Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Errata] [Info page]

INFORMATIONAL
Errata Exist
Network Working Group                                         D. WhitingRequest for Comments: 3610                                          HifnCategory: Informational                                       R. Housley                                                          Vigil Security                                                             N. Ferguson                                                               MacFergus                                                          September 2003Counter with CBC-MAC (CCM)Status of this Memo   This memo provides information for the Internet community.  It does   not specify an Internet standard of any kind.  Distribution of this   memo is unlimited.Copyright Notice   Copyright (C) The Internet Society (2003).  All Rights Reserved.Abstract   Counter with CBC-MAC (CCM) is a generic authenticated encryption   block cipher mode.  CCM is defined for use with 128-bit block   ciphers, such as the Advanced Encryption Standard (AES).1.  Introduction   Counter with CBC-MAC (CCM) is a generic authenticated encryption   block cipher mode.  CCM is only defined for use with 128-bit block   ciphers, such as AES [AES].  The CCM design principles can easily be   applied to other block sizes, but these modes will require their own   specifications.1.1.  Conventions Used In This Document   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this   document are to be interpreted as described in [STDWORDS].2.  CCM Mode Specification   For the generic CCM mode there are two parameter choices.  The first   choice is M, the size of the authentication field.  The choice of the   value for M involves a trade-off between message expansion and the   probability that an attacker can undetectably modify a message.   Valid values are 4, 6, 8, 10, 12, 14, and 16 octets.  The secondWhiting, et al.              Informational                      [Page 1]

RFC 3610               Counter with CBC-MAC (CCM)         September 2003   choice is L, the size of the length field.  This value requires a   trade-off between the maximum message size and the size of the Nonce.   Different applications require different trade-offs, so L is a   parameter.  Valid values of L range between 2 octets and 8 octets   (the value L=1 is reserved).       Name  Description                               Size    Encoding       ----  ----------------------------------------  ------  --------       M     Number of octets in authentication field  3 bits  (M-2)/2       L     Number of octets in length field          3 bits  L-12.1.  Inputs   To authenticate and encrypt a message the following information is   required:   1.  An encryption key K suitable for the block cipher.   2.  A nonce N of 15-L octets.  Within the scope of any encryption key       K, the nonce value MUST be unique.  That is, the set of nonce       values used with any given key MUST NOT contain any duplicate       values.  Using the same nonce for two different messages       encrypted with the same key destroys the security properties of       this mode.   3.  The message m, consisting of a string of l(m) octets where 0 <=       l(m) < 2^(8L).  The length restriction ensures that l(m) can be       encoded in a field of L octets.   4.  Additional authenticated data a, consisting of a string of l(a)       octets where 0 <= l(a) < 2^64.  This additional data is       authenticated but not encrypted, and is not included in the       output of this mode.  It can be used to authenticate plaintext       packet headers, or contextual information that affects the       interpretation of the message.  Users who do not wish to       authenticate additional data can provide a string of length zero.   The inputs are summarized as:      Name  Description                          Size      ----  -----------------------------------  -----------------------      K     Block cipher key                     Depends on block cipher      N     Nonce                                15-L octets      m     Message to authenticate and encrypt  l(m) octets      a     Additional authenticated data        l(a) octetsWhiting, et al.              Informational                      [Page 2]

RFC 3610               Counter with CBC-MAC (CCM)         September 20032.2.  Authentication   The first step is to compute the authentication field T.  This is   done using CBC-MAC [MAC].  We first define a sequence of blocks B_0,   B_1, ..., B_n and then apply CBC-MAC to these blocks.   The first block B_0 is formatted as follows, where l(m) is encoded in   most-significant-byte first order:      Octet Number   Contents      ------------   ---------      0              Flags      1 ... 15-L     Nonce N      16-L ... 15    l(m)   Within the first block B_0, the Flags field is formatted as follows:      Bit Number   Contents      ----------   ----------------------      7            Reserved (always zero)      6            Adata      5 ... 3      M'      2 ... 0      L'   Another way say the same thing is:  Flags = 64*Adata + 8*M' + L'.   The Reserved bit is reserved for future expansions and should always   be set to zero.  The Adata bit is set to zero if l(a)=0, and set to   one if l(a)>0.  The M' field is set to (M-2)/2.  As M can take on the   even values from 4 to 16, the 3-bit M' field can take on the values   from one to seven.  The 3-bit field MUST NOT have a value of zero,   which would correspond to a 16-bit integrity check value.  The L'   field encodes the size of the length field used to store l(m).  The   parameter L can take on the values from 2 to 8 (recall, the value L=1   is reserved).  This value is encoded in the 3-bit L' field using the   values from one to seven by choosing L' = L-1 (the zero value is   reserved).   If l(a)>0 (as indicated by the Adata field), then one or more blocks   of authentication data are added.  These blocks contain l(a) and a   encoded in a reversible manner.  We first construct a string that   encodes l(a).   If 0 < l(a) < (2^16 - 2^8), then the length field is encoded as two   octets which contain the value l(a) in most-significant-byte first   order.Whiting, et al.              Informational                      [Page 3]

RFC 3610               Counter with CBC-MAC (CCM)         September 2003   If (2^16 - 2^8) <= l(a) < 2^32, then the length field is encoded as   six octets consisting of the octets 0xff, 0xfe, and four octets   encoding l(a) in most-significant-byte-first order.   If 2^32 <= l(a) < 2^64, then the length field is encoded as ten   octets consisting of the octets 0xff, 0xff, and eight octets encoding   l(a) in most-significant-byte-first order.   The length encoding conventions are summarized in the following   table.  Note that all fields are interpreted in most-significant-byte   first order.    First two octets   Followed by       Comment    -----------------  ----------------  -------------------------------    0x0000             Nothing           Reserved    0x0001 ... 0xFEFF  Nothing           For 0 < l(a) < (2^16 - 2^8)    0xFF00 ... 0xFFFD  Nothing           Reserved    0xFFFE             4 octets of l(a)  For (2^16 - 2^8) <= l(a) < 2^32    0xFFFF             8 octets of l(a)  For 2^32 <= l(a) < 2^64   The blocks encoding a are formed by concatenating this string that   encodes l(a) with a itself, and splitting the result into 16-octet   blocks, and then padding the last block with zeroes if necessary.   These blocks are appended to the first block B0.   After the (optional) additional authentication blocks have been   added, we add the message blocks.  The message blocks are formed by   splitting the message m into 16-octet blocks, and then padding the   last block with zeroes if necessary.  If the message m consists of   the empty string, then no blocks are added in this step.   The result is a sequence of blocks B0, B1, ..., Bn.  The CBC-MAC is   computed by:      X_1 := E( K, B_0 )      X_i+1 := E( K, X_i XOR B_i )  for i=1, ..., n      T := first-M-bytes( X_n+1 )   where E() is the block cipher encryption function, and T is the MAC   value.  CCM was designed with AES in mind for the E() function, but   any 128-bit block cipher can be used.  Note that the last block B_n   is XORed with X_n, and the result is encrypted with the block cipher.   If needed, the ciphertext is truncated to give T.Whiting, et al.              Informational                      [Page 4]

RFC 3610               Counter with CBC-MAC (CCM)         September 20032.3.  Encryption   To encrypt the message data we use Counter (CTR) mode.  We first   define the key stream blocks by:      S_i := E( K, A_i )   for i=0, 1, 2, ...   The values A_i are formatted as follows, where the Counter field i is   encoded in most-significant-byte first order:      Octet Number   Contents      ------------   ---------      0              Flags      1 ... 15-L     Nonce N      16-L ... 15    Counter i   The Flags field is formatted as follows:      Bit Number   Contents      ----------   ----------------------      7            Reserved (always zero)      6            Reserved (always zero)      5 ... 3      Zero      2 ... 0      L'   Another way say the same thing is:  Flags = L'.   The Reserved bits are reserved for future expansions and MUST be set   to zero.  Bit 6 corresponds to the Adata bit in the B_0 block, but as   this bit is not used here, it is reserved and MUST be set to zero.   Bits 3, 4, and 5 are also set to zero, ensuring that all the A blocks   are distinct from B_0, which has the non-zero encoding of M in this   position.  Bits 0, 1, and 2 contain L', using the same encoding as in   B_0.   The message is encrypted by XORing the octets of message m with the   first l(m) octets of the concatenation of S_1, S_2, S_3, ... .  Note   that S_0 is not used to encrypt the message.   The authentication value U is computed by encrypting T with the key   stream block S_0 and truncating it to the desired length.      U := T XOR first-M-bytes( S_0 )2.4.  Output   The final result c consists of the encrypted message followed by the   encrypted authentication value U.Whiting, et al.              Informational                      [Page 5]

RFC 3610               Counter with CBC-MAC (CCM)         September 20032.5.  Decryption and Authentication Checking   To decrypt a message the following information is required:      1.  The encryption key K.      2.  The nonce N.      3.  The additional authenticated data a.      4.  The encrypted and authenticated message c.   Decryption starts by recomputing the key stream to recover the   message m and the MAC value T.  The message and additional   authentication data is then used to recompute the CBC-MAC value and   check T.   If the T value is not correct, the receiver MUST NOT reveal any   information except for the fact that T is incorrect.  The receiver   MUST NOT reveal the decrypted message, the value T, or any other   information.2.6.  Restrictions   To preserve security, implementations need to limit the total amount   of data that is encrypted with a single key; the total number of   block cipher encryption operations in the CBC-MAC and encryption   together cannot exceed 2^61.  (This allows nearly 2^64 octets to be   encrypted and authenticated using CCM.  This is roughly 16 million   terabytes, which should be more than enough for most applications.)   In an environment where this limit might be reached, the sender MUST   ensure that the total number of block cipher encryption operations in   the CBC-MAC and encryption together does not exceed 2^61.  Receivers   that do not expect to decrypt the same message twice MAY also check   this limit.   The recipient MUST verify the CBC-MAC before releasing any   information such as the plaintext.  If the CBC-MAC verification   fails, the receiver MUST destroy all information, except for the fact   that the CBC-MAC verification failed.3.  Security Proof   Jakob Jonsson has developed a security proof of CCM [PROOF].  The   resulting paper was presented at the SAC 2002 conference.  The proof   shows that CCM provides a level of confidentiality and authenticity   that is in line with other proposed authenticated encryption modes,   such as OCB mode [OCB].Whiting, et al.              Informational                      [Page 6]

RFC 3610               Counter with CBC-MAC (CCM)         September 20034.  Rationale   The main difficulty in specifying this mode is the trade-off between   nonce size and counter size.  For a general mode we want to support   large messages.  Some applications use only small messages, but would   rather have a larger nonce.  Introducing the L parameter solves this   issue.  The parameter M gives the traditional trade-off between   message expansion and probability of forgery.  For most applications,   we recommend choosing M at least 8.   The CBC-MAC is computed over a sequence of blocks that encode the   relevant data in a unique way.  Given the block sequence it is easy   to recover N, M, L, m, and a.  The length encoding of a was chosen to   be simple and efficient when a is empty and when a is small.  We   expect that many implementations will limit the maximum size of a.   CCM encryption is a straightforward application of CTR mode [MODES].   As some implementations will support a variable length counter field,   we have ensured that the least significant octet of the counter is at   one end of the field.  This also ensures that the counter is aligned   on the block boundary.   By encrypting T we avoid CBC-MAC collision attacks.  If the block   cipher behaves as a pseudo-random permutation, then the key stream is   indistinguishable from a random string.  Thus, the attacker gets no   information about the CBC-MAC results.  The only avenue of attack   that is left is a differential-style attack, which has no significant   chance of success if the block cipher is a pseudo-random permutation.   To simplify implementation we use the same block cipher key for the   encryption and authentication functions.  In our design this is not a   problem.  All the A blocks are different, and they are different from   the B_0 block.  If the block cipher behaves like a random   permutation, then the outputs are independent of each other, up to   the insignificant limitation that they are all different.  The only   cases where the inputs to the block cipher can overlap are an   intermediate value in the CBC-MAC and one of the other encryptions.   As all the intermediate values of the CBC-MAC computation are   essentially random (because the block cipher behaves like a random   permutation) the probability of such a collision is very small.  Even   if there is a collision, these values only affect T, which is   encrypted so that an attacker cannot deduce any information, or   detect any collision.Whiting, et al.              Informational                      [Page 7]

RFC 3610               Counter with CBC-MAC (CCM)         September 2003   Care has been taken to ensure that the blocks used by the   authentication function match up with the blocks used by the   encryption function.  This should simplify hardware implementations,   and reduce the amount of byte-shifting required by software   implementations.5.  Nonce Suggestions   The main requirement is that, within the scope of a single key, the   nonce values are unique for each message.  A common technique is to   number messages sequentially, and to use this number as the nonce.   Sequential message numbers are also used to detect replay attacks and   to detect message reordering, so in many situations (such as IPsec   ESP [ESP]) the sequence numbers are already available.   Users of CCM, and all other block cipher modes, should be aware of   precomputation attacks.  These are effectively collision attacks on   the cipher key.  Let us suppose the key K is 128 bits, and the same   nonce value N' is used with many different keys.  The attacker   chooses a particular nonce N'.  She chooses 2^64 different keys at   random and computes a table entry for each K value, generating a pair   of the form (K,S_1).  (Given the key and the nonce, computing S_1 is   easy.)  She then waits for messages to be sent with nonce N'.  We   will assume the first 16 bytes of each message are known so that she   can compute S_1 for each message.  She looks in her table for a pair   with a matching S_1 value.  She can expect to find a match after   checking about 2^64 messages.  Once a match is found, the other part   of the matched pair is the key in question.  The total workload of   the attacker is only 2^64 steps, rather than the expected 2^128   steps.  Similar precomputation attacks exist for all block cipher   modes.   The main weapon against precomputation attacks is to use a larger   key.  Using a 256-bit key forces the attacker to perform at least   2^128 precomputations, which is infeasible.  In situations where   using a large key is not possible or desirable (for example, due to   the resulting performance impact), users can use part of the nonce to   reduce the number of times any specific nonce value is used with   different keys.  If there is room in the nonce, the sender could add   a few random bytes, and send these random bytes along with the   message.  This makes the precomputation attack much harder, as the   attacker now has to precompute a table for each of the possible   random values.  An alternative is to use something like the sender's   Ethernet address.  Note that due to the widespread use of DHCP and   NAT, IP addresses are rarely unique.  Including the Ethernet address   forces the attacker to perform the precomputation specifically for a   specific source address, and the resulting table could not be used to   attack anyone else.  Although these solutions can all work, they needWhiting, et al.              Informational                      [Page 8]

RFC 3610               Counter with CBC-MAC (CCM)         September 2003   careful analysis and almost never entirely prevent these attacks.   Where possible, we recommend using a larger key, as this solves all   the problems.6.  Efficiency and Performance   Performance depends on the speed of the block cipher implementation.   In hardware, for large packets, the speed achievable for CCM is   roughly the same as that achievable with the CBC encryption mode.   Encrypting and authenticating an empty message, without any   additional authentication data, requires two block cipher encryption   operations.  For each block of additional authentication data one   additional block cipher encryption operation is required (if one   includes the length encoding).  Each message block requires two block   cipher encryption operations.  The worst-case situation is when both   the message and the additional authentication data are a single   octet.  In this case, CCM requires five block cipher encryption   operations.   CCM results in the minimal possible message expansion; the only bits   added are the authentication bits.   Both the CCM encryption and CCM decryption operations require only   the block cipher encryption function.  In AES, the encryption and   decryption algorithms have some significant differences.  Thus, using   only the encrypt operation can lead to a significant savings in code   size or hardware size.   In hardware, CCM can compute the message authentication code and   perform encryption in a single pass.  That is, the implementation   does not have to complete calculation of the message authentication   code before encryption can begin.   CCM was designed for use in the packet processing environment.  The   authentication processing requires the message length to be known at   the beginning of the operation, which makes one-pass processing   difficult in some environments.  However, in almost all environments,   message or packet lengths are known in advance.Whiting, et al.              Informational                      [Page 9]

RFC 3610               Counter with CBC-MAC (CCM)         September 20037.  Summary of Properties   Security Function      authenticated encryption   Error Propagation      none   Synchronization      same nonce used by sender and recipient   Parallelizability      encryption can be parallelized, but authentication cannot   Keying Material Requirements      one key   Counter/IV/Nonce Requirements      counter and nonce are part of the counter block   Memory Requirements      requires memory for encrypt operation of the underlying block      cipher, plaintext, ciphertext (expanded for CBC-MAC), and a per-      packet counter (an integer; at most L octets in size)   Pre-processing Capability      encryption key stream can be precomputed, but authentication      cannot   Message Length Requirements      octet aligned message of arbitrary length, up to 2^(8*L) octets,      and octet aligned arbitrary additional authenticated data, up to      2^64 octets   Ciphertext Expansion      4, 6, 8, 10, 12, 14, or 16 octets depending on size of MAC      selected8.  Test Vectors   These test vectors use AES for the block cipher [AES].  In each of   these test vectors, the least significant sixteen bits of the counter   block is used for the block counter, and the nonce is 13 octets.   Some of the test vectors include a eight octet authentication value,   and others include a ten octet authentication value.Whiting, et al.              Informational                     [Page 10]

RFC 3610               Counter with CBC-MAC (CCM)         September 2003   =============== Packet Vector #1 ==================   AES Key =  C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF   Nonce =    00 00 00 03  02 01 00 A0  A1 A2 A3 A4  A5   Total packet length = 31. [Input with 8 cleartext header octets]              00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F              10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E   CBC IV in: 59 00 00 00  03 02 01 00  A0 A1 A2 A3  A4 A5 00 17   CBC IV out:EB 9D 55 47  73 09 55 AB  23 1E 0A 2D  FE 4B 90 D6   After xor: EB 95 55 46  71 0A 51 AE  25 19 0A 2D  FE 4B 90 D6   [hdr]   After AES: CD B6 41 1E  3C DC 9B 4F  5D 92 58 B6  9E E7 F0 91   After xor: C5 BF 4B 15  30 D1 95 40  4D 83 4A A5  8A F2 E6 86   [msg]   After AES: 9C 38 40 5E  A0 3C 1B C9  04 B5 8B 40  C7 6C A2 EB   After xor: 84 21 5A 45  BC 21 05 C9  04 B5 8B 40  C7 6C A2 EB   [msg]   After AES: 2D C6 97 E4  11 CA 83 A8  60 C2 C4 06  CC AA 54 2F   CBC-MAC  : 2D C6 97 E4  11 CA 83 A8   CTR Start: 01 00 00 00  03 02 01 00  A0 A1 A2 A3  A4 A5 00 01   CTR[0001]: 50 85 9D 91  6D CB 6D DD  E0 77 C2 D1  D4 EC 9F 97   CTR[0002]: 75 46 71 7A  C6 DE 9A FF  64 0C 9C 06  DE 6D 0D 8F   CTR[MAC ]: 3A 2E 46 C8  EC 33 A5 48   Total packet length = 39. [Authenticated and Encrypted Output]              00 01 02 03  04 05 06 07  58 8C 97 9A  61 C6 63 D2              F0 66 D0 C2  C0 F9 89 80  6D 5F 6B 61  DA C3 84 17              E8 D1 2C FD  F9 26 E0   =============== Packet Vector #2 ==================   AES Key =  C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF   Nonce =    00 00 00 04  03 02 01 A0  A1 A2 A3 A4  A5   Total packet length = 32. [Input with 8 cleartext header octets]              00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F              10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E 1F   CBC IV in: 59 00 00 00  04 03 02 01  A0 A1 A2 A3  A4 A5 00 18   CBC IV out:F0 C2 54 D3  CA 03 E2 39  70 BD 24 A8  4C 39 9E 77   After xor: F0 CA 54 D2  C8 00 E6 3C  76 BA 24 A8  4C 39 9E 77   [hdr]   After AES: 48 DE 8B 86  28 EA 4A 40  00 AA 42 C2  95 BF 4A 8C   After xor: 40 D7 81 8D  24 E7 44 4F  10 BB 50 D1  81 AA 5C 9B   [msg]   After AES: 0F 89 FF BC  A6 2B C2 4F  13 21 5F 16  87 96 AA 33   After xor: 17 90 E5 A7  BA 36 DC 50  13 21 5F 16  87 96 AA 33   [msg]   After AES: F7 B9 05 6A  86 92 6C F3  FB 16 3D C4  99 EF AA 11   CBC-MAC  : F7 B9 05 6A  86 92 6C F3   CTR Start: 01 00 00 00  04 03 02 01  A0 A1 A2 A3  A4 A5 00 01   CTR[0001]: 7A C0 10 3D  ED 38 F6 C0  39 0D BA 87  1C 49 91 F4   CTR[0002]: D4 0C DE 22  D5 F9 24 24  F7 BE 9A 56  9D A7 9F 51   CTR[MAC ]: 57 28 D0 04  96 D2 65 E5   Total packet length = 40. [Authenticated and Encrypted Output]              00 01 02 03  04 05 06 07  72 C9 1A 36  E1 35 F8 CF              29 1C A8 94  08 5C 87 E3  CC 15 C4 39  C9 E4 3A 3B              A0 91 D5 6E  10 40 09 16Whiting, et al.              Informational                     [Page 11]

RFC 3610               Counter with CBC-MAC (CCM)         September 2003   =============== Packet Vector #3 ==================   AES Key =  C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF   Nonce =    00 00 00 05  04 03 02 A0  A1 A2 A3 A4  A5   Total packet length = 33. [Input with 8 cleartext header octets]              00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F              10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E 1F              20   CBC IV in: 59 00 00 00  05 04 03 02  A0 A1 A2 A3  A4 A5 00 19   CBC IV out:6F 8A 12 F7  BF 8D 4D C5  A1 19 6E 95  DF F0 B4 27   After xor: 6F 82 12 F6  BD 8E 49 C0  A7 1E 6E 95  DF F0 B4 27   [hdr]   After AES: 37 E9 B7 8C  C2 20 17 E7  33 80 43 0C  BE F4 28 24   After xor: 3F E0 BD 87  CE 2D 19 E8  23 91 51 1F  AA E1 3E 33   [msg]   After AES: 90 CA 05 13  9F 4D 4E CF  22 6F E9 81  C5 9E 2D 40   After xor: 88 D3 1F 08  83 50 50 D0  02 6F E9 81  C5 9E 2D 40   [msg]   After AES: 73 B4 67 75  C0 26 DE AA  41 03 97 D6  70 FE 5F B0   CBC-MAC  : 73 B4 67 75  C0 26 DE AA   CTR Start: 01 00 00 00  05 04 03 02  A0 A1 A2 A3  A4 A5 00 01   CTR[0001]: 59 B8 EF FF  46 14 73 12  B4 7A 1D 9D  39 3D 3C FF   CTR[0002]: 69 F1 22 A0  78 C7 9B 89  77 89 4C 99  97 5C 23 78   CTR[MAC ]: 39 6E C0 1A  7D B9 6E 6F   Total packet length = 41. [Authenticated and Encrypted Output]              00 01 02 03  04 05 06 07  51 B1 E5 F4  4A 19 7D 1D              A4 6B 0F 8E  2D 28 2A E8  71 E8 38 BB  64 DA 85 96              57 4A DA A7  6F BD 9F B0  C5   =============== Packet Vector #4 ==================   AES Key =  C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF   Nonce =    00 00 00 06  05 04 03 A0  A1 A2 A3 A4  A5   Total packet length = 31. [Input with 12 cleartext header octets]              00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F              10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E   CBC IV in: 59 00 00 00  06 05 04 03  A0 A1 A2 A3  A4 A5 00 13   CBC IV out:06 65 2C 60  0E F5 89 63  CA C3 25 A9  CD 3E 2B E1   After xor: 06 69 2C 61  0C F6 8D 66  CC C4 2D A0  C7 35 2B E1   [hdr]   After AES: A0 75 09 AC  15 C2 58 86  04 2F 80 60  54 FE A6 86   After xor: AC 78 07 A3  05 D3 4A 95  10 3A 96 77  4C E7 BC 9D   [msg]   After AES: 64 4C 09 90  D9 1B 83 E9  AB 4B 8E ED  06 6F F5 BF   After xor: 78 51 17 90  D9 1B 83 E9  AB 4B 8E ED  06 6F F5 BF   [msg]   After AES: 4B 4F 4B 39  B5 93 E6 BF  B0 B2 C2 B7  0F 29 CD 7A   CBC-MAC  : 4B 4F 4B 39  B5 93 E6 BF   CTR Start: 01 00 00 00  06 05 04 03  A0 A1 A2 A3  A4 A5 00 01   CTR[0001]: AE 81 66 6A  83 8B 88 6A  EE BF 4A 5B  32 84 50 8A   CTR[0002]: D1 B1 92 06  AC 93 9E 2F  B6 DD CE 10  A7 74 FD 8D   CTR[MAC ]: DD 87 2A 80  7C 75 F8 4E   Total packet length = 39. [Authenticated and Encrypted Output]              00 01 02 03  04 05 06 07  08 09 0A 0B  A2 8C 68 65              93 9A 9A 79  FA AA 5C 4C  2A 9D 4A 91  CD AC 8C 96              C8 61 B9 C9  E6 1E F1Whiting, et al.              Informational                     [Page 12]

RFC 3610               Counter with CBC-MAC (CCM)         September 2003   =============== Packet Vector #5 ==================   AES Key =  C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF   Nonce =    00 00 00 07  06 05 04 A0  A1 A2 A3 A4  A5   Total packet length = 32. [Input with 12 cleartext header octets]              00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F              10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E 1F   CBC IV in: 59 00 00 00  07 06 05 04  A0 A1 A2 A3  A4 A5 00 14   CBC IV out:00 4C 50 95  45 80 3C 48  51 CD E1 3B  56 C8 9A 85   After xor: 00 40 50 94  47 83 38 4D  57 CA E9 32  5C C3 9A 85   [hdr]   After AES: E2 B8 F7 CE  49 B2 21 72  84 A8 EA 84  FA AD 67 5C   After xor: EE B5 F9 C1  59 A3 33 61  90 BD FC 93  E2 B4 7D 47   [msg]   After AES: 3E FB 36 72  25 DB 11 01  D3 C2 2F 0E  CA FF 44 F3   After xor: 22 E6 28 6D  25 DB 11 01  D3 C2 2F 0E  CA FF 44 F3   [msg]   After AES: 48 B9 E8 82  55 05 4A B5  49 0A 95 F9  34 9B 4B 5E   CBC-MAC  : 48 B9 E8 82  55 05 4A B5   CTR Start: 01 00 00 00  07 06 05 04  A0 A1 A2 A3  A4 A5 00 01   CTR[0001]: D0 FC F5 74  4D 8F 31 E8  89 5B 05 05  4B 7C 90 C3   CTR[0002]: 72 A0 D4 21  9F 0D E1 D4  04 83 BC 2D  3D 0C FC 2A   CTR[MAC ]: 19 51 D7 85  28 99 67 26   Total packet length = 40. [Authenticated and Encrypted Output]              00 01 02 03  04 05 06 07  08 09 0A 0B  DC F1 FB 7B              5D 9E 23 FB  9D 4E 13 12  53 65 8A D8  6E BD CA 3E              51 E8 3F 07  7D 9C 2D 93   =============== Packet Vector #6 ==================   AES Key =  C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF   Nonce =    00 00 00 08  07 06 05 A0  A1 A2 A3 A4  A5   Total packet length = 33. [Input with 12 cleartext header octets]              00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F              10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E 1F              20   CBC IV in: 59 00 00 00  08 07 06 05  A0 A1 A2 A3  A4 A5 00 15   CBC IV out:04 72 DA 4C  6F F6 0A 63  06 52 1A 06  04 80 CD E5   After xor: 04 7E DA 4D  6D F5 0E 66  00 55 12 0F  0E 8B CD E5   [hdr]   After AES: 64 4C 36 A5  A2 27 37 62  0B 89 F1 D7  BF F2 73 D4   After xor: 68 41 38 AA  B2 36 25 71  1F 9C E7 C0  A7 EB 69 CF   [msg]   After AES: 41 E1 19 CD  19 24 CE 77  F1 2F A6 60  C1 6E BB 4E   After xor: 5D FC 07 D2  39 24 CE 77  F1 2F A6 60  C1 6E BB 4E   [msg]   After AES: A5 27 D8 15  6A C3 59 BF  1C B8 86 E6  2F 29 91 29   CBC-MAC  : A5 27 D8 15  6A C3 59 BF   CTR Start: 01 00 00 00  08 07 06 05  A0 A1 A2 A3  A4 A5 00 01   CTR[0001]: 63 CC BE 1E  E0 17 44 98  45 64 B2 3A  8D 24 5C 80   CTR[0002]: 39 6D BA A2  A7 D2 CB D4  B5 E1 7C 10  79 45 BB C0   CTR[MAC ]: E5 7D DC 56  C6 52 92 2B   Total packet length = 41. [Authenticated and Encrypted Output]              00 01 02 03  04 05 06 07  08 09 0A 0B  6F C1 B0 11              F0 06 56 8B  51 71 A4 2D  95 3D 46 9B  25 70 A4 BD              87 40 5A 04  43 AC 91 CB  94Whiting, et al.              Informational                     [Page 13]

RFC 3610               Counter with CBC-MAC (CCM)         September 2003   =============== Packet Vector #7 ==================   AES Key =  C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF   Nonce =    00 00 00 09  08 07 06 A0  A1 A2 A3 A4  A5   Total packet length = 31. [Input with 8 cleartext header octets]              00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F              10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E   CBC IV in: 61 00 00 00  09 08 07 06  A0 A1 A2 A3  A4 A5 00 17   CBC IV out:60 06 C5 72  DA 23 9C BF  A0 5B 0A DE  D2 CD A8 1E   After xor: 60 0E C5 73  D8 20 98 BA  A6 5C 0A DE  D2 CD A8 1E   [hdr]   After AES: 41 7D E2 AE  94 E2 EA D9  00 FC 44 FC  D0 69 52 27   After xor: 49 74 E8 A5  98 EF E4 D6  10 ED 56 EF  C4 7C 44 30   [msg]   After AES: 2A 6C 42 CA  49 D7 C7 01  C5 7D 59 FF  87 16 49 0E   After xor: 32 75 58 D1  55 CA D9 01  C5 7D 59 FF  87 16 49 0E   [msg]   After AES: 89 8B D6 45  4E 27 20 BB  D2 7E F3 15  7A 7C 90 B2   CBC-MAC  : 89 8B D6 45  4E 27 20 BB  D2 7E   CTR Start: 01 00 00 00  09 08 07 06  A0 A1 A2 A3  A4 A5 00 01   CTR[0001]: 09 3C DB B9  C5 52 4F DA  C1 C5 EC D2  91 C4 70 AF   CTR[0002]: 11 57 83 86  E2 C4 72 B4  8E CC 8A AD  AB 77 6F CB   CTR[MAC ]: 8D 07 80 25  62 B0 8C 00  A6 EE   Total packet length = 41. [Authenticated and Encrypted Output]              00 01 02 03  04 05 06 07  01 35 D1 B2  C9 5F 41 D5              D1 D4 FE C1  85 D1 66 B8  09 4E 99 9D  FE D9 6C 04              8C 56 60 2C  97 AC BB 74  90   =============== Packet Vector #8 ==================   AES Key =  C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF   Nonce =    00 00 00 0A  09 08 07 A0  A1 A2 A3 A4  A5   Total packet length = 32. [Input with 8 cleartext header octets]              00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F              10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E 1F   CBC IV in: 61 00 00 00  0A 09 08 07  A0 A1 A2 A3  A4 A5 00 18   CBC IV out:63 A3 FA E4  6C 79 F3 FA  78 38 B8 A2  80 36 B6 0B   After xor: 63 AB FA E5  6E 7A F7 FF  7E 3F B8 A2  80 36 B6 0B   [hdr]   After AES: 1C 99 1A 3D  B7 60 79 27  34 40 79 1F  AD 8B 5B 02   After xor: 14 90 10 36  BB 6D 77 28  24 51 6B 0C  B9 9E 4D 15   [msg]   After AES: 14 19 E8 E8  CB BE 75 58  E1 E3 BE 4B  6C 9F 82 E3   After xor: 0C 00 F2 F3  D7 A3 6B 47  E1 E3 BE 4B  6C 9F 82 E3   [msg]   After AES: E0 16 E8 1C  7F 7B 8A 38  A5 38 F2 CB  5B B6 C1 F2   CBC-MAC  : E0 16 E8 1C  7F 7B 8A 38  A5 38   CTR Start: 01 00 00 00  0A 09 08 07  A0 A1 A2 A3  A4 A5 00 01   CTR[0001]: 73 7C 33 91  CC 8E 13 DD  E0 AA C5 4B  6D B7 EB 98   CTR[0002]: 74 B7 71 77  C5 AA C5 3B  04 A4 F8 70  8E 92 EB 2B   CTR[MAC ]: 21 6D AC 2F  8B 4F 1C 07  91 8C   Total packet length = 42. [Authenticated and Encrypted Output]              00 01 02 03  04 05 06 07  7B 75 39 9A  C0 83 1D D2              F0 BB D7 58  79 A2 FD 8F  6C AE 6B 6C  D9 B7 DB 24              C1 7B 44 33  F4 34 96 3F  34 B4Whiting, et al.              Informational                     [Page 14]

RFC 3610               Counter with CBC-MAC (CCM)         September 2003   =============== Packet Vector #9 ==================   AES Key =  C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF   Nonce =    00 00 00 0B  0A 09 08 A0  A1 A2 A3 A4  A5   Total packet length = 33. [Input with 8 cleartext header octets]              00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F              10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E 1F              20   CBC IV in: 61 00 00 00  0B 0A 09 08  A0 A1 A2 A3  A4 A5 00 19   CBC IV out:4F 2C 86 11  1E 08 2A DD  6B 44 21 3A  B5 13 13 16   After xor: 4F 24 86 10  1C 0B 2E D8  6D 43 21 3A  B5 13 13 16   [hdr]   After AES: F6 EC 56 87  3C 57 12 DC  9C C5 3C A8  D4 D1 ED 0A   After xor: FE E5 5C 8C  30 5A 1C D3  8C D4 2E BB  C0 C4 FB 1D   [msg]   After AES: 17 C1 80 A5  31 53 D4 C3  03 85 0C 95  65 80 34 52   After xor: 0F D8 9A BE  2D 4E CA DC  23 85 0C 95  65 80 34 52   [msg]   After AES: 46 A1 F6 E2  B1 6E 75 F8  1C F5 6B 1A  80 04 44 1B   CBC-MAC  : 46 A1 F6 E2  B1 6E 75 F8  1C F5   CTR Start: 01 00 00 00  0B 0A 09 08  A0 A1 A2 A3  A4 A5 00 01   CTR[0001]: 8A 5A 10 6B  C0 29 9A 55  5B 93 6B 0B  0E A0 DE 5A   CTR[0002]: EA 05 FD E2  AB 22 5C FE  B7 73 12 CB  88 D9 A5 4A   CTR[MAC ]: AC 3D F1 07  DA 30 C4 86  43 BB   Total packet length = 43. [Authenticated and Encrypted Output]              00 01 02 03  04 05 06 07  82 53 1A 60  CC 24 94 5A              4B 82 79 18  1A B5 C8 4D  F2 1C E7 F9  B7 3F 42 E1              97 EA 9C 07  E5 6B 5E B1  7E 5F 4E   =============== Packet Vector #10 ==================   AES Key =  C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF   Nonce =    00 00 00 0C  0B 0A 09 A0  A1 A2 A3 A4  A5   Total packet length = 31. [Input with 12 cleartext header octets]              00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F              10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E   CBC IV in: 61 00 00 00  0C 0B 0A 09  A0 A1 A2 A3  A4 A5 00 13   CBC IV out:7F B8 0A 32  E9 80 57 46  EC 31 6C 3A  B2 A2 EB 5D   After xor: 7F B4 0A 33  EB 83 53 43  EA 36 64 33  B8 A9 EB 5D   [hdr]   After AES: 7E 96 96 BF  F1 56 D6 A8  6E AC F5 7B  7F 23 47 5A   After xor: 72 9B 98 B0  E1 47 C4 BB  7A B9 E3 6C  67 3A 5D 41   [msg]   After AES: 8B 4A EE 42  04 24 8A 59  FA CC 88 66  57 66 DD 72   After xor: 97 57 F0 42  04 24 8A 59  FA CC 88 66  57 66 DD 72   [msg]   After AES: 41 63 89 36  62 ED D7 EB  CD 6E 15 C1  89 48 62 05   CBC-MAC  : 41 63 89 36  62 ED D7 EB  CD 6E   CTR Start: 01 00 00 00  0C 0B 0A 09  A0 A1 A2 A3  A4 A5 00 01   CTR[0001]: 0B 39 2B 9B  05 66 97 06  3F 12 56 8F  2B 13 A1 0F   CTR[0002]: 07 89 65 25  23 40 94 3B  9E 69 B2 56  CC 5E F7 31   CTR[MAC ]: 17 09 20 76  09 A0 4E 72  45 B3   Total packet length = 41. [Authenticated and Encrypted Output]              00 01 02 03  04 05 06 07  08 09 0A 0B  07 34 25 94              15 77 85 15  2B 07 40 98  33 0A BB 14  1B 94 7B 56              6A A9 40 6B  4D 99 99 88  DDWhiting, et al.              Informational                     [Page 15]

RFC 3610               Counter with CBC-MAC (CCM)         September 2003   =============== Packet Vector #11 ==================   AES Key =  C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF   Nonce =    00 00 00 0D  0C 0B 0A A0  A1 A2 A3 A4  A5   Total packet length = 32. [Input with 12 cleartext header octets]              00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F              10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E 1F   CBC IV in: 61 00 00 00  0D 0C 0B 0A  A0 A1 A2 A3  A4 A5 00 14   CBC IV out:B0 84 85 79  51 D2 FA 42  76 EF 3A D7  14 B9 62 87   After xor: B0 88 85 78  53 D1 FE 47  70 E8 32 DE  1E B2 62 87   [hdr]   After AES: C9 B3 64 7E  D8 79 2A 5C  65 B7 CE CC  19 0A 97 0A   After xor: C5 BE 6A 71  C8 68 38 4F  71 A2 D8 DB  01 13 8D 11   [msg]   After AES: 34 0F 69 17  FA B9 19 D6  1D AC D0 35  36 D6 55 8B   After xor: 28 12 77 08  FA B9 19 D6  1D AC D0 35  36 D6 55 8B   [msg]   After AES: 6B 5E 24 34  12 CC C2 AD  6F 1B 11 C3  A1 A9 D8 BC   CBC-MAC  : 6B 5E 24 34  12 CC C2 AD  6F 1B   CTR Start: 01 00 00 00  0D 0C 0B 0A  A0 A1 A2 A3  A4 A5 00 01   CTR[0001]: 6B 66 BC 0C  90 A1 F1 12  FC BE 6F 4E  12 20 77 BC   CTR[0002]: 97 9E 57 2B  BE 65 8A E5  CC 20 11 83  2A 9A 9B 5B   CTR[MAC ]: 9E 64 86 DD  02 B6 49 C1  6D 37   Total packet length = 42. [Authenticated and Encrypted Output]              00 01 02 03  04 05 06 07  08 09 0A 0B  67 6B B2 03              80 B0 E3 01  E8 AB 79 59  0A 39 6D A7  8B 83 49 34              F5 3A A2 E9  10 7A 8B 6C  02 2C   =============== Packet Vector #12 ==================   AES Key =  C0 C1 C2 C3  C4 C5 C6 C7  C8 C9 CA CB  CC CD CE CF   Nonce =    00 00 00 0E  0D 0C 0B A0  A1 A2 A3 A4  A5   Total packet length = 33. [Input with 12 cleartext header octets]              00 01 02 03  04 05 06 07  08 09 0A 0B  0C 0D 0E 0F              10 11 12 13  14 15 16 17  18 19 1A 1B  1C 1D 1E 1F              20   CBC IV in: 61 00 00 00  0E 0D 0C 0B  A0 A1 A2 A3  A4 A5 00 15   CBC IV out:5F 8E 8D 02  AD 95 7C 5A  36 14 CF 63  40 16 97 4F   After xor: 5F 82 8D 03  AF 96 78 5F  30 13 C7 6A  4A 1D 97 4F   [hdr]   After AES: 63 FA BD 69  B9 55 65 FF  54 AA F4 60  88 7D EC 9F   After xor: 6F F7 B3 66  A9 44 77 EC  40 BF E2 77  90 64 F6 84   [msg]   After AES: 5A 76 5F 0B  93 CE 4F 6A  B4 1D 91 30  18 57 6A D7   After xor: 46 6B 41 14  B3 CE 4F 6A  B4 1D 91 30  18 57 6A D7   [msg]   After AES: 9D 66 92 41  01 08 D5 B6  A1 45 85 AC  AF 86 32 E8   CBC-MAC  : 9D 66 92 41  01 08 D5 B6  A1 45   CTR Start: 01 00 00 00  0E 0D 0C 0B  A0 A1 A2 A3  A4 A5 00 01   CTR[0001]: CC F2 AE D9  E0 4A C9 74  E6 58 55 B3  2B 94 30 BF   CTR[0002]: A2 CA AC 11  63 F4 07 E5  E5 F6 E3 B3  79 0F 79 F8   CTR[MAC ]: 50 7C 31 57  63 EF 78 D3  77 9E   Total packet length = 43. [Authenticated and Encrypted Output]              00 01 02 03  04 05 06 07  08 09 0A 0B  C0 FF A0 D6              F0 5B DB 67  F2 4D 43 A4  33 8D 2A A4  BE D7 B2 0E              43 CD 1A A3  16 62 E7 AD  65 D6 DBWhiting, et al.              Informational                     [Page 16]

RFC 3610               Counter with CBC-MAC (CCM)         September 2003   =============== Packet Vector #13 ==================   AES Key =  D7 82 8D 13  B2 B0 BD C3  25 A7 62 36  DF 93 CC 6B   Nonce =    00 41 2B 4E  A9 CD BE 3C  96 96 76 6C  FA   Total packet length = 31. [Input with 8 cleartext header octets]              0B E1 A8 8B  AC E0 18 B1  08 E8 CF 97  D8 20 EA 25              84 60 E9 6A  D9 CF 52 89  05 4D 89 5C  EA C4 7C   CBC IV in: 59 00 41 2B  4E A9 CD BE  3C 96 96 76  6C FA 00 17   CBC IV out:33 AE C3 1A  1F B7 CC 35  E5 DA D2 BA  C0 90 D9 A3   After xor: 33 A6 C8 FB  B7 3C 60 D5  FD 6B D2 BA  C0 90 D9 A3   [hdr]   After AES: B7 56 CA 1E  5B 42 C6 9C  58 E3 0A F5  2B F7 7C FD   After xor: BF BE 05 89  83 62 2C B9  DC 83 E3 9F  F2 38 2E 74   [msg]   After AES: 33 3D 3A 3D  07 B5 3C 7B  22 0E 96 1A  18 A9 A1 9E   After xor: 36 70 B3 61  ED 71 40 7B  22 0E 96 1A  18 A9 A1 9E   [msg]   After AES: 14 BD DB 6B  F9 01 63 4D  FB 56 51 83  BC 74 93 F7   CBC-MAC  : 14 BD DB 6B  F9 01 63 4D   CTR Start: 01 00 41 2B  4E A9 CD BE  3C 96 96 76  6C FA 00 01   CTR[0001]: 44 51 B0 11  7A 84 82 BF  03 19 AE C1  59 5E BD DA   CTR[0002]: 83 EB 76 E1  3A 44 84 7F  92 20 09 07  76 B8 25 C5   CTR[MAC ]: F3 31 2C A0  F5 DC B4 FE   Total packet length = 39. [Authenticated and Encrypted Output]              0B E1 A8 8B  AC E0 18 B1  4C B9 7F 86  A2 A4 68 9A              87 79 47 AB  80 91 EF 53  86 A6 FF BD  D0 80 F8 E7              8C F7 CB 0C  DD D7 B3   =============== Packet Vector #14 ==================   AES Key =  D7 82 8D 13  B2 B0 BD C3  25 A7 62 36  DF 93 CC 6B   Nonce =    00 33 56 8E  F7 B2 63 3C  96 96 76 6C  FA   Total packet length = 32. [Input with 8 cleartext header octets]              63 01 8F 76  DC 8A 1B CB  90 20 EA 6F  91 BD D8 5A              FA 00 39 BA  4B AF F9 BF  B7 9C 70 28  94 9C D0 EC   CBC IV in: 59 00 33 56  8E F7 B2 63  3C 96 96 76  6C FA 00 18   CBC IV out:42 0D B1 50  BB 0C 44 DA  83 E4 52 09  55 99 67 E3   After xor: 42 05 D2 51  34 7A 98 50  98 2F 52 09  55 99 67 E3   [hdr]   After AES: EA D1 CA 56  02 02 09 5C  E6 12 B0 D2  18 A0 DD 44   After xor: 7A F1 20 39  93 BF D1 06  1C 12 89 68  53 0F 24 FB   [msg]   After AES: 51 77 41 69  C3 DE 6B 24  13 27 74 90  F5 FF C5 62   After xor: E6 EB 31 41  57 42 BB C8  13 27 74 90  F5 FF C5 62   [msg]   After AES: D4 CC 3B 82  DF 9F CC 56  7E E5 83 61  D7 8D FB 5E   CBC-MAC  : D4 CC 3B 82  DF 9F CC 56   CTR Start: 01 00 33 56  8E F7 B2 63  3C 96 96 76  6C FA 00 01   CTR[0001]: DC EB F4 13  38 3C 66 A0  5A 72 55 EF  98 D7 FF AD   CTR[0002]: 2F 54 2C BA  15 D6 6C DF  E1 EC 46 8F  0E 68 A1 24   CTR[MAC ]: 11 E2 D3 9F  A2 E8 0C DC   Total packet length = 40. [Authenticated and Encrypted Output]              63 01 8F 76  DC 8A 1B CB  4C CB 1E 7C  A9 81 BE FA              A0 72 6C 55  D3 78 06 12  98 C8 5C 92  81 4A BC 33              C5 2E E8 1D  7D 77 C0 8AWhiting, et al.              Informational                     [Page 17]

RFC 3610               Counter with CBC-MAC (CCM)         September 2003   =============== Packet Vector #15 ==================   AES Key =  D7 82 8D 13  B2 B0 BD C3  25 A7 62 36  DF 93 CC 6B   Nonce =    00 10 3F E4  13 36 71 3C  96 96 76 6C  FA   Total packet length = 33. [Input with 8 cleartext header octets]              AA 6C FA 36  CA E8 6B 40  B9 16 E0 EA  CC 1C 00 D7              DC EC 68 EC  0B 3B BB 1A  02 DE 8A 2D  1A A3 46 13              2E   CBC IV in: 59 00 10 3F  E4 13 36 71  3C 96 96 76  6C FA 00 19   CBC IV out:B3 26 49 FF  D5 9F 56 0F  02 2D 11 E2  62 C5 BE EA   After xor: B3 2E E3 93  2F A9 9C E7  69 6D 11 E2  62 C5 BE EA   [hdr]   After AES: 82 50 9E E5  B2 FF DB CA  9B D0 2E 20  6B 3F B7 AD   After xor: 3B 46 7E 0F  7E E3 DB 1D  47 3C 46 CC  60 04 0C B7   [msg]   After AES: 80 46 0E 4C  08 3A D0 3F  B9 A9 13 BE  E4 DE 2F 66   After xor: 82 98 84 61  12 99 96 2C  97 A9 13 BE  E4 DE 2F 66   [msg]   After AES: 47 29 CB 00  31 F1 81 C1  92 68 4B 89  A4 71 50 E7   CBC-MAC  : 47 29 CB 00  31 F1 81 C1   CTR Start: 01 00 10 3F  E4 13 36 71  3C 96 96 76  6C FA 00 01   CTR[0001]: 08 C4 DA C8  EC C1 C0 7B  4C E1 F2 4C  37 5A 47 EE   CTR[0002]: A7 87 2E 6C  6D C4 4E 84  26 02 50 4C  3F A5 73 C5   CTR[MAC ]: E0 5F B2 6E  EA 83 B4 C7   Total packet length = 41. [Authenticated and Encrypted Output]              AA 6C FA 36  CA E8 6B 40  B1 D2 3A 22  20 DD C0 AC              90 0D 9A A0  3C 61 FC F4  A5 59 A4 41  77 67 08 97              08 A7 76 79  6E DB 72 35  06   =============== Packet Vector #16 ==================   AES Key =  D7 82 8D 13  B2 B0 BD C3  25 A7 62 36  DF 93 CC 6B   Nonce =    00 76 4C 63  B8 05 8E 3C  96 96 76 6C  FA   Total packet length = 31. [Input with 12 cleartext header octets]              D0 D0 73 5C  53 1E 1B EC  F0 49 C2 44  12 DA AC 56              30 EF A5 39  6F 77 0C E1  A6 6B 21 F7  B2 10 1C   CBC IV in: 59 00 76 4C  63 B8 05 8E  3C 96 96 76  6C FA 00 13   CBC IV out:AB DC 4E C9  AA 72 33 97  DF 2D AD 76  33 DE 3B 0D   After xor: AB D0 9E 19  D9 2E 60 89  C4 C1 5D 3F  F1 9A 3B 0D   [hdr]   After AES: 62 86 F6 2F  23 42 63 B0  1C FD 8C 37  40 74 81 EB   After xor: 70 5C 5A 79  13 AD C6 89  73 8A 80 D6  E6 1F A0 1C   [msg]   After AES: 88 95 84 18  CF 79 CA BE  EB C0 0C C4  86 E6 01 F7   After xor: 3A 85 98 18  CF 79 CA BE  EB C0 0C C4  86 E6 01 F7   [msg]   After AES: C1 85 92 D9  84 CD 67 80  63 D1 D9 6D  C1 DF A1 11   CBC-MAC  : C1 85 92 D9  84 CD 67 80   CTR Start: 01 00 76 4C  63 B8 05 8E  3C 96 96 76  6C FA 00 01   CTR[0001]: 06 08 FF 95  A6 94 D5 59  F4 0B B7 9D  EF FA 41 DF   CTR[0002]: 80 55 3A 75  78 38 04 A9  64 8B 68 DD  7F DC DD 7A   CTR[MAC ]: 5B EA DB 4E  DF 07 B9 2F   Total packet length = 39. [Authenticated and Encrypted Output]              D0 D0 73 5C  53 1E 1B EC  F0 49 C2 44  14 D2 53 C3              96 7B 70 60  9B 7C BB 7C  49 91 60 28  32 45 26 9A              6F 49 97 5B  CA DE AFWhiting, et al.              Informational                     [Page 18]

RFC 3610               Counter with CBC-MAC (CCM)         September 2003   =============== Packet Vector #17 ==================   AES Key =  D7 82 8D 13  B2 B0 BD C3  25 A7 62 36  DF 93 CC 6B   Nonce =    00 F8 B6 78  09 4E 3B 3C  96 96 76 6C  FA   Total packet length = 32. [Input with 12 cleartext header octets]              77 B6 0F 01  1C 03 E1 52  58 99 BC AE  E8 8B 6A 46              C7 8D 63 E5  2E B8 C5 46  EF B5 DE 6F  75 E9 CC 0D   CBC IV in: 59 00 F8 B6  78 09 4E 3B  3C 96 96 76  6C FA 00 14   CBC IV out:F4 68 FE 5D  B1 53 0B 7A  5A A5 FB 27  40 CF 6E 33   After xor: F4 64 89 EB  BE 52 17 79  BB F7 A3 BE  FC 61 6E 33   [hdr]   After AES: 23 29 0E 0B  33 45 9A 83  32 2D E4 06  86 67 10 04   After xor: CB A2 64 4D  F4 C8 F9 66  1C 95 21 40  69 D2 CE 6B   [msg]   After AES: 8F BE D4 0F  8B 89 B7 B8  20 D5 5F E0  3C E2 43 11   After xor: FA 57 18 02  8B 89 B7 B8  20 D5 5F E0  3C E2 43 11   [msg]   After AES: 6A DB 15 B6  71 81 B2 E2  2B E3 4A F2  B2 83 E2 29   CBC-MAC  : 6A DB 15 B6  71 81 B2 E2   CTR Start: 01 00 F8 B6  78 09 4E 3B  3C 96 96 76  6C FA 00 01   CTR[0001]: BD CE 95 5C  CF D3 81 0A  91 EA 77 A6  A4 5B C0 4C   CTR[0002]: 43 2E F2 32  AE 36 D8 92  22 BF 63 37  E6 B2 6C E8   CTR[MAC ]: 1C F7 19 C1  35 7F CC DE   Total packet length = 40. [Authenticated and Encrypted Output]              77 B6 0F 01  1C 03 E1 52  58 99 BC AE  55 45 FF 1A              08 5E E2 EF  BF 52 B2 E0  4B EE 1E 23  36 C7 3E 3F              76 2C 0C 77  44 FE 7E 3C   =============== Packet Vector #18 ==================   AES Key =  D7 82 8D 13  B2 B0 BD C3  25 A7 62 36  DF 93 CC 6B   Nonce =    00 D5 60 91  2D 3F 70 3C  96 96 76 6C  FA   Total packet length = 33. [Input with 12 cleartext header octets]              CD 90 44 D2  B7 1F DB 81  20 EA 60 C0  64 35 AC BA              FB 11 A8 2E  2F 07 1D 7C  A4 A5 EB D9  3A 80 3B A8              7F   CBC IV in: 59 00 D5 60  91 2D 3F 70  3C 96 96 76  6C FA 00 15   CBC IV out:BA 37 74 54  D7 20 A4 59  25 97 F6 A3  D1 D6 BA 67   After xor: BA 3B B9 C4  93 F2 13 46  FE 16 D6 49  B1 16 BA 67   [hdr]   After AES: 81 6A 20 20  38 D0 A6 30  CB E0 B7 3C  39 BB CE 05   After xor: E5 5F 8C 9A  C3 C1 0E 1E  E4 E7 AA 40  9D 1E 25 DC   [msg]   After AES: 6D 5C 15 FD  85 2D 5C 3C  E3 03 3D 85  DA 57 BD AC   After xor: 57 DC 2E 55  FA 2D 5C 3C  E3 03 3D 85  DA 57 BD AC   [msg]   After AES: B0 4A 1C 23  BC 39 B6 51  76 FD 5B FF  9B C1 28 5E   CBC-MAC  : B0 4A 1C 23  BC 39 B6 51   CTR Start: 01 00 D5 60  91 2D 3F 70  3C 96 96 76  6C FA 00 01   CTR[0001]: 64 A2 C5 56  50 CE E0 4C  7A 93 D8 EE  F5 43 E8 8E   CTR[0002]: 18 E7 65 AC  B7 B0 E9 AF  09 2B D0 20  6C A1 C8 3C   CTR[MAC ]: F7 43 82 79  5C 49 F3 00   Total packet length = 41. [Authenticated and Encrypted Output]              CD 90 44 D2  B7 1F DB 81  20 EA 60 C0  00 97 69 EC              AB DF 48 62  55 94 C5 92  51 E6 03 57  22 67 5E 04              C8 47 09 9E  5A E0 70 45  51Whiting, et al.              Informational                     [Page 19]

RFC 3610               Counter with CBC-MAC (CCM)         September 2003   =============== Packet Vector #19 ==================   AES Key =  D7 82 8D 13  B2 B0 BD C3  25 A7 62 36  DF 93 CC 6B   Nonce =    00 42 FF F8  F1 95 1C 3C  96 96 76 6C  FA   Total packet length = 31. [Input with 8 cleartext header octets]              D8 5B C7 E6  9F 94 4F B8  8A 19 B9 50  BC F7 1A 01              8E 5E 67 01  C9 17 87 65  98 09 D6 7D  BE DD 18   CBC IV in: 61 00 42 FF  F8 F1 95 1C  3C 96 96 76  6C FA 00 17   CBC IV out:44 F7 CC 9C  2B DD 2F 45  F6 38 25 6B  73 6E 1D 7A   After xor: 44 FF 14 C7  EC 3B B0 D1  B9 80 25 6B  73 6E 1D 7A   [hdr]   After AES: 57 C3 73 F8  00 AA 5F CC  7B CF 1D 1B  DD BB 4C 52   After xor: DD DA CA A8  BC 5D 45 CD  F5 91 7A 1A  14 AC CB 37   [msg]   After AES: 42 4E 93 72  72 C8 79 B6  11 C7 A5 9F  47 8D 9F D8   After xor: DA 47 45 0F  CC 15 61 B6  11 C7 A5 9F  47 8D 9F D8   [msg]   After AES: 9A CB 03 F8  B9 DB C8 D2  D2 D7 A4 B4  95 25 08 67   CBC-MAC  : 9A CB 03 F8  B9 DB C8 D2  D2 D7   CTR Start: 01 00 42 FF  F8 F1 95 1C  3C 96 96 76  6C FA 00 01   CTR[0001]: 36 38 34 FA  28 83 3D B7  55 66 0D 98  65 0D 68 46   CTR[0002]: 35 E9 63 54  87 16 72 56  3F 0C 08 AF  78 44 31 A9   CTR[MAC ]: F9 B7 FA 46  7B 9B 40 45  14 6D   Total packet length = 41. [Authenticated and Encrypted Output]              D8 5B C7 E6  9F 94 4F B8  BC 21 8D AA  94 74 27 B6              DB 38 6A 99  AC 1A EF 23  AD E0 B5 29  39 CB 6A 63              7C F9 BE C2  40 88 97 C6  BA   =============== Packet Vector #20 ==================   AES Key =  D7 82 8D 13  B2 B0 BD C3  25 A7 62 36  DF 93 CC 6B   Nonce =    00 92 0F 40  E5 6C DC 3C  96 96 76 6C  FA   Total packet length = 32. [Input with 8 cleartext header octets]              74 A0 EB C9  06 9F 5B 37  17 61 43 3C  37 C5 A3 5F              C1 F3 9F 40  63 02 EB 90  7C 61 63 BE  38 C9 84 37   CBC IV in: 61 00 92 0F  40 E5 6C DC  3C 96 96 76  6C FA 00 18   CBC IV out:60 CB 21 CE  40 06 50 AE  2A D2 BE 52  9F 5F 0F C2   After xor: 60 C3 55 6E  AB CF 56 31  71 E5 BE 52  9F 5F 0F C2   [hdr]   After AES: 03 20 64 14  35 32 5D 95  C8 A2 50 40  93 28 DA 9B   After xor: 14 41 27 28  02 F7 FE CA  09 51 CF 00  F0 2A 31 0B   [msg]   After AES: B9 E8 87 95  ED F7 F0 08  15 15 F0 14  E2 FE 0E 48   After xor: C5 89 E4 2B  D5 3E 74 3F  15 15 F0 14  E2 FE 0E 48   [msg]   After AES: 8F AD 0C 23  E9 63 7E 87  FA 21 45 51  1B 47 DE F1   CBC-MAC  : 8F AD 0C 23  E9 63 7E 87  FA 21   CTR Start: 01 00 92 0F  40 E5 6C DC  3C 96 96 76  6C FA 00 01   CTR[0001]: 4F 71 A5 C1  12 42 E3 7D  29 F0 FE E4  1B E1 02 5F   CTR[0002]: 34 2B D3 F1  7C B7 7B C1  79 0B 05 05  61 59 27 2C   CTR[MAC ]: 7F 09 7B EF  C6 AA C1 D3  73 65   Total packet length = 42. [Authenticated and Encrypted Output]              74 A0 EB C9  06 9F 5B 37  58 10 E6 FD  25 87 40 22              E8 03 61 A4  78 E3 E9 CF  48 4A B0 4F  44 7E FF F6              F0 A4 77 CC  2F C9 BF 54  89 44Whiting, et al.              Informational                     [Page 20]

RFC 3610               Counter with CBC-MAC (CCM)         September 2003   =============== Packet Vector #21 ==================   AES Key =  D7 82 8D 13  B2 B0 BD C3  25 A7 62 36  DF 93 CC 6B   Nonce =    00 27 CA 0C  71 20 BC 3C  96 96 76 6C  FA   Total packet length = 33. [Input with 8 cleartext header octets]              44 A3 AA 3A  AE 64 75 CA  A4 34 A8 E5  85 00 C6 E4              15 30 53 88  62 D6 86 EA  9E 81 30 1B  5A E4 22 6B              FA   CBC IV in: 61 00 27 CA  0C 71 20 BC  3C 96 96 76  6C FA 00 19   CBC IV out:43 07 C0 73  A8 9E E1 D5  05 27 B2 9A  62 48 D6 D2   After xor: 43 0F 84 D0  02 A4 4F B1  70 ED B2 9A  62 48 D6 D2   [hdr]   After AES: B6 0B C6 F5  84 01 75 BC  01 27 70 F1  11 8D 75 10   After xor: 12 3F 6E 10  01 01 B3 58  14 17 23 79  73 5B F3 FA   [msg]   After AES: 7D 5E 64 92  CE 2C B9 EA  7E 4C 4A 09  09 89 C8 FB   After xor: E3 DF 54 89  94 C8 9B 81  84 4C 4A 09  09 89 C8 FB   [msg]   After AES: 68 5F 8D 79  D2 2B 9B 74  21 DF 4C 3E  87 BA 0A AF   CBC-MAC  : 68 5F 8D 79  D2 2B 9B 74  21 DF   CTR Start: 01 00 27 CA  0C 71 20 BC  3C 96 96 76  6C FA 00 01   CTR[0001]: 56 8A 45 9E  40 09 48 67  EB 85 E0 9E  6A 2E 64 76   CTR[0002]: A6 00 AA 92  92 03 54 9A  AE EF 2C CC  59 13 7A 57   CTR[MAC ]: 25 1E DC DD  3F 11 10 F3  98 11   Total packet length = 43. [Authenticated and Encrypted Output]              44 A3 AA 3A  AE 64 75 CA  F2 BE ED 7B  C5 09 8E 83              FE B5 B3 16  08 F8 E2 9C  38 81 9A 89  C8 E7 76 F1              54 4D 41 51  A4 ED 3A 8B  87 B9 CE   =============== Packet Vector #22 ==================   AES Key =  D7 82 8D 13  B2 B0 BD C3  25 A7 62 36  DF 93 CC 6B   Nonce =    00 5B 8C CB  CD 9A F8 3C  96 96 76 6C  FA   Total packet length = 31. [Input with 12 cleartext header octets]              EC 46 BB 63  B0 25 20 C3  3C 49 FD 70  B9 6B 49 E2              1D 62 17 41  63 28 75 DB  7F 6C 92 43  D2 D7 C2   CBC IV in: 61 00 5B 8C  CB CD 9A F8  3C 96 96 76  6C FA 00 13   CBC IV out:91 14 AD 06  B6 CC 02 35  76 9A B6 14  C4 82 95 03   After xor: 91 18 41 40  0D AF B2 10  56 59 8A 5D  39 F2 95 03   [hdr]   After AES: 29 BD 7C 27  83 E3 E8 D3  C3 5C 01 F4  4C EC BB FA   After xor: 90 D6 35 C5  9E 81 FF 92  A0 74 74 2F  33 80 29 B9   [msg]   After AES: 4E DA F4 0D  21 0B D4 5F  FE 97 90 B9  AA EC 34 4C   After xor: 9C 0D 36 0D  21 0B D4 5F  FE 97 90 B9  AA EC 34 4C   [msg]   After AES: 21 9E F8 90  EA 64 C2 11  A5 37 88 83  E1 BA 22 0D   CBC-MAC  : 21 9E F8 90  EA 64 C2 11  A5 37   CTR Start: 01 00 5B 8C  CB CD 9A F8  3C 96 96 76  6C FA 00 01   CTR[0001]: 88 BC 19 42  80 C1 FA 3E  BE FC EF FB  4D C6 2D 54   CTR[0002]: 3E 59 7D A5  AE 21 CC A4  00 9E 4C 0C  91 F6 22 49   CTR[MAC ]: 5C BC 30 98  66 02 A9 F4  64 A0   Total packet length = 41. [Authenticated and Encrypted Output]              EC 46 BB 63  B0 25 20 C3  3C 49 FD 70  31 D7 50 A0              9D A3 ED 7F  DD D4 9A 20  32 AA BF 17  EC 8E BF 7D              22 C8 08 8C  66 6B E5 C1  97Whiting, et al.              Informational                     [Page 21]

RFC 3610               Counter with CBC-MAC (CCM)         September 2003   =============== Packet Vector #23 ==================   AES Key =  D7 82 8D 13  B2 B0 BD C3  25 A7 62 36  DF 93 CC 6B   Nonce =    00 3E BE 94  04 4B 9A 3C  96 96 76 6C  FA   Total packet length = 32. [Input with 12 cleartext header octets]              47 A6 5A C7  8B 3D 59 42  27 E8 5E 71  E2 FC FB B8              80 44 2C 73  1B F9 51 67  C8 FF D7 89  5E 33 70 76   CBC IV in: 61 00 3E BE  94 04 4B 9A  3C 96 96 76  6C FA 00 14   CBC IV out:0F 70 3F 5A  54 2C 44 6E  8B 74 A3 73  9B 48 B9 61   After xor: 0F 7C 78 FC  0E EB CF 53  D2 36 84 9B  C5 39 B9 61   [hdr]   After AES: 40 5B ED 29  D0 98 AE 91  DB 68 78 F3  68 B8 73 85   After xor: A2 A7 16 91  50 DC 82 E2  C0 91 29 94  A0 47 A4 0C   [msg]   After AES: 3D 03 29 3C  FD 81 1B 37  01 51 FB C7  85 6B 7A 74   After xor: 63 30 59 4A  FD 81 1B 37  01 51 FB C7  85 6B 7A 74   [msg]   After AES: 66 4F 27 16  3E 36 0F 72  62 0D 4E 67  7C E0 61 DE   CBC-MAC  : 66 4F 27 16  3E 36 0F 72  62 0D   CTR Start: 01 00 3E BE  94 04 4B 9A  3C 96 96 76  6C FA 00 01   CTR[0001]: 0A 7E 0A 63  53 C8 CF 9E  BC 3B 6E 63  15 9A D0 97   CTR[0002]: EA 20 32 DA  27 82 6E 13  9E 1E 72 5C  5B 0D 3E BF   CTR[MAC ]: B9 31 27 CA  F0 F1 A1 20  FA 70   Total packet length = 42. [Authenticated and Encrypted Output]              47 A6 5A C7  8B 3D 59 42  27 E8 5E 71  E8 82 F1 DB              D3 8C E3 ED  A7 C2 3F 04  DD 65 07 1E  B4 13 42 AC              DF 7E 00 DC  CE C7 AE 52  98 7D   =============== Packet Vector #24 ==================   AES Key =  D7 82 8D 13  B2 B0 BD C3  25 A7 62 36  DF 93 CC 6B   Nonce =    00 8D 49 3B  30 AE 8B 3C  96 96 76 6C  FA   Total packet length = 33. [Input with 12 cleartext header octets]              6E 37 A6 EF  54 6D 95 5D  34 AB 60 59  AB F2 1C 0B              02 FE B8 8F  85 6D F4 A3  73 81 BC E3  CC 12 85 17              D4   CBC IV in: 61 00 8D 49  3B 30 AE 8B  3C 96 96 76  6C FA 00 15   CBC IV out:67 AC E4 E8  06 77 7A D3  27 1D 0B 93  4C 67 98 15   After xor: 67 A0 8A DF  A0 98 2E BE  B2 40 3F 38  2C 3E 98 15   [hdr]   After AES: 35 58 F8 7E  CA C2 B4 39  B6 7E 75 BB  F1 5E 69 08   After xor: 9E AA E4 75  C8 3C 0C B6  33 13 81 18  82 DF D5 EB   [msg]   After AES: 54 E4 7B 62  22 F0 BB 87  17 D0 71 6A  EB AF 19 9E   After xor: 98 F6 FE 75  F6 F0 BB 87  17 D0 71 6A  EB AF 19 9E   [msg]   After AES: 23 E3 30 50  BC 57 DC 2C  3D 3E 7C 94  77 D1 49 71   CBC-MAC  : 23 E3 30 50  BC 57 DC 2C  3D 3E   CTR Start: 01 00 8D 49  3B 30 AE 8B  3C 96 96 76  6C FA 00 01   CTR[0001]: 58 DB 19 B3  88 9A A3 8B  3C A4 0B 16  FF 42 2C 73   CTR[0002]: C3 2F 24 3D  65 DC 7E 9F  4B 02 16 AB  7F B9 6B 4D   CTR[MAC ]: 4E 2D AE D2  53 F6 B1 8A  1D 67   Total packet length = 43. [Authenticated and Encrypted Output]              6E 37 A6 EF  54 6D 95 5D  34 AB 60 59  F3 29 05 B8              8A 64 1B 04  B9 C9 FF B5  8C C3 90 90  0F 3D A1 2A              B1 6D CE 9E  82 EF A1 6D  A6 20 59Whiting, et al.              Informational                     [Page 22]

RFC 3610               Counter with CBC-MAC (CCM)         September 20039.  Intellectual Property Statements   The authors hereby explicitly release any intellectual property   rights to CCM to the public domain.  Further, the authors are not   aware of any patent or patent application anywhere in the world that   covers CCM mode.  It is our belief that CCM is a simple combination   of well-established techniques, and we believe that CCM is obvious to   a person of ordinary skill in the arts.10.  Security Considerations   We claim that this block cipher mode is secure against attackers   limited to 2^128 steps of operation if the key K is 256 bits or   larger.  There are fairly generic precomputation attacks against all   block cipher modes that allow a meet-in-the-middle attack on the key   K.  If these attacks can be made, then the theoretical strength of   this, and any other, block cipher mode is limited to 2^(n/2) where n   is the number of bits in the key.  The strength of the authentication   is of course limited by M.   Users of smaller key sizes (such as 128-bits) should take precautions   to make the precomputation attacks more difficult.  Repeated use of   the same nonce value (with different keys of course) ought to be   avoided.  One solution is to include a random value within the nonce.   Of course, a packet counter is also needed within the nonce.  Since   the nonce is of limited size, a random value in the nonce provides a   limited amount of additional security.11.  References   This section provides normative and informative references.11.1.  Normative References   [STDWORDS]  Bradner, S., "Key words for use in RFCs to Indicate               Requirement Levels",BCP 14,RFC 2119, March 1997.11.2.  Informative References   [AES]       NIST, FIPS PUB 197, "Advanced Encryption Standard (AES),"               November 2001.   [CCM]       Whiting, D., Housley, R. and N. Ferguson, "AES Encryption               & Authentication Using CTR Mode & CBC-MAC," IEEE P802.11               doc 02/001r2, May 2002.   [ESP]       Kent, S. and R. Atkinson, "IP Encapsulating Security               Payload (ESP)",RFC 2406, November 1998.Whiting, et al.              Informational                     [Page 23]

RFC 3610               Counter with CBC-MAC (CCM)         September 2003   [MAC]       NIST, FIPS PUB 113, "Computer Data Authentication," May               1985.   [MODES]     Dworkin, M., "Recommendation for Block Cipher Modes of               Operation: Methods and Techniques," NIST Special               Publication 800-38A, December 2001.   [OCB]       Rogaway, P., Bellare, M., Black, J. and T, Krovetz, "OCB:               A block-Cipher Mod of Operation for Efficient               Authenticated Encryption," 8th ACM Conference on Computer               and Communications Security, pp 196-295, ACM Press, 2001.   [PROOF]     Jonsson, J., "On the Security of CTR + CBC-MAC," SAC 2002               -- Ninth Annual Workshop on Selected Areas of               Cryptography, Workshop Record version, 2002.  Final               version to appear in the LNCS Proceedings.12.  Acknowledgement   Russ Housley thanks the management at RSA Laboratories, especially   Burt Kaliski, who supported the development of this cryptographic   mode and this specification.  The vast majority of this work was done   while Russ was employed at RSA Laboratories.Whiting, et al.              Informational                     [Page 24]

RFC 3610               Counter with CBC-MAC (CCM)         September 200313.  Authors' Addresses   Doug Whiting   Hifn   5973 Avenida Encinas, #110   Carlsbad, CA 92009   USA   EMail: dwhiting@hifn.com   Russell Housley   Vigil Security, LLC   918 Spring Knoll Drive   Herndon, VA 20170   USA   EMail: housley@vigilsec.com   Niels Ferguson   MacFergus BV   Bart de Ligtstraat 64   1097 JE Amsterdam   Netherlands   EMail: niels@macfergus.comWhiting, et al.              Informational                     [Page 25]

RFC 3610               Counter with CBC-MAC (CCM)         September 200314.  Full Copyright Statement   Copyright (C) The Internet Society (2003).  All Rights Reserved.   This document and translations of it may be copied and furnished to   others, and derivative works that comment on or otherwise explain it   or assist in its implementation may be prepared, copied, published   and distributed, in whole or in part, without restriction of any   kind, provided that the above copyright notice and this paragraph are   included on all such copies and derivative works.  However, this   document itself may not be modified in any way, such as by removing   the copyright notice or references to the Internet Society or other   Internet organizations, except as needed for the purpose of   developing Internet standards in which case the procedures for   copyrights defined in the Internet Standards process must be   followed, or as required to translate it into languages other than   English.   The limited permissions granted above are perpetual and will not be   revoked by the Internet Society or its successors or assignees.   This document and the information contained herein is provided on an   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.Acknowledgement   Funding for the RFC Editor function is currently provided by the   Internet Society.Whiting, et al.              Informational                     [Page 26]

[8]ページ先頭

©2009-2025 Movatter.jp