6: Cumulative IGP cost   - Type 7: Cumulative TE cost7.  Security Considerations   PCEP security mechanisms are described in [RFC5440] and are used to   secure entire PCEP messages.  Nothing in this document changes the   message flows or introduces any new messages, so the security   mechanisms set out in [RFC5440] continue to be applicable.Le Roux, et al.             Standards Track                    [Page 17]

RFC 5541              Objective Functions in PCEP              June 2009   This document introduces a single new object that may optionally be   carried on PCEP messages and will be automatically secured using the   mechanisms described in [RFC5440].   If a PCEP message is vulnerable to attack (for example, because the   security mechanisms are not used), then the OF object could be used   as part of an attack; however, it is likely that other objects will   provide far more significant ways of attacking a PCE or PCC in this   case.8.  Manageability Considerations8.1.  Control of Function and Policy   It MUST be possible to configure the activation/deactivation of   objective function discovery in PCEP.   In addition to the parameters already listed inSection 8.1 of   [RFC5440], a PCEP implementation SHOULD allow configuring a list of   authorized objective functions on a PCE.  This may apply to any   session the PCEP speaker participates in, to a specific session with   a given PCEP peer, or to a specific group of sessions with a specific   group of PCEP peers.   Note that it is not mandatory for an implementation to support all   objective functions defined inSection 4.   It MUST be possible to configure a default objective function used   for path computation when a path request is received that requests to   use an optional objective function.8.2.  Information and Data Models   The PCEP MIB Module defined in [PCEP-MIB] could be extended to   include objective functions.8.3.  Liveness Detection and Monitoring   Mechanisms defined in this document do not imply any new liveness   detection and monitoring requirements in addition to those already   listed in [RFC5440].8.4.  Verify Correct Operations   Mechanisms defined in this document do not imply any new operation   verification requirements in addition to those already listed in   [RFC5440].Le Roux, et al.             Standards Track                    [Page 18]

RFC 5541              Objective Functions in PCEP              June 20098.5.  Requirements On Other Protocols   Mechanisms defined in this document do not imply any requirements on   other protocols in addition to those already listed in [RFC5440].8.6.  Impact On Network Operations   Mechanisms defined in this document do not have any impact on network   operations in addition to those already listed in [RFC5440].9.  Acknowledgments   The authors would like to thank Jerry Ash, Fabien Verhaeghe, Robert   Sparks, and Adrian Farrel for their useful comments.10.  References10.1.  Normative References   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate              Requirement Levels",BCP 14,RFC 2119, March 1997.   [RFC4655]  Farrel, A., Vasseur, J.-P., and J. Ash, "A Path              Computation Element (PCE)-Based Architecture",RFC 4655,              August 2006.   [RFC5440]  Vasseur, JP., Ed., and JL. Le Roux, Ed., "Path Computation              Element (PCE) Communication Protocol (PCEP)",RFC 5440,              March 2009.10.2.  Informative References   [RFC4657]  Ash, J., Ed., and J. Le Roux, Ed., "Path Computation              Element (PCE) Communication Protocol Generic              Requirements",RFC 4657, September 2006.   [RFC4674]  Le Roux, J., Ed., "Requirements for Path Computation              Element (PCE) Discovery",RFC 4674, October 2006.   [RFC5088]  Le Roux, JL., Ed., Vasseur, JP., Ed., Ikejiri, Y., and R.              Zhang, "OSPF Protocol Extensions for Path Computation              Element (PCE) Discovery",RFC 5088, January 2008.   [RFC5089]  Le Roux, JL., Ed., Vasseur, JP., Ed., Ikejiri, Y., and R.              Zhang, "IS-IS Protocol Extensions for Path Computation              Element (PCE) Discovery",RFC 5089, January 2008.Le Roux, et al.             Standards Track                    [Page 19]

RFC 5541              Objective Functions in PCEP              June 2009   [RFC5226]  Narten, T. and H. Alvestrand, "Guidelines for Writing an              IANA Considerations Section in RFCs",BCP 26,RFC 5226,              May 2008.   [PCE-GCO]  Lee, Y., Le Roux, JL., King, D., and E. Oki, "Path              Computation Element Communication Protocol (PCEP)              Requirements and Protocol Extensions in Support of Global              Concurrent Optimization", Work in Progress, March 2009.   [PCEP-MIB] Koushik, K., and E. Stephan, "PCE Communication Protocol              (PCEP) Management Information Base", Work in Progress,              January 2009.   [RFC5511]     Farrel, A., "Routing Backus-Naur Form (RBNF) - A Syntax              Used to Form Encoding Rules in Various Routing Protocol              Specifications",RFC 5511, April 2009.Le Roux, et al.             Standards Track                    [Page 20]

RFC 5541              Objective Functions in PCEP              June 2009Appendix A.  RBNF Code Fragments   This appendix contains the full set of code fragments defined in this   document.   Copyright (c) 2009 IETF Trust and the persons identified as authors   of the code.  All rights reserved.   Redistribution and use in source and binary forms, with or without   modification, are permitted provided that the following conditions   are met:   o Redistributions of source code must retain the above copyright     notice, this list of conditions and the following disclaimer.   o Redistributions in binary form must reproduce the above copyright     notice, this list of conditions and the following disclaimer in the     documentation and/or other materials provided with the     distribution.   o Neither the name of Internet Society, IETF or IETF Trust, nor the     names of specific contributors, may be used to endorse or promote     products derived from this software without specific prior written     permission.   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR   A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.   <PCReq Message> ::= <Common Header>                       [<svec-list>]                       <request-list>   <PCRep Message> ::= <Common Header>                       [<svec-list>]                       <response-list>Le Roux, et al.             Standards Track                    [Page 21]

RFC 5541              Objective Functions in PCEP              June 2009       <svec-list> ::= <SVEC>                       [<OF>]                       [<metric-list>]                       [<svec-list>]       <request-list> ::= <request> [<request-list>]       <request> ::= <RP>                     <END-POINTS>                     [<LSPA>]                     [<BANDWIDTH>]                     [<metric-list>]                     [<OF>]                     [<RRO>[<BANDWIDTH>]]                     [<IRO>]                     [<LOAD-BALANCING>]       <metric-list> ::= <METRIC>[<metric-list>]       <response-list> ::= <response> [<response-list>]       <response> ::= <RP>                      [<NO-PATH>]                      [<attribute-list>]                      [<path-list>]       <path-list> ::= <path> [<path-list>]       <path> ::= <ERO>                  <attribute-list>       <attribute-list> ::= [<OF>]                            [<LSPA>]                            [<BANDWIDTH>]                            [<metric-list>]                            [<IRO>]Le Roux, et al.             Standards Track                    [Page 22]

RFC 5541              Objective Functions in PCEP              June 2009Authors' Addresses   JL Le Roux   France Telecom   2, Avenue Pierre-Marzin   Lannion  22307   France   EMail: jeanlouis.leroux@orange-ftgroup.com   Jean-Philippe Vasseur   Cisco Systems, Inc   11, Rue Camille Desmoulins   L'Atlantis   92782 Issy Les Moulineaux   France   EMail: jpv@cisco.com   Young Lee   Huawei Technologies, LTD.   1700 Alma Drive, Suite 100   Plano, TX  75075   USA   EMail: ylee@huawei.comLe Roux, et al.             Standards Track                    [Page 23]

[8]ページ先頭

©2009-2025 Movatter.jp