Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Errata] [Info page]

PROPOSED STANDARD
Errata Exist
Network Working Group                                          C. NewmanRequest for Comments: 5255                              Sun MicrosystemsCategory: Standards Track                                 A. Gulbrandsen                                                  Oryx Mail Systems GmhH                                                             A. Melnikov                                                           Isode Limited                                                               June 2008Internet Message Access Protocol InternationalizationStatus of This Memo   This document specifies an Internet standards track protocol for the   Internet community, and requests discussion and suggestions for   improvements.  Please refer to the current edition of the "Internet   Official Protocol Standards" (STD 1) for the standardization state   and status of this protocol.  Distribution of this memo is unlimited.Abstract   Internet Message Access Protocol (IMAP) version 4rev1 has basic   support for non-ASCII characters in mailbox names and search   substrings.  It also supports non-ASCII message headers and content   encoded as specified by Multipurpose Internet Mail Extensions (MIME).   This specification defines a collection of IMAP extensions that   improve international support including language negotiation for   international error text, translations for namespace prefixes, and   comparator negotiation for search, sort, and thread.Newman, et al.              Standards Track                     [Page 1]

RFC 5255               IMAP Internationalization               June 2008Table of Contents1. Introduction ....................................................32. Conventions Used in This Document ...............................33. LANGUAGE Extension ..............................................33.1. LANGUAGE Extension Requirements ............................43.2. LANGUAGE Command ...........................................43.3. LANGUAGE Response ..........................................63.4. TRANSLATION Extension to the NAMESPACE Response ............73.5. Formal Syntax ..............................................84. I18NLEVEL=1 and I18NLEVEL=2 Extensions ..........................94.1. Introduction and Overview ..................................94.2. Requirements Common to Both I18NLEVEL=1 and I18NLEVEL=2 ....94.3. I18NLEVEL=1 Extension Requirements ........................104.4. I18NLEVEL=2 Extension Requirements ........................104.5. Compatibility Notes .......................................114.6. Comparators and Character Encodings .......................114.7. COMPARATOR Command ........................................134.8. COMPARATOR Response .......................................144.9. BADCOMPARATOR Response Code ...............................144.10. Formal Syntax ............................................145. Other IMAP Internationalization Issues .........................155.1. Unicode Userids and Passwords .............................155.2. UTF-8 Mailbox Names .......................................155.3. UTF-8 Domains, Addresses, and Mail Headers ................156. IANA Considerations ............................................167. Security Considerations ........................................168. Acknowledgements ...............................................16   9. Relevant Sources of Documents for Internationalized IMAP      Implementations ................................................1710. Normative References ..........................................1711. Informative References ........................................18Newman, et al.              Standards Track                     [Page 2]

RFC 5255               IMAP Internationalization               June 20081.  Introduction   This specification defines two IMAP4rev1 [RFC3501] extensions to   enhance international support.  These extensions can be advertised   and implemented separately.   The LANGUAGE extension allows the client to request a suitable   language for protocol error messages and in combination with the   NAMESPACE extension [RFC2342] enables namespace translations.   The I18NLEVEL=2 extension allows the client to request a suitable   collation that will modify the behavior of the base specification's   SEARCH command as well as the SORT and THREAD extensions [SORT].   This leverages the collation registry [RFC4790].  The I18NLEVEL=1   extension updates SEARCH/SORT/THREAD to use i;unicode-casemap   comparator, as defined in [UCM].  I18NLEVEL=1 is a simpler version of   I18NLEVEL=2 with no ability to select a different collation.2.  Conventions Used in This Document   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this   document are to be interpreted as described in [RFC2119].   The formal syntax uses the Augmented Backus-Naur Form (ABNF)   [RFC5234] notation including the core rules defined inAppendix A.   The UTF-8-related productions are defined in [RFC3629].   In examples, "C:" and "S:" indicate lines sent by the client and   server respectively.  If a single "C:" or "S:" label applies to   multiple lines, then the line breaks between those lines are for   editorial clarity only and are not part of the actual protocol   exchange.3.  LANGUAGE Extension   IMAP allows server responses to include human-readable text that in   many cases needs to be presented to the user.  But that text is   limited to US-ASCII by the IMAP specification [RFC3501] in order to   preserve backwards compatibility with deployed IMAP implementations.   This section specifies a way for an IMAP client to negotiate which   language the server should use when sending human-readable text.Newman, et al.              Standards Track                     [Page 3]

RFC 5255               IMAP Internationalization               June 2008   The LANGUAGE extension only provides a mechanism for altering fixed   server strings such as response text and NAMESPACE folder names.   Assigning localized language aliases to shared mailboxes would be   done with a separate mechanism such as the proposed METADATA   extension (see [METADATA]).3.1.  LANGUAGE Extension Requirements   IMAP servers that support this extension MUST list the keyword   LANGUAGE in their CAPABILITY response as well as in the greeting   CAPABILITY data.   A server that advertises this extension MUST use the language   "i-default" as described in [RFC2277] as its default language until   another supported language is negotiated by the client.  A server   MUST include "i-default" as one of its supported languages.  IMAP   servers SHOULD NOT advertise the LANGUAGE extension if they discover   that they only support "i-default".   Clients and servers that support this extension MUST also support the   NAMESPACE extension [RFC2342].   The LANGUAGE command is valid in all states.  Clients SHOULD issue   LANGUAGE before authentication, since some servers send valuable user   information as part of authentication (e.g., "password is correct,   but expired").  If a security layer (such as SASL or TLS) is   subsequently negotiated by the client, it MUST re-issue the LANGUAGE   command in order to make sure that no previous active attack (if any)   on LANGUAGE negotiation has effect on subsequent error messages.   (SeeSection 7 for a more detailed explanation of the attack.)3.2.  LANGUAGE Command   Arguments: Optional language range arguments.   Response:  A possible LANGUAGE response (seeSection 3.3).              A possible NAMESPACE response (seeSection 3.4).   Result:    OK - Command completed              NO - Could not complete command              BAD - Arguments invalid   The LANGUAGE command requests that human-readable text emitted by the   server be localized to a language matching one of the language range   argument as described bySection 2 of [RFC4647].Newman, et al.              Standards Track                     [Page 4]

RFC 5255               IMAP Internationalization               June 2008   If the command succeeds, the server will return human-readable   responses in the first supported language specified.  These responses   will be in UTF-8 [RFC3629].  The server MUST send a LANGUAGE response   specifying the language used, and the change takes effect immediately   after the LANGUAGE response.   If the command fails, the server continues to return human-readable   responses in the language it was previously using.   The special "default" language range argument indicates a request to   use a language designated as preferred by the server administrator.   The preferred language MAY vary based on the currently active user.   If a language range does not match a known language tag exactly but   does match a language by the rules of [RFC4647], the server MUST send   an untagged LANGUAGE response indicating the language selected.   If there aren't any arguments, the server SHOULD send an untagged   LANGUAGE response listing the languages it supports.  If the server   is unable to enumerate the list of languages it supports it MAY   return a tagged NO response to the enumeration request.  If, after   receiving a LANGUAGE request, the server discovers that it doesn't   support any language other than i-default, it MUST return a tagged NO   response to the enumeration request.      < The server defaults to using English i-default responses until        the user explicitly changes the language. >      C: A001 LOGIN KAREN PASSWORD      S: A001 OK LOGIN completed      < Client requested MUL language, which no server supports. >      C: A002 LANGUAGE MUL      S: A002 NO Unsupported language MUL      < A LANGUAGE command with no arguments is a request to enumerate        the list of languages the server supports. >      C: A003 LANGUAGE      S: * LANGUAGE (EN DE IT i-default)      S: A003 OK Supported languages have been enumerated      C: B001 LANGUAGE      S: B001 NO Server is unable to enumerate supported languagesNewman, et al.              Standards Track                     [Page 5]

RFC 5255               IMAP Internationalization               June 2008      < Once the client changes the language, all responses will be in        that language starting after the LANGUAGE response.  Note that        this includes the NAMESPACE response.  Because RFCs are in US-        ASCII, this document uses an ASCII transcription rather than        UTF-8 text, e.g., "ue" in the word "ausgefuehrt" >      C: C001 LANGUAGE DE      S: * LANGUAGE (DE)      S: * NAMESPACE (("" "/")) (("Other Users/" "/" "TRANSLATION"            ("Andere Ben&APw-tzer/"))) (("Public Folders/" "/"            "TRANSLATION" ("Gemeinsame Postf&AM8-cher/")))      S: C001 OK Sprachwechsel durch LANGUAGE-Befehl ausgefuehrt      < If a server does not support the requested primary language,        responses will continue to be returned in the current language        the server is using. >      C: D001 LANGUAGE FR      S: D001 NO Diese Sprache ist nicht unterstuetzt      C: D002 LANGUAGE DE-IT      S: * LANGUAGE (DE-IT)      S: * NAMESPACE (("" "/"))(("Other Users/" "/" "TRANSLATION"            ("Andere Ben&APw-tzer/"))) (("Public Folders/" "/"            "TRANSLATION" ("Gemeinsame Postf&AM8-cher/")))      S: D002 OK Sprachwechsel durch LANGUAGE-Befehl ausgefuehrt      C: D003 LANGUAGE "default"      S: * LANGUAGE (DE)      S: D003 OK Sprachwechsel durch LANGUAGE-Befehl ausgefuehrt      < Server does not speak French, but does speak English.  User        speaks Canadian French and Canadian English. >      C: E001 LANGUAGE FR-CA EN-CA      S: * LANGUAGE (EN)      S: E001 OK Now speaking English3.3.  LANGUAGE Response   Contents:  A list of one or more language tags.   The LANGUAGE response occurs as a result of a LANGUAGE command.  A   LANGUAGE response with a list containing a single language tag   indicates that the server is now using that language.  A LANGUAGE   response with a list containing multiple language tags indicates the   server is communicating a list of available languages to the client,   and no change in the active language has been made.Newman, et al.              Standards Track                     [Page 6]

RFC 5255               IMAP Internationalization               June 20083.4.  TRANSLATION Extension to the NAMESPACE Response   If localized representations of the namespace prefixes are available   in the selected language, the server SHOULD include these in the   TRANSLATION extension to the NAMESPACE response.   The TRANSLATION extension to the NAMESPACE response returns a single   string, containing the modified UTF-7 [RFC3501] encoded translation   of the namespace prefix.  It is the responsibility of the client to   convert between the namespace prefix and the translation of the   namespace prefix when presenting mailbox names to the user.   In this example, a server supports the IMAP4 NAMESPACE command.  It   uses no prefix to the user's Personal Namespace, a prefix of "Other   Users" to its Other Users' Namespace, and a prefix of "Public   Folders" to its only Shared Namespace.  Since a client will often   display these prefixes to the user, the server includes a translation   of them that can be presented to the user.      C: A001 LANGUAGE DE-IT      S: * NAMESPACE (("" "/")) (("Other Users/" "/" "TRANSLATION"            ("Andere Ben&APw-tzer/"))) (("Public Folders/" "/"            "TRANSLATION" ("Gemeinsame Postf&AM8-cher/")))      S: A001 OK LANGUAGE-Befehl ausgefuehrtNewman, et al.              Standards Track                     [Page 7]

RFC 5255               IMAP Internationalization               June 20083.5.  Formal Syntax   The following syntax specification inherits ABNF [RFC5234] rules from   IMAP4rev1 [RFC3501], IMAP4 Namespace [RFC2342], Tags for the   Identifying Languages [RFC4646], UTF-8 [RFC3629], and Collected   Extensions to IMAP4 ABNF [RFC4466].    command-any       =/ language-cmd        ; LANGUAGE command is valid in all states    language-cmd      = "LANGUAGE" *(SP lang-range-quoted)    response-payload  =/ language-data    language-data     = "LANGUAGE" SP "(" lang-tag-quoted *(SP                      lang-tag-quoted) ")"    namespace-trans   = SP DQUOTE "TRANSLATION" DQUOTE SP "(" string ")"        ; the string is encoded in Modified UTF-7.        ; this is a subset of the syntax permitted by        ; the Namespace-Response-Extension rule in [RFC4466]    lang-range-quoted = astring        ; Once any literal wrapper or quoting is removed, this        ; follows the language-range rule in [RFC4647]    lang-tag-quoted   = astring        ; Once any literal wrapper or quoting is removed, this follows        ; the Language-Tag rule in [RFC4646]    resp-text         = ["[" resp-text-code "]" SP ] UTF8-TEXT-CHAR                        *(UTF8-TEXT-CHAR / "[")        ; After the server is changed to a language other than        ; i-default, this resp-text rule replaces the resp-text        ; rule from [RFC3501].    UTF8-TEXT-CHAR    = %x20-5A / %x5C-7E / UTF8-2 / UTF8-3 / UTF8-4        ; UTF-8 excluding 7-bit control characters and "["Newman, et al.              Standards Track                     [Page 8]

RFC 5255               IMAP Internationalization               June 20084.  I18NLEVEL=1 and I18NLEVEL=2 Extensions4.1.  Introduction and Overview   IMAP4rev1 [RFC3501] includes the SEARCH command that can be used to   locate messages matching criteria including human-readable text.  The   SORT extension [SORT] to IMAP allows the client to ask the server to   determine the order of messages based on criteria including human-   readable text.  These mechanisms require the ability to support non-   English search and sort functions.Section 4 defines two IMAP extensions for internationalizing IMAP   SEARCH, SORT, and THREAD [SORT] using the comparator framework   [RFC4790].   The I18NLEVEL=1 extension updates SEARCH/SORT/THREAD to use   i;unicode-casemap comparator, as defined in [UCM].  See Sections4.2   and 4.3 for more details.   The I18NLEVEL=2 extension is a superset of the I18NLEVEL=1 extension.   It adds to I18NLEVEL=1 extension the ability to determine the active   comparator (see definition below) and to negotiate use of comparators   using the COMPARATOR command.  It also adds the COMPARATOR response   that indicates the active comparator and possibly other available   comparators.  See Sections4.2 and4.4 for more details.4.2.  Requirements Common to Both I18NLEVEL=1 and I18NLEVEL=2   The term "default comparator" refers to the comparator that is used   by SEARCH and SORT absent any negotiation using the COMPARATOR   command (seeSection 4.7).  The term "active comparator" refers to   the comparator which will be used within a session, e.g., by SEARCH   and SORT.  The COMPARATOR command is used to change the active   comparator.   The active comparator applies to the following SEARCH keys: "BCC",   "BODY", "CC", "FROM", "SUBJECT", "TEXT", "TO", and "HEADER".  If the   server also advertises the "SORT" extension, then the active   comparator applies to the following SORT keys: "CC", "FROM",   "SUBJECT", and "TO".  If the server advertises THREAD=ORDEREDSUBJECT,   then the active comparator applies to the ORDEREDSUBJECT threading   algorithm.  If the server advertises THREAD=REFERENCES, then the   active comparator applies to the subject field comparisons done by   REFERENCES threading algorithm.  Future extensions may choose to   apply the active comparator to their SEARCH keys.Newman, et al.              Standards Track                     [Page 9]

RFC 5255               IMAP Internationalization               June 2008   For SORT and THREAD, the pre-processing necessary to extract the base   subject text from a Subject header occurs prior to the application of   a comparator.   A server that advertises I18NLEVEL=1 or I18NLEVEL=2 extension MUST   implement the i;unicode-casemap comparator, as defined in [UCM].   A server that advertises I18NLEVEL=1 or I18NLEVEL=2 extension MUST   support UTF-8 as a SEARCH charset.4.3.  I18NLEVEL=1 Extension Requirements   An IMAP server that satisfies all requirements specified in Sections   4.2 and 4.6 (and that doesn't support/advertise any other   I18NLEVEL=<n> extension, where n > 1) MUST list the keyword   I18NLEVEL=1 in its CAPABILITY data once IMAP enters the authenticated   state, and MAY list that keyword in other states.4.4.  I18NLEVEL=2 Extension Requirements   An IMAP server that satisfies all requirements specified in Sections   4.2, 4.4, and 4.6-4.10 (and that doesn't support/advertise any other   I18NLEVEL=<n> extension, where n > 2) MUST list the keyword   I18NLEVEL=2 in its CAPABILITY data once IMAP enters the authenticated   state, and MAY list that keyword in other states.   A server that advertises this extension MUST implement the   i;unicode-casemap comparator, as defined in [UCM].  It MAY implement   other comparators from the IANA registry established by [RFC4790].   See alsoSection 4.5 of this document.   A server that advertises this extension SHOULD use i;unicode-casemap   as the default comparator.  (Note that i;unicode-casemap is the   default comparator for I18NLEVEL=1, but not necessarily the default   for I18NLEVEL=2.) The selection of the default comparator MAY be   adjustable by the server administrator, and MAY be sensitive to the   current user.  Once the IMAP connection enters authenticated state,   the default comparator MUST remain static for the remainder of that   connection.   Note that since SEARCH uses the substring operation, IMAP servers can   only implement collations that offer the substring operation (see[RFC4790], Section 4.2.2).  Since SORT uses the ordering operation   (which in turn uses the equality operation), IMAP servers that   advertise the SORT extension can only implement collations that offer   all three operations (see [RFC4790], Sections4.2.2-4.2.4).Newman, et al.              Standards Track                    [Page 10]

RFC 5255               IMAP Internationalization               June 2008   If the active collation does not provide the operations needed by an   IMAP command, the server MUST respond with a tagged BAD.4.5.  Compatibility Notes   Several server implementations deployed prior to the publication of   this specification comply with I18NLEVEL=1 (seeSection 4.3), but do   not advertise that.  Other legacy servers use the i;ascii-casemap   comparator (see [RFC4790]).   There is no good way for a client to know which comparator a legacy   server uses.  If the client has to assume the worst, it may end up   doing expensive local operations to obtain i;unicode-casemap   comparisons even though the server implements it.   Legacy server implementations which comply with I18NLEVEL=1 should be   updated to advertise I18NLEVEL=1.  All server implementations should   eventually be updated to comply with the I18NLEVEL=2 extension.4.6.  Comparators and Character EncodingsRFC 3501, Section 6.4.4, says:         In all search keys that use strings, a message matches the key         if the string is a substring of the field.  The matching is         case-insensitive.   When performing the SEARCH operation, the active comparator is   applied instead of the case-insensitive matching specified above.   An IMAP server which performs collation operations (e.g., as part of   commands such as SEARCH, SORT, and THREAD) does so according to the   following procedure:   (a) MIME encoding (for example, see [RFC2047] for headers and       [RFC2045] for body parts) MUST be removed in the texts being       collated.       If MIME encoding removal fails for a message (e.g., a body part       of the message has an unsupported Content-Transfer-Encoding, uses       characters not allowed by the Content-Transfer-Encoding, etc.),       the collation of this message is undefined by this specification,       and is handled in an implementation-dependent manner.   (b) The decoded text from (a) MUST be converted to the charset       expected by the active comparator.Newman, et al.              Standards Track                    [Page 11]

RFC 5255               IMAP Internationalization               June 2008   (c) For the substring operation:       If step (b) failed (e.g., the text is in an unknown charset,       contains a sequence that is not valid according in that charset,       etc.), the original decoded text from (a) (i.e., before the       charset conversion attempt) is collated using the i;octet       comparator (see [RFC4790]).       If step (b) was successful, the converted text from (b) is       collated according to the active comparator.       For the ordering operation:       All strings that were successfully converted by step (b) are       separated from all strings that failed step (b).  Strings in each       group are collated independently.  All strings successfully       converted by step (b) are then validated by the active       comparator.  Strings that pass validation are collated using the       active comparator.  All strings that either fail step (b) or fail       the active collation's validity operation are collated (after       applying step (a)) using the i;octet comparator (see [RFC4790]).       The resulting sorted list is produced by appending all collated       "failed" strings after all strings collated using the active       comparator.       Example: The following example demonstrates ordering of 4       different strings using the i;unicode-casemap [UCM] comparator.       Strings are represented using hexadecimal notation used by ABNF       [RFC5234].       (1) %xD0 %xC0 %xD0 %xBD %xD0 %xB4 %xD1 %x80 %xD0 %xB5           %xD0 %xB9 (labeled with charset=UTF-8)       (2) %xD1 %x81 %xD0 %x95 %xD0 %xA0 %xD0 %x93 %xD0 %x95           %xD0 %x99 (labeled with charset=UTF-8)       (3) %xD0 %x92 %xD0 %xB0 %xD1 %x81 %xD0 %xB8 %xD0 %xBB           %xD0 %xB8 %xFF %xB9 (labeled with charset=UTF-8)       (4) %xE1 %xCC %xC5 %xCB %xD3 %xC5 %xCA (labeled with           charset=KOI8-R)       Step (b) will convert string (4) to the following sequence of       octets (in UTF-8):       %xD0 %x90 %xD0 %xBB %xD0 %xB5 %xD0 %xBA %xD1 %x81 %xD0       %xB5 %xD0 %xB9       and will reject strings (1) and (3), as they contain octets not       allowed in charset=UTF-8.Newman, et al.              Standards Track                    [Page 12]

RFC 5255               IMAP Internationalization               June 2008       After that, using the i;unicode-casemap collation, string (4)       will collate before string (2).  Using the i;octet collation on       the original strings, string (3) will collate before string (1).       So the final ordering is as follows: (4) (2) (3) (1).   If the substring operation (e.g., IMAP SEARCH) of the active   comparator returns the "undefined" result (seeSection 4.2.3 of   [RFC4790]) for either the text specified in the SEARCH command or the   message text, then the operation is repeated on the result of step   (a) using the i;octet comparator.   The ordering operation (e.g., IMAP SORT and THREAD) SHOULD collate   the following together: strings encoded using unknown or invalid   character encodings, strings in unrecognized charsets, and invalid   input (as defined by the active collation).4.7.  COMPARATOR Command   Arguments: Optional comparator order arguments.   Response:  A possible COMPARATOR response (seeSection 4.8).   Result:    OK - Command completed              NO - No matching comparator found              BAD - Arguments invalid   The COMPARATOR command is valid in authenticated and selected states.   The COMPARATOR command is used to determine or change the active   comparator.  When issued with no arguments, it results in a   COMPARATOR response indicating the currently active comparator.   When issued with one or more comparator arguments, it changes the   active comparator as directed.  (If more than one installed   comparator is matched by an argument, the first argument wins.) The   COMPARATOR response lists all matching comparators if more than one   matches the specified patterns.   The argument "default" refers to the server's default comparator.   Otherwise, each argument is a collation specification as defined in   the Internet Application Protocol Comparator Registry [RFC4790].        < The client requests activating a Czech comparator if possible,          or else a generic international comparator which it considers          suitable for Czech.  The server picks the first supported          comparator. >Newman, et al.              Standards Track                    [Page 13]

RFC 5255               IMAP Internationalization               June 2008        C: A001 COMPARATOR "cz;*" i;basic        S: * COMPARATOR i;basic        S: A001 OK Will use i;basic for collation4.8.  COMPARATOR Response   Contents:  The active comparator.  An optional list of available               matching comparators   The COMPARATOR response occurs as a result of a COMPARATOR command.   The first argument in the comparator response is the name of the   active comparator.  The second argument is a list of comparators   which matched any of the arguments to the COMPARATOR command and is   present only if more than one match is found.4.9.  BADCOMPARATOR Response Code   This response code SHOULD be returned as a result of server failing   an IMAP command (returning NO), when the server knows that none of   the specified comparators match the requested comparator(s).4.10.  Formal Syntax   The following syntax specification inherits ABNF [RFC5234] rules from   IMAP4rev1 [RFC3501] and the Internet Application Protocol Comparator   Registry [RFC4790].    command-auth      =/ comparator-cmd    resp-text-code    =/ "BADCOMPARATOR"    comparator-cmd    = "COMPARATOR" *(SP comp-order-quoted)    response-payload  =/ comparator-data    comparator-data   = "COMPARATOR" SP comp-sel-quoted [SP "("                        comp-id-quoted *(SP comp-id-quoted) ")"]    comp-id-quoted    = astring        ; Once any literal wrapper or quoting is removed, this        ; follows the collation-id rule from [RFC4790]    comp-order-quoted = astring        ; Once any literal wrapper or quoting is removed, this        ; follows the collation-order rule from [RFC4790]Newman, et al.              Standards Track                    [Page 14]

RFC 5255               IMAP Internationalization               June 2008    comp-sel-quoted   = astring        ; Once any literal wrapper or quoting is removed, this        ; follows the collation-selected rule from [RFC4790]5.  Other IMAP Internationalization Issues   The following sections provide an overview of various other IMAP   internationalization issues.  These issues are not resolved by this   specification, but could be resolved by other standards work, such as   that being done by the EAI working group (see [IMAP-EAI]).5.1.  Unicode Userids and Passwords   IMAP4rev1 currently restricts the userid and password fields of the   LOGIN command to US-ASCII.  The "userid" and "password" fields of the   IMAP LOGIN command are restricted to US-ASCII only until a future   standards track RFC states otherwise.  Servers are encouraged to   validate both fields to make sure they conform to the formal syntax   of UTF-8 and to reject the LOGIN command if that syntax is violated.   Servers MAY reject the LOGIN command if either the "userid" or   "password" field contains an octet with the highest bit set.   When AUTHENTICATE is used, some servers may support userids and   passwords in Unicode [RFC3490] since SASL (see [RFC4422]) allows   that.  However, such userids cannot be used as part of email   addresses.5.2.  UTF-8 Mailbox Names   The modified UTF-7 mailbox naming convention described inSection5.1.3 of RFC 3501 is best viewed as an transition from the status quo   in 1996 when modified UTF-7 was first specified.  At that time, there   was widespread unofficial use of local character sets such as ISO-   8859-1 and Shift-JIS for non-ASCII mailbox names, with resultant   non-interoperability.   The requirements inSection 5.1 of RFC 3501 are very important if   we're ever going to be able to deploy UTF-8 mailbox names.  Servers   are encouraged to enforce them.5.3.  UTF-8 Domains, Addresses, and Mail Headers   There is now an IETF standard for "Internationalizing Domain Names in   Applications (IDNA)" [RFC3490].  While IMAP clients are free to   support this standard, an argument can be made that it would be   helpful to simple clients if the IMAP server could perform this   conversion (the same argument would apply to MIME header encodingNewman, et al.              Standards Track                    [Page 15]

RFC 5255               IMAP Internationalization               June 2008   [RFC2047]).  However, it would be unwise to move forward with such   work until the work in progress to define the format of international   email addresses is complete.6.  IANA Considerations   IANA added LANGUAGE, I18NLEVEL=1, and I18NLEVEL=2 to the IMAP4   Capabilities Registry.7.  Security Considerations   The LANGUAGE extension makes a new command available in "Not   Authenticated" state in IMAP.  Some IMAP implementations run with   root privilege when the server is in "Not Authenticated" state and do   not revoke that privilege until after authentication is complete.   Such implementations are particularly vulnerable to buffer overflow   security errors at this stage and need to implement parsing of this   command with extra care.   A LANGUAGE command issued prior to activation of a security layer is   subject to an active attack that suppresses or modifies the   negotiation, and thus makes STARTTLS or authentication error messages   more difficult to interpret.  This is not a new attack as the error   messages themselves are subject to active attack.  Clients MUST re-   issue the LANGUAGE command once a security layer is active, in order   to prevent this attack from impacting subsequent protocol operations.   LANGUAGE, I18NLEVEL=1, and I18NLEVEL=2 extensions use the UTF-8   charset; thus, the security considerations for UTF-8 [RFC3629] are   relevant.  However, neither uses UTF-8 for identifiers, so the most   serious concerns do not apply.8.  Acknowledgements   The LANGUAGE extension is based on a previous document by Mike   Gahrns, a substantial portion of the text in that section was written   by him.  Many people have participated in discussions about an IMAP   Language extension in the various fora of the IETF and Internet   working groups, so any list of contributors is bound to be   incomplete.  However, the authors would like to thank Andrew McCown   for early work on the original proposal, John Myers for suggestions   regarding the namespace issue, along with Jutta Degener, Mark   Crispin, Mark Pustilnik, Larry Osterman, Cyrus Daboo, Martin Duerst,   Timo Sirainen, Ben Campbell, and Magnus Nystrom for their many   suggestions that have been incorporated into this document.   Initial discussion of the I18NLEVEL=2 extension involved input from   Mark Crispin and other participants of the IMAP Extensions WG.Newman, et al.              Standards Track                    [Page 16]

RFC 5255               IMAP Internationalization               June 20089.  Relevant Sources of Documents for Internationalized IMAP    Implementations   This is a non-normative list of sources to consider when implementing   i18n-aware IMAP software.      o The LANGUAGE and I18NLEVEL=2 extensions to IMAP (this        specification).      o The 8-bit rules for mailbox naming inSection 5.1 of RFC 3501.      o The Mailbox International Naming Convention inSection 5.1.3 of        RFC 3501.      o MIME [RFC2045] for message bodies.      o MIME header encoding [RFC2047] for message headers.      o The IETF EAI working group.      o MIME Parameter Value and Encoded Word Extensions [RFC2231] for        filenames.  Quality IMAP server implementations will        automatically combine multipart parameters when generating the        BODYSTRUCTURE.  There is also some deployed non-standard use of        MIME header encoding inside double quotes for filenames.      o IDNA [RFC3490] and punycode [RFC3492] for domain names        (currently only relevant to IMAP clients).      o The UTF-8 charset [RFC3629].      o The IETF policy on Character Sets and Languages [RFC2277].10.  Normative References   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate              Requirement Levels",BCP 14,RFC 2119, March 1997.   [RFC2277]  Alvestrand, H., "IETF Policy on Character Sets and              Languages",BCP 18,RFC 2277, January 1998.   [RFC2342]  Gahrns, M. and C. Newman, "IMAP4 Namespace",RFC 2342, May              1998.   [RFC3501]  Crispin, M., "INTERNET MESSAGE ACCESS PROTOCOL - VERSION              4rev1",RFC 3501, March 2003.Newman, et al.              Standards Track                    [Page 17]

RFC 5255               IMAP Internationalization               June 2008   [RFC3629]  Yergeau, F., "UTF-8, a transformation format of ISO              10646", STD 63,RFC 3629, November 2003.   [RFC5234]  Crocker, D., Ed., and P. Overell, "Augmented BNF for              Syntax Specifications: ABNF", STD 68,RFC 5234, January              2008.   [RFC4422]  Melnikov, A., Ed., and K. Zeilenga, Ed., "Simple              Authentication and Security Layer (SASL)",RFC 4422, June              2006.   [RFC4466]  Melnikov, A. and C. Daboo, "Collected Extensions to IMAP4              ABNF",RFC 4466, April 2006.   [RFC4646]  Phillips, A. and M. Davis, "Tags for Identifying              Languages",BCP 47,RFC 4646, September 2006.   [RFC4647]  Phillips, A. and M. Davis, "Matching of Language Tags",BCP 47,RFC 4647, September 2006.   [RFC4790]  Newman, C., Duerst, M., and A. Gulbrandsen, "Internet              Application Protocol Collation Registry",RFC 4790, March              2007.   [SORT]     Crispin, M. and K. Murchison, "Internet Message Access              Protocol - SORT and THREAD Extensions",RFC 5256, June              2008.   [UCM]      Crispin, M., "i;unicode-casemap - Simple Unicode Collation              Algorithm",RFC 5051, October 2007.   [RFC2045]  Freed, N. and N. Borenstein, "Multipurpose Internet Mail              Extensions (MIME) Part One: Format of Internet Message              Bodies",RFC 2045, November 1996.   [RFC2047]  Moore, K., "MIME (Multipurpose Internet Mail Extensions)              Part Three: Message Header Extensions for Non-ASCII Text",RFC 2047, November 1996.11. Informative References   [RFC2231]  Freed, N. and K. Moore, "MIME Parameter Value and Encoded              Word Extensions: Character Sets, Languages, and              Continuations",RFC 2231, November 1997.   [RFC3490]  Faltstrom, P., Hoffman, P., and A. Costello,              "Internationalizing Domain Names in Applications (IDNA)",RFC 3490, March 2003.Newman, et al.              Standards Track                    [Page 18]

RFC 5255               IMAP Internationalization               June 2008   [RFC3492]  Costello, A., "Punycode: A Bootstring encoding of Unicode              for Internationalized Domain Names in Applications              (IDNA)",RFC 3492, March 2003.   [METADATA] Daboo, C.,"IMAP METADATA Extension", Work in Progress,              April 2008.   [IMAP-EAI] Resnick, P., and C. Newman,"IMAP Support for UTF-8", Work              in Progress, November 2007.Authors' Addresses   Chris Newman   Sun Microsystems   3401 Centrelake Dr., Suite 410   Ontario, CA 91761   US   EMail: chris.newman@sun.com   Arnt Gulbrandsen   Oryx Mail Systems GmbH   Schweppermannstr. 8   D-81671 Muenchen   Germany   EMail: arnt@oryx.com   Fax: +49 89 4502 9758   Alexey Melnikov   Isode Limited   5 Castle Business Village, 36 Station Road,   Hampton, Middlesex, TW12 2BX, UK   EMail: Alexey.Melnikov@isode.comNewman, et al.              Standards Track                    [Page 19]

RFC 5255               IMAP Internationalization               June 2008Full Copyright Statement   Copyright (C) The IETF Trust (2008).   This document is subject to the rights, licenses and restrictions   contained inBCP 78, and except as set forth therein, the authors   retain all their rights.   This document and the information contained herein are provided on an   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND   THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS   OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF   THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.Intellectual Property   The IETF takes no position regarding the validity or scope of any   Intellectual Property Rights or other rights that might be claimed to   pertain to the implementation or use of the technology described in   this document or the extent to which any license under such rights   might or might not be available; nor does it represent that it has   made any independent effort to identify any such rights.  Information   on the procedures with respect to rights in RFC documents can be   found inBCP 78 andBCP 79.   Copies of IPR disclosures made to the IETF Secretariat and any   assurances of licenses to be made available, or the result of an   attempt made to obtain a general license or permission for the use of   such proprietary rights by implementers or users of this   specification can be obtained from the IETF on-line IPR repository athttp://www.ietf.org/ipr.   The IETF invites any interested party to bring to its attention any   copyrights, patents or patent applications, or other proprietary   rights that may cover technology that may be required to implement   this standard.  Please address the information to the IETF at   ietf-ipr@ietf.org.Newman, et al.              Standards Track                    [Page 20]

[8]ページ先頭

©2009-2025 Movatter.jp