Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Info page]

EXPERIMENTAL
Network Working Group                                          G. SissonRequest for Comments: 4471                                     B. LaurieCategory: Experimental                                           Nominet                                                          September 2006Derivation of DNS Name Predecessor and SuccessorStatus of This Memo   This memo defines an Experimental Protocol for the Internet   community.  It does not specify an Internet standard of any kind.   Discussion and suggestions for improvement are requested.   Distribution of this memo is unlimited.Copyright Notice   Copyright (C) The Internet Society (2006).Abstract   This document describes two methods for deriving the canonically-   ordered predecessor and successor of a DNS name.  These methods may   be used for dynamic NSEC resource record synthesis, enabling   security-aware name servers to provide authenticated denial of   existence without disclosing other owner names in a DNSSEC secured   zone.Table of Contents1. Introduction ....................................................22. Notational Conventions ..........................................33. Derivations .....................................................33.1. Absolute Method ............................................33.1.1. Derivation of DNS Name Predecessor ..................33.1.2. Derivation of DNS Name Successor ....................43.2. Modified Method ............................................43.2.1. Derivation of DNS Name Predecessor ..................53.2.2. Derivation of DNS Name Successor ....................64. Notes ...........................................................64.1. Test for Existence .........................................64.2. Case Considerations ........................................74.3. Choice of Range ............................................74.4. Wild Card Considerations ...................................84.5. Possible Modifications .....................................84.5.1. Restriction of Effective Maximum DNS Name Length ....8           4.5.2. Use of Modified Method with Zones ContainingSisson & Laurie               Experimental                      [Page 1]

RFC 4471           DNS Name Predecessor and Successor     September 2006                  SRV RRs .............................................85. Examples ........................................................95.1. Examples of Immediate Predecessors Using Absolute Method ..105.2. Examples of Immediate Successors Using Absolute Method ....145.3. Examples of Predecessors Using Modified Method ............195.4. Examples of Successors Using Modified Method ..............206. Security Considerations ........................................217. Acknowledgements ...............................................218. References .....................................................218.1. Normative References ......................................218.2. Informative References ....................................221.  Introduction   One of the proposals for avoiding the exposure of zone information   during the deployment DNSSEC is dynamic NSEC resource record (RR)   synthesis.  This technique is described in [DNSSEC-TRANS] and   [RFC4470], and involves the generation of NSEC RRs that just span the   query name for non-existent owner names.  In order to do this, the   DNS names that would occur just prior to and just following a given   query name must be calculated in real time, as maintaining a list of   all possible owner names that might occur in a zone would be   impracticable.Section 6.1 of [RFC4034] defines canonical DNS name order.  This   document does not amend or modify this definition.  However, the   derivation of immediate predecessor and successor, although trivial,   is non-obvious.  Accordingly, several methods are described here as   an aid to implementors and a reference to other interested parties.   This document describes two methods:   1.  An "absolute method", which returns the immediate predecessor or       successor of a domain name such that no valid DNS name could       exist between that DNS name and the predecessor or successor.   2.  A "modified method", which returns a predecessor and successor       that are more economical in size and computation.  This method is       restricted to use with zones consisting exclusively of owner       names that contain no more than one label more than the owner       name of the apex, where the longest possible owner name (i.e.,       one with a maximum length left-most label) would not exceed the       maximum DNS name length.  This is, however, the type of zone for       which the technique of online signing is most likely to be used.Sisson & Laurie               Experimental                      [Page 2]

RFC 4471           DNS Name Predecessor and Successor     September 20062.  Notational Conventions   The following notational conventions are used in this document for   economy of expression:   N: An unspecified DNS name.   P(N): Immediate predecessor to N (absolute method).   S(N): Immediate successor to N (absolute method).   P'(N): Predecessor to N (modified method).   S'(N): Successor to N (modified method).3.  Derivations   These derivations assume that all uppercase US-ASCII letters in N   have already been replaced by their corresponding lowercase   equivalents.  Unless otherwise specified, processing stops after the   first step in which a condition is met.   The derivations make reference to maximum label length and maximum   DNS name length; these are defined inSection 3.1 of [RFC1034] to be   63 and 255 octets, respectively.3.1.  Absolute Method3.1.1.  Derivation of DNS Name Predecessor   To derive P(N):   1.  If N is the same as the owner name of the zone apex, prepend N       repeatedly with labels of the maximum length possible consisting       of octets of the maximum sort value (e.g., 0xff) until N is the       maximum length possible; otherwise proceed to the next step.   2.  If the least significant (left-most) label of N consists of a       single octet of the minimum sort value (e.g., 0x00), remove that       label; otherwise proceed to the next step.   3.  If the least significant (right-most) octet in the least       significant (left-most) label of N is the minimum sort value,       remove the least significant octet and proceed to step 5.   4.  Decrement the value of the least significant (right-most) octet       of the least significant (left-most) label, skipping any values       that correspond to uppercase US-ASCII letters, and then appendSisson & Laurie               Experimental                      [Page 3]

RFC 4471           DNS Name Predecessor and Successor     September 2006       the least significant (left-most) label with as many octets as       possible of the maximum sort value.  Proceed to the next step.   5.  Prepend N repeatedly with labels of as long a length as possible       consisting of octets of the maximum sort value until N is the       maximum length possible.3.1.2.  Derivation of DNS Name Successor   To derive S(N):   1.  If N is two or more octets shorter than the maximum DNS name       length, prepend N with a label containing a single octet of the       minimum sort value (e.g., 0x00); otherwise proceed to the next       step.   2.  If N is one octet shorter than the maximum DNS name length and       the least significant (left-most) label is one or more octets       shorter than the maximum label length, append an octet of the       minimum sort value to the least significant label; otherwise       proceed to the next step.   3.  Increment the value of the least significant (right-most) octet       in the least significant (left-most) label that is less than the       maximum sort value (e.g., 0xff), skipping any values that       correspond to uppercase US-ASCII letters, and then remove any       octets to the right of that one.  If all octets in the label are       the maximum sort value, then proceed to the next step.   4.  Remove the least significant (left-most) label.  Unless N is now       the same as the owner name of the zone apex (this will occur only       if N was the maximum possible name in canonical DNS name order,       and thus has wrapped to the owner name of zone apex), repeat       starting at step 2.3.2.  Modified Method   This method is for use with zones consisting only of single-label   owner names where an owner name consisting of label of maximum length   would not result in a DNS name that exceeded the maximum DNS name   length.  This method is computationally simpler and returns values   that are more economical in size than the absolute method.  It   differs from the absolute method detailed above in the following   ways:   1.  Step 1 of the derivation P(N) has been omitted as the existence       of the owner name of the zone apex never requires denial.Sisson & Laurie               Experimental                      [Page 4]

RFC 4471           DNS Name Predecessor and Successor     September 2006   2.  A new step 1 has been introduced that removes unnecessary labels.   3.  Step 4 of the derivation P(N) has been omitted as it is only       necessary for zones containing owner names consisting of more       than one label.  This omission generally results in a significant       reduction of the length of derived predecessors.   4.  Step 1 of the derivation S(N) had been omitted as it is only       necessary for zones containing owner names consisting of more       than one label.  This omission results in a tiny reduction of the       length of derived successors, and maintains consistency with the       modification of step 4 of the derivation P(N) described above.   5.  Steps 2 and 4 of the derivation S(N) have been modified to       eliminate checks for maximum DNS name length, as it is an       assumption of this method that no DNS name in the zone can exceed       the maximum DNS name length.3.2.1.  Derivation of DNS Name Predecessor   To derive P'(N):   1.  If N is two or more labels longer than the owner name of the       apex, repeatedly remove the least significant (left-most) label       until N is only one label longer than the owner name of the apex;       otherwise proceed to the next step.   2.  If the least significant (left-most) label of N consists of a       single octet of the minimum sort value (e.g., 0x00), remove that       label; otherwise proceed to the next step.  (If this condition is       met, P'(N) is the owner name of the apex.)   3.  If the least significant (right-most) octet in the least       significant (left-most) label of N is the minimum sort value,       remove the least significant octet.   4.  Decrement the value of the least significant (right-most) octet,       skipping any values that correspond to uppercase US-ASCII       letters, and then append the label with as many octets as       possible of the maximum sort value.Sisson & Laurie               Experimental                      [Page 5]

RFC 4471           DNS Name Predecessor and Successor     September 20063.2.2.  Derivation of DNS Name Successor   To derive S'(N):   1.  If N is two or more labels longer than the owner name of the       apex, repeatedly remove the least significant (left-most) label       until N is only one label longer than the owner name of the apex.       Proceed to the next step.   2.  If the least significant (left-most) label of N is one or more       octets shorter than the maximum label length, append an octet of       the minimum sort value to the least significant label; otherwise       proceed to the next step.   3.  Increment the value of the least significant (right-most) octet       in the least significant (left-most) label that is less than the       maximum sort value (e.g., 0xff), skipping any values that       correspond to uppercase US-ASCII letters, and then remove any       octets to the right of that one.  If all octets in the label are       the maximum sort value, then proceed to the next step.   4.  Remove the least significant (left-most) label.  (This will occur       only if the least significant label is the maximum label length       and consists entirely of octets of the maximum sort value, and       thus has wrapped to the owner name of the zone apex.)4.  Notes4.1.  Test for Existence   Before using the result of P(N) or P'(N) as the owner name of an NSEC   RR in a DNS response, a name server should test to see whether the   name exists.  If it does, either a standard non-synthesised NSEC RR   should be used, or the synthesised NSEC RR should reflect the RRset   types that exist at the NSEC RR's owner name in the Type Bit Map   field as specified bySection 4.1.2 of [RFC4034].  Implementors will   likely find it simpler to use a non-synthesised NSEC RR.  For further   details, seeSection 2 of [RFC4470].Sisson & Laurie               Experimental                      [Page 6]

RFC 4471           DNS Name Predecessor and Successor     September 20064.2.  Case ConsiderationsSection 3.5 of [RFC1034] specifies that "while upper and lower case   letters are allowed in names, no significance is attached to the   case".  Additionally,Section 6.1 of [RFC4034] states that when   determining canonical DNS name order, "uppercase US-ASCII letters are   treated as if they were lowercase US-ASCII letters".  Consequently,   values corresponding to US-ASCII uppercase letters must be skipped   when decrementing and incrementing octets in the derivations   described inSection 3.   The following pseudo-code is illustrative:   Decrement the value of an octet:      if (octet == '[')       // '[' is just after uppercase 'Z'              octet = '@';    // '@' is just prior to uppercase 'A'      else              octet--;   Increment the value of an octet:      if (octet == '@')       // '@' is just prior to uppercase 'A'              octet = '[';    // '[' is just after uppercase 'Z'      else              octet++;4.3.  Choice of Range   [RFC2181] makes the clarification that "any binary string whatever   can be used as the label of any resource record".  Consequently, the   minimum sort value may be set as 0x00 and the maximum sort value as   0xff, and the range of possible values will be any DNS name that   contains octets of any value other than those corresponding to   uppercase US-ASCII letters.   However, if all owner names in a zone are in the letter-digit-hyphen,   or LDH, format specified in [RFC1034], it may be desirable to   restrict the range of possible values to DNS names containing only   LDH values.  This has the effect of   1.  making the output of tools such as `dig' and `nslookup' less       subject to confusion,   2.  minimising the impact that NSEC RRs containing DNS names with       non-LDH values (or non-printable values) might have on faulty DNS       resolver implementations, andSisson & Laurie               Experimental                      [Page 7]

RFC 4471           DNS Name Predecessor and Successor     September 2006   3.  preventing the possibility of results that are wildcard DNS names       (seeSection 4.4).   This may be accomplished by using a minimum sort value of 0x1f (US-   ASCII character `-') and a maximum sort value of 0x7a (US-ASCII   character lowercase `z'), and then skipping non-LDH, non-lowercase   values when incrementing or decrementing octets.4.4.  Wild Card Considerations   Neither derivation avoids the possibility that the result may be a   DNS name containing a wildcard label, i.e., a label containing a   single octet with the value 0x2a (US-ASCII character `*').  With   additional tests, wildcard DNS names may be explicitly avoided;   alternatively, if the range of octet values can be restricted to   those corresponding to letter-digit-hyphen, or LDH, characters (seeSection 4.3), such DNS names will not occur.   Note that it is improbable that a result that is a wildcard DNS name   will occur unintentionally; even if one does occur either as the   owner name of, or in the RDATA of an NSEC RR, it is treated as a   literal DNS name with no special meaning.4.5.  Possible Modifications4.5.1.  Restriction of Effective Maximum DNS Name Length   [RFC1034] specifies that "the total number of octets that represent a   name (i.e., the sum of all label octets and label lengths) is limited   to 255", including the null (zero-length) label that represents the   root.  For the purpose of deriving predecessors and successors during   NSEC RR synthesis, the maximum DNS name length may be effectively   restricted to the length of the longest DNS name in the zone.  This   will minimise the size of responses containing synthesised NSEC RRs   but, especially in the case of the modified method, may result in   some additional computational complexity.   Note that this modification will have the effect of revealing   information about the longest name in the zone.  Moreover, when the   contents of the zone changes, e.g., during dynamic updates and zone   transfers, care must be taken to ensure that the effective maximum   DNS name length agrees with the new contents.4.5.2.  Use of Modified Method with Zones Containing SRV RRs   Normally, the modified method cannot be used in zones that contain   Service Record (SRV) RRs [RFC2782], as SRV RRs have owner names that   contain multiple labels.  However, the use of SRV RRs can beSisson & Laurie               Experimental                      [Page 8]

RFC 4471           DNS Name Predecessor and Successor     September 2006   accommodated by various techniques.  There are at least four possible   ways to do this:   1.  Use conventional NSEC RRs for the region of the zone that       contains first-level labels beginning with the underscore (`_')       character.  For the purposes of generating these NSEC RRs, the       existence of (possibly fictional) ownernames `9{63}' and `a'       could be assumed, providing a lower and upper bound for this       region.  Then all queries where the QNAME does not exist but       contains a first-level label beginning with an underscore could       be handled using the normal DNSSEC protocol.       This approach would make it possible to enumerate all DNS names       in the zone containing a first-level label beginning with       underscore, including all SRV RRs, but this may be of less a       concern to the zone administrator than incurring the overhead of       the absolute method or of the following variants of the modified       method.   2.  The absolute method could be used for synthesising NSEC RRs for       all queries where the QNAME contains a leading underscore.       However, this re-introduces the susceptibility of the absolute       method to denial of service activity, as an attacker could send       queries for an effectively inexhaustible supply of domain names       beginning with a leading underscore.   3.  A variant of the modified method could be used for synthesising       NSEC RRs for all queries where the QNAME contains a leading       underscore.  This variant would assume that all predecessors and       successors to queries where the QNAME contains a leading       underscore may consist of two labels rather than only one.  This       introduces a little additional complexity without incurring the       full increase in response size and computational complexity as       the absolute method.   4.  Finally, a variant of the modified method that assumes that all       owner names in the zone consist of one or two labels could be       used.  However, this negates much of the reduction in response       size of the modified method and may be nearly as computationally       complex as the absolute method.5.  Examples   In the following examples,      the owner name of the zone apex is "example.com.",Sisson & Laurie               Experimental                      [Page 9]

RFC 4471           DNS Name Predecessor and Successor     September 2006      the range of octet values is 0x00 - 0xff excluding values      corresponding to uppercase US-ASCII letters, and      non-printable octet values are expressed as three-digit decimal      numbers preceded by a backslash (as specified inSection 5.1 of      [RFC1035]).5.1.  Examples of Immediate Predecessors Using Absolute Method   Example of a typical case:      P(foo.example.com.) =           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255.\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255.\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255.fon\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255.example.com.      or, in alternate notation:           \255{49}.\255{63}.\255{63}.fon\255{60}.example.com.      where {n} represents the number of repetitions of an octet.   Example where least significant (left-most) label of DNS name   consists of a single octet of the minimum sort value:      P(\000.foo.example.com.) = foo.example.com.Sisson & Laurie               Experimental                     [Page 10]

RFC 4471           DNS Name Predecessor and Successor     September 2006   Example where least significant (right-most) octet of least   significant (left-most) label has the minimum sort value:      P(foo\000.example.com.) =           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255.\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255.\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255.\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255.foo.example.com.      or, in alternate notation:           \255{45}.\255{63}.\255{63}.\255{63}.foo.example.com.Sisson & Laurie               Experimental                     [Page 11]

RFC 4471           DNS Name Predecessor and Successor     September 2006   Example where DNS name contains an octet that must be decremented by   skipping values corresponding to US-ASCII uppercase letters:      P(fo\[.example.com.) =           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255.\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255.\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255.fo\@\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255.example.com.      or, in alternate notation:           \255{49}.\255{63}.\255{63}.fo\@\255{60}.example.com.      where {n} represents the number of repetitions of an octet.Sisson & Laurie               Experimental                     [Page 12]

RFC 4471           DNS Name Predecessor and Successor     September 2006   Example where DNS name is the owner name of the zone apex, and   consequently wraps to the DNS name with the maximum possible sort   order in the zone:      P(example.com.) =           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255.\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255.\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255.\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255.example.com.      or, in alternate notation:           \255{49}.\255{63}.\255{63}.\255{63}.example.com.Sisson & Laurie               Experimental                     [Page 13]

RFC 4471           DNS Name Predecessor and Successor     September 20065.2.  Examples of Immediate Successors Using Absolute Method   Example of typical case:      S(foo.example.com.) = \000.foo.example.com.   Example where DNS name is one octet short of the maximum DNS name   length:      N =  fooooooooooooooooooooooooooooooooooooooooooooooo           .ooooooooooooooooooooooooooooooooooooooooooooooo           oooooooooooooooo.ooooooooooooooooooooooooooooooo           oooooooooooooooooooooooooooooooo.ooooooooooooooo           oooooooooooooooooooooooooooooooooooooooooooooooo.example.com.      or, in alternate notation:           fo{47}.o{63}.o{63}.o{63}.example.com.      S(N) =           fooooooooooooooooooooooooooooooooooooooooooooooo           \000.ooooooooooooooooooooooooooooooooooooooooooo           oooooooooooooooooooo.ooooooooooooooooooooooooooo           oooooooooooooooooooooooooooooooooooo.ooooooooooo           oooooooooooooooooooooooooooooooooooooooooooooooo           oooo.example.com.      or, in alternate notation:           fo{47}\000.o{63}.o{63}.o{63}.example.com.Sisson & Laurie               Experimental                     [Page 14]

RFC 4471           DNS Name Predecessor and Successor     September 2006   Example where DNS name is the maximum DNS name length:      N  = fooooooooooooooooooooooooooooooooooooooooooooooo           o.oooooooooooooooooooooooooooooooooooooooooooooo           ooooooooooooooooo.oooooooooooooooooooooooooooooo           ooooooooooooooooooooooooooooooooo.oooooooooooooo           oooooooooooooooooooooooooooooooooooooooooooooooo           o.example.com.      or, in alternate notation:           fo{48}.o{63}.o{63}.o{63}.example.com.      S(N) =           fooooooooooooooooooooooooooooooooooooooooooooooo           p.oooooooooooooooooooooooooooooooooooooooooooooo           ooooooooooooooooo.oooooooooooooooooooooooooooooo           ooooooooooooooooooooooooooooooooo.oooooooooooooo           oooooooooooooooooooooooooooooooooooooooooooooooo           o.example.com.      or, in alternate notation:           fo{47}p.o{63}.o{63}.o{63}.example.com.Sisson & Laurie               Experimental                     [Page 15]

RFC 4471           DNS Name Predecessor and Successor     September 2006   Example where DNS name is the maximum DNS name length and the least   significant (left-most) label has the maximum sort value:      N =  \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255.ooooooooooooooooooooooooooooooooooooooooooo           oooooooooooooooooooo.ooooooooooooooooooooooooooo           oooooooooooooooooooooooooooooooooooo.ooooooooooo           oooooooooooooooooooooooooooooooooooooooooooooooo           oooo.example.com.      or, in alternate notation:           \255{49}.o{63}.o{63}.o{63}.example.com.      S(N) =           oooooooooooooooooooooooooooooooooooooooooooooooo           oooooooooooooop.oooooooooooooooooooooooooooooooo           ooooooooooooooooooooooooooooooo.oooooooooooooooo           ooooooooooooooooooooooooooooooooooooooooooooooo.           example.com.      or, in alternate notation:           o{62}p.o{63}.o{63}.example.com.Sisson & Laurie               Experimental                     [Page 16]

RFC 4471           DNS Name Predecessor and Successor     September 2006   Example where DNS name is the maximum DNS name length and the eight   least significant (right-most) octets of the least significant   (left-most) label have the maximum sort value:      N  = foooooooooooooooooooooooooooooooooooooooo\255           \255\255\255\255\255\255\255.ooooooooooooooooooo           oooooooooooooooooooooooooooooooooooooooooooo.ooo           oooooooooooooooooooooooooooooooooooooooooooooooo           oooooooooooo.ooooooooooooooooooooooooooooooooooo           oooooooooooooooooooooooooooo.example.com.      or, in alternate notation:           fo{40}\255{8}.o{63}.o{63}.o{63}.example.com.      S(N) =           fooooooooooooooooooooooooooooooooooooooop.oooooo           oooooooooooooooooooooooooooooooooooooooooooooooo           ooooooooo.oooooooooooooooooooooooooooooooooooooo           ooooooooooooooooooooooooo.oooooooooooooooooooooo           ooooooooooooooooooooooooooooooooooooooooo.example.com.      or, in alternate notation:           fo{39}p.o{63}.o{63}.o{63}.example.com.Sisson & Laurie               Experimental                     [Page 17]

RFC 4471           DNS Name Predecessor and Successor     September 2006   Example where DNS name is the maximum DNS name length and contains an   octet that must be incremented by skipping values corresponding to   US-ASCII uppercase letters:      N  = fooooooooooooooooooooooooooooooooooooooooooooooo           \@.ooooooooooooooooooooooooooooooooooooooooooooo           oooooooooooooooooo.ooooooooooooooooooooooooooooo           oooooooooooooooooooooooooooooooooo.ooooooooooooo           oooooooooooooooooooooooooooooooooooooooooooooooo           oo.example.com.      or, in alternate notation:           fo{47}\@.o{63}.o{63}.o{63}.example.com.      S(N) =           fooooooooooooooooooooooooooooooooooooooooooooooo           \[.ooooooooooooooooooooooooooooooooooooooooooooo           oooooooooooooooooo.ooooooooooooooooooooooooooooo           oooooooooooooooooooooooooooooooooo.ooooooooooooo           oooooooooooooooooooooooooooooooooooooooooooooooo           oo.example.com.      or, in alternate notation:           fo{47}\[.o{63}.o{63}.o{63}.example.com.Sisson & Laurie               Experimental                     [Page 18]

RFC 4471           DNS Name Predecessor and Successor     September 2006   Example where DNS name has the maximum possible sort order in the   zone, and consequently wraps to the owner name of the zone apex:      N  = \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255.\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255.\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255.\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255.example.com.      or, in alternate notation:           \255{49}.\255{63}.\255{63}.\255{63}.example.com.      S(N) = example.com.5.3.  Examples of Predecessors Using Modified Method   Example of a typical case:      P'(foo.example.com.) =           fon\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255.example.com.      or, in alternate notation:           fon\255{60}.example.com.Sisson & Laurie               Experimental                     [Page 19]

RFC 4471           DNS Name Predecessor and Successor     September 2006   Example where DNS name contains more labels than DNS names in the   zone:      P'(bar.foo.example.com.) = foo.example.com.   Example where least significant (right-most) octet of least   significant (left-most) label has the minimum sort value:      P'(foo\000.example.com.) = foo.example.com.   Example where least significant (left-most) label has the minimum   sort value:      P'(\000.example.com.) = example.com.   Example where DNS name is the owner name of the zone apex, and   consequently wraps to the DNS name with the maximum possible sort   order in the zone:      P'(example.com.) =           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255.example.com.      or, in alternate notation:           \255{63}.example.com.5.4.  Examples of Successors Using Modified Method   Example of a typical case:      S'(foo.example.com.) = foo\000.example.com.   Example where DNS name contains more labels than DNS names in the   zone:      S'(bar.foo.example.com.) = foo\000.example.com.   Example where least significant (left-most) label has the maximum   sort value, and consequently wraps to the owner name of the zone   apex:Sisson & Laurie               Experimental                     [Page 20]

RFC 4471           DNS Name Predecessor and Successor     September 2006      N  = \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255\255\255\255\255\255\255\255\255\255           \255\255\255.example.com.      or, in alternate notation:           \255{63}.example.com.      S'(N) = example.com.6.  Security Considerations   The derivation of some predecessors/successors requires the testing   of more conditions than others.  Consequently, the effectiveness of a   denial-of-service attack may be enhanced by sending queries that   require more conditions to be tested.  The modified method involves   the testing of fewer conditions than the absolute method and   consequently is somewhat less susceptible to this exposure.7.  Acknowledgements   The authors would like to thank Sam Weiler, Olaf Kolkman, Olafur   Gudmundsson, and Niall O'Reilly for their review and input.8.  References8.1.  Normative References   [RFC1034]      Mockapetris, P., "Domain names - concepts and                  facilities", STD 13,RFC 1034, November 1987.   [RFC1035]      Mockapetris, P., "Domain names - implementation and                  specification", STD 13,RFC 1035, November 1987.   [RFC2181]      Elz, R. and R. Bush, "Clarifications to the DNS                  Specification",RFC 2181, July 1997.   [RFC2782]      Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR                  for specifying the location of services (DNS SRV)",RFC 2782, February 2000.   [RFC4034]      Arends, R., Austein, R., Larson, M., Massey, D., and                  S. Rose, "Resource Records for the DNS Security                  Extensions",RFC 4034, March 2005.Sisson & Laurie               Experimental                     [Page 21]

RFC 4471           DNS Name Predecessor and Successor     September 20068.2.  Informative References   [RFC4470]      Weiler, S. and J. Ihren, "Minimally Covering NSEC                  Records and DNSSEC On-line Signing",RFC 4470, April                  2006.   [DNSSEC-TRANS] Arends, R., Koch, P., and J. Schlyter, "Evaluating                  DNSSEC Transition Mechanisms", Work in Progress,                  February 2005.Authors' Addresses   Geoffrey Sisson   Nominet   Sandford Gate   Sandy Lane West   Oxford   OX4 6LB   GB   Phone: +44 1865 332211   EMail: geoff@nominet.org.uk   Ben Laurie   Nominet   17 Perryn Road   London   W3 7LR   GB   Phone: +44 20 8735 0686   EMail: ben@algroup.co.ukSisson & Laurie               Experimental                     [Page 22]

RFC 4471           DNS Name Predecessor and Successor     September 2006Full Copyright Statement   Copyright (C) The Internet Society (2006).   This document is subject to the rights, licenses and restrictions   contained inBCP 78, and except as set forth therein, the authors   retain all their rights.   This document and the information contained herein are provided on an   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET   ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,   INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE   INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.Intellectual Property   The IETF takes no position regarding the validity or scope of any   Intellectual Property Rights or other rights that might be claimed to   pertain to the implementation or use of the technology described in   this document or the extent to which any license under such rights   might or might not be available; nor does it represent that it has   made any independent effort to identify any such rights.  Information   on the procedures with respect to rights in RFC documents can be   found inBCP 78 andBCP 79.   Copies of IPR disclosures made to the IETF Secretariat and any   assurances of licenses to be made available, or the result of an   attempt made to obtain a general license or permission for the use of   such proprietary rights by implementers or users of this   specification can be obtained from the IETF on-line IPR repository athttp://www.ietf.org/ipr.   The IETF invites any interested party to bring to its attention any   copyrights, patents or patent applications, or other proprietary   rights that may cover technology that may be required to implement   this standard.  Please address the information to the IETF at   ietf-ipr@ietf.org.Acknowledgement   Funding for the RFC Editor function is provided by the IETF   Administrative Support Activity (IASA).Sisson & Laurie               Experimental                     [Page 23]

[8]ページ先頭

©2009-2025 Movatter.jp