Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Info page]

PROPOSED STANDARD
Internet Engineering Task Force (IETF)                         A. LindemRequest for Comments: 8362                                        A. RoyUpdates:5340,5838                                        Cisco SystemsCategory: Standards Track                                    D. GoethalsISSN: 2070-1721                                                    Nokia                                                         V. Reddy Vallem                                                                F. Baker                                                              April 2018OSPFv3 Link State Advertisement (LSA) ExtensibilityAbstract   OSPFv3 requires functional extension beyond what can readily be done   with the fixed-format Link State Advertisement (LSA) as described inRFC 5340.  Without LSA extension, attributes associated with OSPFv3   links and advertised IPv6 prefixes must be advertised in separate   LSAs and correlated to the fixed-format LSAs.  This document extends   the LSA format by encoding the existing OSPFv3 LSA information in   Type-Length-Value (TLV) tuples and allowing advertisement of   additional information with additional TLVs.  Backward-compatibility   mechanisms are also described.   This document updatesRFC 5340, "OSPF for IPv6", andRFC 5838,   "Support of Address Families in OSPFv3", by providing TLV-based   encodings for the base OSPFv3 unicast support and OSPFv3 address   family support.Status of This Memo   This is an Internet Standards Track document.   This document is a product of the Internet Engineering Task Force   (IETF).  It represents the consensus of the IETF community.  It has   received public review and has been approved for publication by the   Internet Engineering Steering Group (IESG).  Further information on   Internet Standards is available inSection 2 of RFC 7841.   Information about the current status of this document, any errata,   and how to provide feedback on it may be obtained athttps://www.rfc-editor.org/info/rfc8362.Lindem, et al.               Standards Track                    [Page 1]

RFC 8362                OSPFv3 LSA Extensibility              April 2018Copyright Notice   Copyright (c) 2018 IETF Trust and the persons identified as the   document authors.  All rights reserved.   This document is subject toBCP 78 and the IETF Trust's Legal   Provisions Relating to IETF Documents   (https://trustee.ietf.org/license-info) in effect on the date of   publication of this document.  Please review these documents   carefully, as they describe your rights and restrictions with respect   to this document.  Code Components extracted from this document must   include Simplified BSD License text as described in Section 4.e of   the Trust Legal Provisions and are provided without warranty as   described in the Simplified BSD License.Table of Contents1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .31.1.  Requirements Notation . . . . . . . . . . . . . . . . . .41.2.  OSPFv3 LSA Terminology  . . . . . . . . . . . . . . . . .42.  OSPFv3 Extended LSA Types . . . . . . . . . . . . . . . . . .43.  OSPFv3 Extended LSA TLVs  . . . . . . . . . . . . . . . . . .53.1.  Prefix Options Extensions . . . . . . . . . . . . . . . .63.1.1.  N-bit Prefix Option . . . . . . . . . . . . . . . . .73.2.  Router-Link TLV . . . . . . . . . . . . . . . . . . . . .83.3.  Attached-Routers TLV  . . . . . . . . . . . . . . . . . .93.4.  Inter-Area-Prefix TLV . . . . . . . . . . . . . . . . . .103.5.  Inter-Area-Router TLV . . . . . . . . . . . . . . . . . .113.6.  External-Prefix TLV . . . . . . . . . . . . . . . . . . .123.7.  Intra-Area-Prefix TLV . . . . . . . . . . . . . . . . . .133.8.  IPv6 Link-Local Address TLV . . . . . . . . . . . . . . .143.9.  IPv4 Link-Local Address TLV . . . . . . . . . . . . . . .143.10. IPv6-Forwarding-Address Sub-TLV . . . . . . . . . . . . .153.11. IPv4-Forwarding-Address Sub-TLV . . . . . . . . . . . . .153.12. Route-Tag Sub-TLV . . . . . . . . . . . . . . . . . . . .164.  OSPFv3 Extended LSAs  . . . . . . . . . . . . . . . . . . . .164.1.  OSPFv3 E-Router-LSA . . . . . . . . . . . . . . . . . . .164.2.  OSPFv3 E-Network-LSA  . . . . . . . . . . . . . . . . . .184.3.  OSPFv3 E-Inter-Area-Prefix-LSA  . . . . . . . . . . . . .194.4.  OSPFv3 E-Inter-Area-Router-LSA  . . . . . . . . . . . . .204.5.  OSPFv3 E-AS-External-LSA  . . . . . . . . . . . . . . . .214.6.  OSPFv3 E-NSSA-LSA . . . . . . . . . . . . . . . . . . . .224.7.  OSPFv3 E-Link-LSA . . . . . . . . . . . . . . . . . . . .224.8.  OSPFv3 E-Intra-Area-Prefix-LSA  . . . . . . . . . . . . .245.  Malformed OSPFv3 Extended LSA Handling  . . . . . . . . . . .256.  LSA Extension Backward Compatibility  . . . . . . . . . . . .256.1.  Full Extended LSA Migration . . . . . . . . . . . . . . .256.2.  Extended LSA Sparse-Mode Backward Compatibility . . . . .26Lindem, et al.               Standards Track                    [Page 2]

RFC 8362                OSPFv3 LSA Extensibility              April 20186.3.  LSA TLV Processing Backward Compatibility . . . . . . . .267.  Security Considerations . . . . . . . . . . . . . . . . . . .278.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .278.1.  OSPFv3 Extended LSA TLV Registry  . . . . . . . . . . . .278.2.  OSPFv3 Extended LSA Sub-TLV Registry  . . . . . . . . . .289.  References  . . . . . . . . . . . . . . . . . . . . . . . . .299.1.  Normative References  . . . . . . . . . . . . . . . . . .299.2.  Informative References  . . . . . . . . . . . . . . . . .30Appendix A.  Global Configuration Parameters  . . . . . . . . . .31Appendix B.  Area Configuration Parameters  . . . . . . . . . . .31   Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . .32   Contributors  . . . . . . . . . . . . . . . . . . . . . . . . . .32   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .331.  Introduction   OSPFv3 requires functional extension beyond what can readily be done   with the fixed-format Link State Advertisement (LSA) as described inRFC 5340 [OSPFV3].  Without LSA extension, attributes associated with   OSPFv3 links and advertised IPv6 prefixes must be advertised in   separate LSAs and correlated to the fixed-format LSAs.  This document   extends the LSA format by encoding the existing OSPFv3 LSA   information in Type-Length-Value (TLV) tuples and allowing   advertisement of additional information with additional TLVs.   Backward-compatibility mechanisms are also described.   This document updatesRFC 5340, "OSPF for IPv6", andRFC 5838,   "Support of Address Families in OSPFv3", by providing TLV-based   encodings for the base OSPFv3 support [OSPFV3] and OSPFv3 address   family support [OSPFV3-AF].   A similar extension was previously proposed in support of multi-   topology routing.  Additional requirements for the OSPFv3 LSA   extension include source/destination routing, route tagging, and   others.   A final requirement is to limit the changes to OSPFv3 to those   necessary for TLV-based LSAs.  For the most part, the semantics of   existing OSPFv3 LSAs are retained for their TLV-based successor LSAs   described herein.  Additionally, encoding details, e.g., the   representation of IPv6 prefixes as described inAppendix A.4.1 inRFC5340 [OSPFV3], have been retained.  This requirement was included to   increase the expedience of IETF adoption and deployment.Lindem, et al.               Standards Track                    [Page 3]

RFC 8362                OSPFv3 LSA Extensibility              April 2018   The following aspects of the OSPFv3 LSA extension are described:   1.  Extended LSA Types   2.  Extended LSA TLVs   3.  Extended LSA Formats   4.  Backward Compatibility1.1.  Requirements Notation   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and   "OPTIONAL" in this document are to be interpreted as described inBCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all   capitals, as shown here.1.2.  OSPFv3 LSA Terminology   The TLV-based OSPFv3 LSAs described in this document will be referred   to as Extended LSAs.  The OSPFv3 fixed-format LSAs [OSPFV3] will be   referred to as Legacy LSAs.2.  OSPFv3 Extended LSA Types   In order to provide backward compatibility, new LSA codes must be   allocated.  There are eight fixed-format LSAs defined inRFC 5340   [OSPFV3].  For ease of implementation and debugging, the LSA function   codes are the same as the fixed-format LSAs only with 32, i.e., 0x20,   added.  The alternative to this mapping was to allocate a bit in the   LS Type indicating the new LSA format.  However, this would have used   one half the LSA function code space for the migration of the eight   original fixed-format LSAs.  For backward compatibility, the U-bit   MUST be set in the LS Type so that the LSAs will be flooded by OSPFv3   routers that do not understand them.Lindem, et al.               Standards Track                    [Page 4]

RFC 8362                OSPFv3 LSA Extensibility              April 2018            LSA function code   LS Type   Description            ----------------------------------------------------            33                  0xA021    E-Router-LSA            34                  0xA022    E-Network-LSA            35                  0xA023    E-Inter-Area-Prefix-LSA            36                  0xA024    E-Inter-Area-Router-LSA            37                  0xC025    E-AS-External-LSA            38                  N/A       Unused (Not to be allocated)            39                  0xA027    E-Type-7-LSA            40                  0x8028    E-Link-LSA            41                  0xA029    E-Intra-Area-Prefix-LSA                         OSPFv3 Extended LSA Types3.  OSPFv3 Extended LSA TLVs   The format of the TLVs within the body of the Extended LSAs is the   same as the format used by the Traffic Engineering Extensions to OSPF   [TE].  The variable TLV section consists of one or more nested TLV   tuples.  Nested TLVs are also referred to as sub-TLVs.  The format of   each TLV is:       0                   1                   2                   3       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |              Type             |             Length            |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |                            Value...                           |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                                TLV Format   The Length field defines the length of the value portion in octets   (thus, a TLV with no value portion would have a length of 0).  The   TLV is padded to 4-octet alignment; padding is not included in the   Length field (so a 3-octet value would have a length of 3, but the   total size of the TLV would be 8 octets).  Nested TLVs are also   32-bit aligned.  For example, a 1-byte value would have the Length   field set to 1, and 3 octets of padding would be added to the end of   the value portion of the TLV.   This document defines the following top-level TLV types:   o  0 - Reserved   o  1 - Router-Link TLVLindem, et al.               Standards Track                    [Page 5]

RFC 8362                OSPFv3 LSA Extensibility              April 2018   o  2 - Attached-Routers TLV   o  3 - Inter-Area-Prefix TLV   o  4 - Inter-Area-Router TLV   o  5 - External-Prefix TLV   o  6 - Intra-Area-Prefix TLV   o  7 - IPv6 Link-Local Address TLV   o  8 - IPv4 Link-Local Address TLV   Additionally, this document defines the following sub-TLV types:   o  0 - Reserved   o  1 - IPv6-Forwarding-Address sub-TLV   o  2 - IPv4-Forwarding-Address sub-TLV   o  3 - Route-Tag sub-TLV   In general, TLVs and sub-TLVs MAY occur in any order, and the   specification should define whether the TLV or sub-TLV is required   and the behavior when there are multiple occurrences of the TLV or   sub-TLV.  While this document only describes the usage of TLVs and   sub-TLVs, sub-TLVs may be nested to any level as long as the sub-TLVs   are fully specified in the specification for the subsuming sub-TLV.   For backward compatibility, an LSA is not considered malformed from a   TLV perspective unless either a required TLV is missing or a   specified TLV is less than the minimum required length.  Refer toSection 6.3 for more information on TLV backward compatibility.3.1.  Prefix Options Extensions   The prefix options are extended fromAppendix A.4.1.1 [OSPFV3].  The   applicability of the LA-bit is expanded, and it SHOULD be set in   Inter-Area-Prefix TLVs and MAY be set in External-Prefix TLVs when   the advertised host IPv6 address, i.e., PrefixLength = 128 for the   IPv6 Address Family or PrefixLength = 32 for the IPv4 Address Family   [OSPFV3-AF], is an interface address.  InRFC 5340, the LA-bit is   only set in Intra-Area-Prefix-LSAs (Section 4.4.3.9 of [OSPFV3]).   This will allow a stable address to be advertised without having to   configure a separate loopback address in every OSPFv3 area.Lindem, et al.               Standards Track                    [Page 6]

RFC 8362                OSPFv3 LSA Extensibility              April 20183.1.1.  N-bit Prefix Option   Additionally, the N-bit prefix option is defined.  The figure below   shows the position of the N-bit in the prefix options (value 0x20).                          0  1  2  3  4  5  6  7                        +--+--+--+--+--+--+--+--+                        |  |  | N|DN| P| x|LA|NU|                        +--+--+--+--+--+--+--+--+                         The Prefix Options Field   The N-bit is set in PrefixOptions for a host address   (PrefixLength=128 for the IPv6 Address Family or PrefixLength=32 for   the IPv4 Address Family [OSPFV3-AF]) that identifies the advertising   router.  While it is similar to the LA-bit, there are two   differences.  The advertising router MAY choose NOT to set the N-bit   even when the above conditions are met.  If the N-bit is set and the   PrefixLength is NOT 128 for the IPv6 Address Family or 32 for the   IPv4 Address Family [OSPFV3-AF], the N-bit MUST be ignored.   Additionally, the N-bit is propagated in the PrefixOptions when an   OSPFv3 Area Border Router (ABR) originates an Inter-Area-Prefix-LSA   for an Intra-Area route that has the N-bit set in the PrefixOptions.   Similarly, the N-bit is propagated in the PrefixOptions when an   OSPFv3 Not-So-Stubby Area (NSSA) ABR originates an E-AS-External-LSA   corresponding to an NSSA route as described inSection 3 of RFC 3101   [NSSA].  The N-bit is added to the Inter-Area-Prefix TLV   (Section 3.4), External-Prefix TLV (Section 3.6), and   Intra-Area-Prefix-TLV (Section 3.7).  The N-bit is used as hint to   identify the preferred address to reach the advertising OSPFv3   router.  This would be in contrast to an anycast address   [IPV6-ADDRESS-ARCH], which could also be a local address with the   LA-bit set.  It is useful for applications such as identifying the   prefixes corresponding to Node Segment Identifiers (SIDs) in Segment   Routing [SEGMENT-ROUTING].  There may be future applications   requiring selection of a prefix associated with an OSPFv3 router.Lindem, et al.               Standards Track                    [Page 7]

RFC 8362                OSPFv3 LSA Extensibility              April 20183.2.  Router-Link TLV   The Router-Link TLV defines a single router link, and the field   definitions correspond directly to links in the OSPFv3 Router-LSA;   seeAppendix A.4.3 of [OSPFV3].  The Router-Link TLV is only   applicable to the E-Router-LSA (Section 4.1).  Inclusion in other   Extended LSAs MUST be ignored.       0                   1                   2                   3       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |          1 (Router-Link)      |       TLV Length              |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |     Type      |       0       |           Metric              |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |                      Interface ID                             |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |                   Neighbor Interface ID                       |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |                    Neighbor Router ID                         |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      .                                                               .      .                            Sub-TLVs                           .      .                                                               .      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                              Router-Link TLVLindem, et al.               Standards Track                    [Page 8]

RFC 8362                OSPFv3 LSA Extensibility              April 20183.3.  Attached-Routers TLV   The Attached-Routers TLV defines all the routers attached to an   OSPFv3 multi-access network.  The field definitions correspond   directly to content of the OSPFv3 Network-LSA; seeAppendix A.4.4 of   [OSPFV3].  The Attached-Routers TLV is only applicable to the   E-Network-LSA (Section 4.2).  Inclusion in other Extended LSAs MUST   be ignored.       0                   1                   2                   3       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |        2 (Attached-Routers)   |       TLV Length              |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |              Adjacent Neighbor Router ID                      |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      .                                                               .      .              Additional Adjacent Neighbors                    .      .                                                               .      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                           Attached-Routers TLV   There are two reasons for not having a separate TLV or sub-TLV for   each adjacent neighbor.  The first is to discourage using the   E-Network-LSA for more than its current role of solely advertising   the routers attached to a multi-access network.  The router's metric   as well as the attributes of individual attached routers should be   advertised in their respective E-Router-LSAs.  The second reason is   that there is only a single E-Network-LSA per multi-access link with   the Link State ID set to the Designated Router's Interface ID, and   consequently, compact encoding has been chosen to decrease the   likelihood that the size of the E-Network-LSA will require IPv6   fragmentation when advertised in an OSPFv3 Link State Update packet.Lindem, et al.               Standards Track                    [Page 9]

RFC 8362                OSPFv3 LSA Extensibility              April 20183.4.  Inter-Area-Prefix TLV   The Inter-Area-Prefix TLV defines a single OSPFV3 inter-area prefix.   The field definitions correspond directly to the content of an OSPFv3   IPv6 Prefix, as defined inAppendix A.4.1 of [OSPFV3], and an OSPFv3   Inter-Area-Prefix-LSA, as defined inAppendix A.4.5 of [OSPFV3].   Additionally, the PrefixOptions are extended as described inSection 3.1.  The Inter-Area-Prefix TLV is only applicable to the   E-Inter-Area-Prefix-LSA (Section 4.3).  Inclusion in other Extended   LSAs MUST be ignored.       0                   1                   2                   3       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |       3 (Inter-Area Prefix)   |       TLV Length              |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |      0        |                  Metric                       |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      | PrefixLength  | PrefixOptions |              0                |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |                        Address Prefix                         |      |                             ...                               |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      .                                                               .      .                            Sub-TLVs                           .      .                                                               .      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                           Inter-Area-Prefix TLVLindem, et al.               Standards Track                   [Page 10]

RFC 8362                OSPFv3 LSA Extensibility              April 20183.5.  Inter-Area-Router TLV   The Inter-Area-Router TLV defines a single OSPFv3 Autonomous System   Boundary Router (ASBR) that is reachable in another area.  The field   definitions correspond directly to the content of an OSPFv3   Inter-Area-Router-LSA, as defined inAppendix A.4.6 of [OSPFV3].  The   Inter-Area-Router TLV is only applicable to the   E-Inter-Area-Router-LSA (Section 4.4).  Inclusion in other Extended   LSAs MUST be ignored.       0                   1                   2                   3       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |       4 (Inter-Area Router)   |       TLV Length              |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |      0        |                Options                        |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |      0        |                Metric                         |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |                 Destination Router ID                         |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      .                                                               .      .                            Sub-TLVs                           .      .                                                               .      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                           Inter-Area-Router TLVLindem, et al.               Standards Track                   [Page 11]

RFC 8362                OSPFv3 LSA Extensibility              April 20183.6.  External-Prefix TLV   The External-Prefix TLV defines a single OSPFv3 external prefix.   With the exception of omitted fields noted below, the field   definitions correspond directly to the content of an OSPFv3 IPv6   Prefix, as defined inAppendix A.4.1 of [OSPFV3], and an OSPFv3   AS-External-LSA, as defined inAppendix A.4.7 of [OSPFV3].  The   External-Prefix TLV is only applicable to the E-AS-External-LSA   (Section 4.5) and the E-NSSA-LSA (Section 4.6).  Additionally, the   PrefixOptions are extended as described inSection 3.1.  Inclusion in   other Extended LSAs MUST be ignored.       0                   1                   2                   3       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |       5 (External Prefix)     |       TLV Length              |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |         |E| | |                Metric                         |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      | PrefixLength  | PrefixOptions |              0                |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |                        Address Prefix                         |      |                             ...                               |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      .                                                               .      .                            Sub-TLVs                           .      .                                                               .      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                            External-Prefix TLV   In the External-Prefix TLV, the optional IPv6/IPv4 Forwarding Address   and External Route Tag are now sub-TLVs.  Given the Referenced LS   Type and Referenced Link State ID from the AS-External-LSA have never   been used or even specified, they have been omitted from the   External-Prefix TLV.  If there were ever a requirement for a   referenced LSA, it could be satisfied with a sub-TLV.   The following sub-TLVs are defined for optional inclusion in the   External-Prefix TLV:   o  1 - IPv6-Forwarding-Address sub-TLV (Section 3.10)   o  2 - IPv4-Forwarding-Address sub-TLV (Section 3.11)   o  3 - Route-Tag sub-TLV (Section 3.12)Lindem, et al.               Standards Track                   [Page 12]

RFC 8362                OSPFv3 LSA Extensibility              April 20183.7.  Intra-Area-Prefix TLV   The Intra-Area-Prefix TLV defines a single OSPFv3 intra-area prefix.   The field definitions correspond directly to the content of an OSPFv3   IPv6 Prefix, as defined inAppendix A.4.1 of [OSPFV3], and an OSPFv3   Link-LSA, as defined inAppendix A.4.9 of [OSPFV3].  The   Intra-Area-Prefix TLV is only applicable to the E-Link-LSA   (Section 4.7) and the E-Intra-Area-Prefix-LSA (Section 4.8).   Additionally, the PrefixOptions are extended as described inSection 3.1.  Inclusion in other Extended LSAs MUST be ignored.       0                   1                   2                   3       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |       6 (Intra-Area Prefix)   |       TLV Length              |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |      0        |                  Metric                       |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      | PrefixLength  | PrefixOptions |              0                |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |                        Address Prefix                         |      |                             ...                               |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      .                                                               .      .                            Sub-TLVs                           .      .                                                               .      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                           Intra-Area-Prefix TLVLindem, et al.               Standards Track                   [Page 13]

RFC 8362                OSPFv3 LSA Extensibility              April 20183.8.  IPv6 Link-Local Address TLV   The IPv6 Link-Local Address TLV is to be used with IPv6 address   families as defined in [OSPFV3-AF].  The IPv6 Link-Local Address TLV   is only applicable to the E-Link-LSA (Section 4.7).  Inclusion in   other Extended LSAs MUST be ignored.       0                   1                   2                   3       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |  7 (IPv6 Local-Local Address) |       TLV Length              |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |                                                               |      +-                                                             -+      |                                                               |      +-            IPv6 Link-Local Interface Address                -+      |                                                               |      +-                                                             -+      |                                                               |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      .                                                               .      .                            Sub-TLVs                           .      .                                                               .      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                        IPv6 Link-Local Address TLV3.9.  IPv4 Link-Local Address TLV   The IPv4 Link-Local Address TLV is to be used with IPv4 address   families as defined in [OSPFV3-AF].  The IPv4 Link-Local Address TLV   is only applicable to the E-Link-LSA (Section 4.7).  Inclusion in   other Extended LSAs MUST be ignored.       0                   1                   2                   3       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |  8 (IPv4 Local-Local Address) |       TLV Length              |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |             IPv4 Link-Local Interface Address                 |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      .                                                               .      .                            Sub-TLVs                           .      .                                                               .      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                        IPv4 Link-Local Address TLVLindem, et al.               Standards Track                   [Page 14]

RFC 8362                OSPFv3 LSA Extensibility              April 20183.10.  IPv6-Forwarding-Address Sub-TLV   The IPv6-Forwarding-Address TLV has identical semantics to the   optional forwarding address inAppendix A.4.7 of [OSPFV3].  The IPv6-   Forwarding-Address TLV is applicable to the External-Prefix TLV   (Section 3.6).  Specification as a sub-TLV of other TLVs is not   defined herein.  The sub-TLV is optional and the first specified   instance is used as the forwarding address as defined in [OSPFV3].   Instances subsequent to the first MUST be ignored.   The IPv6-Forwarding-Address TLV is to be used with IPv6 address   families as defined in [OSPFV3-AF].  It MUST be ignored for other   address families.  The IPv6-Forwarding-Address TLV length must meet a   minimum length (16 octets), or it will be considered malformed as   described inSection 6.3.       0                   1                   2                   3       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |       1 - Forwarding Address  |          sub-TLV Length       |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |                                                               |      +-                                                             -+      |                                                               |      +-                    Forwarding Address                       -+      |                                                               |      +-                                                             -+      |                                                               |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                        IPv6-Forwarding-Address TLV3.11.  IPv4-Forwarding-Address Sub-TLV   The IPv4-Forwarding-Address TLV has identical semantics to the   optional forwarding address inAppendix A.4.7 of [OSPFV3].  The   IPv4-Forwarding-Address TLV is applicable to the External-Prefix TLV   (Section 3.6).  Specification as a sub-TLV of other TLVs is not   defined herein.  The sub-TLV is optional, and the first specified   instance is used as the forwarding address as defined in [OSPFV3].   Instances subsequent to the first MUST be ignored.   The IPv4-Forwarding-Address TLV is to be used with IPv4 address   families as defined in [OSPFV3-AF].  It MUST be ignored for other   address families.  The IPv4-Forwarding-Address TLV length must meet a   minimum length (4 octets), or it will be considered malformed as   described inSection 6.3.Lindem, et al.               Standards Track                   [Page 15]

RFC 8362                OSPFv3 LSA Extensibility              April 2018       0                   1                   2                   3       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |       2 - Forwarding Address  |          sub-TLV Length       |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |                     Forwarding Address                        |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                        IPv4-Forwarding-Address TLV3.12.  Route-Tag Sub-TLV   The optional Route-Tag sub-TLV has identical semantics to the   optional External Route Tag inAppendix A.4.7 of [OSPFV3].  The   Route-Tag sub-TLV is applicable to the External-Prefix TLV   (Section 3.6).  Specification as a sub-TLV of other TLVs is not   defined herein.  The sub-TLV is optional, and the first specified   instance is used as the Route Tag as defined in [OSPFV3].  Instances   subsequent to the first MUST be ignored.   The Route-Tag TLV length must meet a minimum length (4 octets), or it   will be considered malformed as described inSection 6.3.       0                   1                   2                   3       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |       3 - Route Tag           |          sub-TLV Length       |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |                          Route Tag                            |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                             Route-Tag Sub-TLV4.  OSPFv3 Extended LSAs   This section specifies the OSPFv3 Extended LSA formats and encoding.   The Extended OSPFv3 LSAs corresponded directly to the original OSPFv3   LSAs specified in [OSPFV3].4.1.  OSPFv3 E-Router-LSA   The E-Router-LSA has an LS Type of 0xA021 and has the same base   information content as the Router-LSA defined inAppendix A.4.3 of   [OSPFV3].  However, unlike the existing Router-LSA, it is fully   extensible and represented as TLVs.Lindem, et al.               Standards Track                   [Page 16]

RFC 8362                OSPFv3 LSA Extensibility              April 2018       0                    1                   2                   3       0 1 2 3  4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1      +-+-+-+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |           LS Age               |1|0|1|         0x21            |      +-+-+-+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |                       Link State ID                            |      +-+-+-+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |                    Advertising Router                          |      +-+-+-+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |                    LS Sequence Number                          |      +-+-+-+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |        LS Checksum             |            Length             |      +-+-+-+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |  0  |Nt|x|V|E|B|            Options                            |      +-+-+-+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      .                                                                .      .                            TLVs                                .      .                                                                .      +-+-+-+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                            Extended Router-LSA   Other than having a different LS Type, all LSA Header fields are the   same as defined for the Router-LSA.  Initially, only the top-level   Router-Link TLV (Section 3.2) is applicable, and an E-Router-LSA may   include multiple Router-Link TLVs.  Like the existing Router-LSA, the   LSA length is used to determine the end of the LSA including any   TLVs.  Depending on the implementation, it is perfectly valid for an   E-Router-LSA to not contain any Router-Link TLVs.  However, this   would imply that the OSPFv3 router doesn't have any adjacencies in   the corresponding area and is forming an adjacency or adjacencies   over an unnumbered link(s).  Note that no E-Router-LSA stub link is   advertised for an unnumbered link.Lindem, et al.               Standards Track                   [Page 17]

RFC 8362                OSPFv3 LSA Extensibility              April 20184.2.  OSPFv3 E-Network-LSA   The E-Network-LSA has an LS Type of 0xA022 and has the same base   information content as the Network-LSA defined inAppendix A.4.4 of   [OSPFV3].  However, unlike the existing Network-LSA, it is fully   extensible and represented as TLVs.       0                   1                   2                   3       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |          LS Age               |1|0|1|         0x22            |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |                      Link State ID                            |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |                   Advertising Router                          |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |                   LS Sequence Number                          |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |       LS Checksum             |            Length             |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |       0       |            Options                            |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      .                                                               .      .                           TLVs                                .      .                                                               .      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               E-Network-LSA   Other than having a different LS Type, all LSA Header fields are the   same as defined for the Network-LSA.  Like the existing Network-LSA,   the LSA length is used to determine the end of the LSA including any   TLVs.  Initially, only the top-level Attached-Routers TLV   (Section 3.3) is applicable.  If the Attached-Router TLV is not   included in the E-Network-LSA, it is treated as malformed as   described inSection 5.  Instances of the Attached-Router TLV   subsequent to the first MUST be ignored.Lindem, et al.               Standards Track                   [Page 18]

RFC 8362                OSPFv3 LSA Extensibility              April 20184.3.  OSPFv3 E-Inter-Area-Prefix-LSA   The E-Inter-Area-Prefix-LSA has an LS Type of 0xA023 and has the same   base information content as the Inter-Area-Prefix-LSA defined inAppendix A.4.5 of [OSPFV3].  However, unlike the existing   Inter-Area-Prefix-LSA, it is fully extensible and represented as   TLVs.       0                   1                   2                   3       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |          LS Age               |1|0|1|         0x23            |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |                      Link State ID                            |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |                   Advertising Router                          |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |                   LS Sequence Number                          |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |       LS Checksum             |            Length             |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      .                                                               .      .                           TLVs                                .      .                                                               .      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                          E-Inter-Area-Prefix-LSA   Other than having a different LS Type, all LSA Header fields are the   same as defined for the Inter-Area-Prefix-LSA.  In order to retain   compatibility and semantics with the current OSPFv3 specification,   each Inter-Area-Prefix LSA MUST contain a single Inter-Area-Prefix   TLV.  This will facilitate migration and avoid changes to functions   such as incremental Shortest Path First (SPF) computation.   Like the existing Inter-Area-Prefix-LSA, the LSA length is used to   determine the end of the LSA including any TLVs.  Initially, only the   top-level Inter-Area-Prefix TLV (Section 3.4) is applicable.  If the   Inter-Area-Prefix TLV is not included in the E-Inter-Area-Prefix-LSA,   it is treated as malformed as described inSection 5.  Instances of   the Inter-Area-Prefix TLV subsequent to the first MUST be ignored.Lindem, et al.               Standards Track                   [Page 19]

RFC 8362                OSPFv3 LSA Extensibility              April 20184.4.  OSPFv3 E-Inter-Area-Router-LSA   The E-Inter-Area-Router-LSA has an LS Type of 0xA024 and has the same   base information content as the Inter-Area-Router-LSA defined inAppendix A.4.6 of [OSPFV3].  However, unlike the   Inter-Area-Router-LSA, it is fully extensible and represented as   TLVs.       0                   1                   2                   3       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |          LS Age               |1|0|1|         0x24            |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |                      Link State ID                            |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |                   Advertising Router                          |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |                   LS Sequence Number                          |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |       LS Checksum             |            Length             |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      .                                                               .      .                           TLVs                                .      .                                                               .      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                          E-Inter-Area-Router-LSA   Other than having a different LS Type, all LSA Header fields are the   same as defined for the Inter-Area-Router-LSA.  In order to retain   compatibility and semantics with the current OSPFv3 specification,   each Inter-Area-Router-LSA MUST contain a single Inter-Area-Router   TLV.  This will facilitate migration and avoid changes to functions   such as incremental SPF computation.   Like the existing Inter-Area-Router-LSA, the LSA length is used to   determine the end of the LSA including any TLVs.  Initially, only the   top-level Inter-Area-Router TLV (Section 3.5) is applicable.  If the   Inter-Area-Router TLV is not included in the E-Inter-Area-Router-LSA,   it is treated as malformed as described inSection 5.  Instances of   the Inter-Area-Router TLV subsequent to the first MUST be ignored.Lindem, et al.               Standards Track                   [Page 20]

RFC 8362                OSPFv3 LSA Extensibility              April 20184.5.  OSPFv3 E-AS-External-LSA   The E-AS-External-LSA has an LS Type of 0xC025 and has the same base   information content as the AS-External-LSA defined inAppendix A.4.7   of [OSPFV3].  However, unlike the existing AS-External-LSA, it is   fully extensible and represented as TLVs.       0                   1                   2                   3       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |          LS Age               |1|1|0|         0x25            |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |                      Link State ID                            |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |                   Advertising Router                          |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |                   LS Sequence Number                          |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |       LS Checksum             |            Length             |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      .                                                               .      .                           TLVs                                .      .                                                               .      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                             E-AS-External-LSA   Other than having a different LS Type, all LSA Header fields are the   same as defined for the AS-External-LSA.  In order to retain   compatibility and semantics with the current OSPFv3 specification,   each LSA MUST contain a single External-Prefix TLV.  This will   facilitate migration and avoid changes to OSPFv3 functions such as   incremental SPF computation.   Like the existing AS-External-LSA, the LSA length is used to   determine the end of the LSA including any TLVs.  Initially, only the   top-level External-Prefix TLV (Section 3.6) is applicable.  If the   External-Prefix TLV is not included in the E-External-AS-LSA, it is   treated as malformed as described inSection 5.  Instances of the   External-Prefix TLV subsequent to the first MUST be ignored.Lindem, et al.               Standards Track                   [Page 21]

RFC 8362                OSPFv3 LSA Extensibility              April 20184.6.  OSPFv3 E-NSSA-LSA   The E-NSSA-LSA will have the same format and TLVs as the Extended   AS-External-LSA (Section 4.5).  This is the same relationship that   exists between the NSSA-LSA, as defined inAppendix A.4.8 of   [OSPFV3], and the AS-External-LSA.  The NSSA-LSA will have type   0xA027, which implies area flooding scope.  Future requirements may   dictate that supported TLVs differ between the E-AS-External-LSA and   the E-NSSA-LSA.  However, future requirements are beyond the scope of   this document.4.7.  OSPFv3 E-Link-LSA   The E-Link-LSA has an LS Type of 0x8028 and will have the same base   information content as the Link-LSA defined inAppendix A.4.9 of   [OSPFV3].  However, unlike the existing Link-LSA, it is fully   extensible and represented as TLVs.       0                   1                   2                   3       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |          LS Age               |1|0|0|         0x28            |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |                      Link State ID                            |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |                   Advertising Router                          |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |                   LS Sequence Number                          |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |       LS Checksum             |            Length             |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      | Rtr Priority  |                Options                        |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      .                                                               .      .                           TLVs                                .      .                                                               .      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                                E-Link-LSA   Other than having a different LS Type, all LSA Header fields are the   same as defined for the Link-LSA.   Only the Intra-Area-Prefix TLV (Section 3.7), IPv6 Link-Local Address   TLV (Section 3.8), and IPv4 Link-Local Address TLV (Section 3.9) are   applicable to the E-Link-LSA.  Like the Link-LSA, the E-Link-LSALindem, et al.               Standards Track                   [Page 22]

RFC 8362                OSPFv3 LSA Extensibility              April 2018   affords advertisement of multiple intra-area prefixes.  Hence,   multiple Intra-Area-Prefix TLVs (Section 3.7) may be specified, and   the LSA length defines the end of the LSA including any TLVs.   A single instance of the IPv6 Link-Local Address TLV (Section 3.8)   SHOULD be included in the E-Link-LSA.  Instances following the first   MUST be ignored.  For IPv4 address families as defined in   [OSPFV3-AF], this TLV MUST be ignored.   Similarly, only a single instance of the IPv4 Link-Local Address TLV   (Section 3.9) SHOULD be included in the E-Link-LSA.  Instances   following the first MUST be ignored.  For OSPFv3 IPv6 address   families as defined in [OSPFV3-AF], this TLV SHOULD be ignored.   If the IPv4/IPv6 Link-Local Address TLV corresponding to the OSPFv3   Address Family is not included in the E-Link-LSA, it is treated as   malformed as described inSection 5.   Future specifications may support advertisement of routing and   topology information for multiple address families.  However, this is   beyond the scope of this document.Lindem, et al.               Standards Track                   [Page 23]

RFC 8362                OSPFv3 LSA Extensibility              April 20184.8.  OSPFv3 E-Intra-Area-Prefix-LSA   The E-Intra-Area-Prefix-LSA has an LS Type of 0xA029 and has the same   base information content as the Intra-Area-Prefix-LSA defined inAppendix A.4.10 of [OSPFV3] except for the Referenced LS Type.   However, unlike the Intra-Area-Prefix-LSA, it is fully extensible and   represented as TLVs.  The Referenced LS Type MUST be either an   E-Router-LSA (0xA021) or an E-Network-LSA (0xA022).       0                   1                   2                   3       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |           LS Age              |1|0|1|         0x29            |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |                      Link State ID                            |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |                   Advertising Router                          |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |                   LS Sequence Number                          |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |        LS Checksum            |            Length             |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |       0                       |     Referenced LS Type        |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |                  Referenced Link State ID                     |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      |               Referenced Advertising Router                   |      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+      .                                                               .      .                            TLVs                               .      .                                                               .      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                          E-Intra-Area-Prefix-LSA   Other than having a different LS Type, all LSA Header fields are the   same as defined for the Intra-Area-Prefix-LSA.   Like the Intra-Area-Prefix-LSA, the E-Intra-Area-Link-LSA affords   advertisement of multiple intra-area prefixes.  Hence, multiple   Intra-Area-Prefix TLVs may be specified, and the LSA length defines   the end of the LSA including any TLVs.Lindem, et al.               Standards Track                   [Page 24]

RFC 8362                OSPFv3 LSA Extensibility              April 20185.  Malformed OSPFv3 Extended LSA Handling   Extended LSAs that have inconsistent length or other encoding errors,   as described herein, MUST NOT be installed in the Link State   Database, acknowledged, or flooded.  Reception of malformed LSAs   SHOULD be counted and/or logged for examination by the administrator   of the OSPFv3 routing domain.  Note that for the purposes of length   validation, a TLV or sub-TLV should not be considered invalid unless   the length exceeds the length of the LSA or does not meet the minimum   length requirements for the TLV or sub-TLV.  This allows for sub-TLVs   to be added as described inSection 6.3.   Additionally, an LSA MUST be considered malformed if it does not   include all of the required TLVs and sub-TLVs.6.  LSA Extension Backward Compatibility   In the context of this document, backward compatibility is solely   related to the capability of an OSPFv3 router to receive, process,   and originate the TLV-based LSAs defined herein.  Unrecognized TLVs   and sub-TLVs are ignored.  Backward compatibility for future OSPFv3   extensions utilizing the TLV-based LSAs is out of scope and must be   covered in the documents describing those extensions.  Both full and,   if applicable, partial deployment SHOULD be specified for future TLV-   based OSPFv3 LSA extensions.6.1.  Full Extended LSA Migration   If ExtendedLSASupport is enabled (Appendix A), OSPFv3 Extended LSAs   will be originated and used for the SPF computation.  Individual OSPF   Areas can be migrated separately with the Legacy AS-External-LSAs   being originated and used for the SPF computation.  This is   accomplished by enabling AreaExtendedLSASupport (Appendix B).   An OSPFv3 routing domain or area may be non-disruptively migrated   using separate OSPFv3 instances for the Extended LSAs.  Initially,   the OSPFv3 instances with ExtendedLSASupport will have a lower   preference, i.e., higher administrative distance, than the OSPFv3   instances originating and using the Legacy LSAs.  Once the routing   domain or area is fully migrated and the OSPFv3 Routing Information   Bases (RIBs) have been verified, the OSPFv3 instances using the   Extended LSAs can be given preference.  When this has been completed   and the routing within the OSPF routing domain or area has been   verified, the original OSPFv3 instance using Legacy LSAs can be   removed.Lindem, et al.               Standards Track                   [Page 25]

RFC 8362                OSPFv3 LSA Extensibility              April 20186.2.  Extended LSA Sparse-Mode Backward Compatibility   In this mode, OSPFv3 will use the Legacy LSAs for the SPF computation   and will only originate Extended LSAs when LSA origination is   required in support of additional functionality.  Furthermore, those   Extended LSAs will only include the top-level TLVs (e.g., Router-Link   TLVs or Inter-Area TLVs), which are required for that new   functionality.  However, if a top-level TLV is advertised, it MUST   include required sub-TLVs, or it will be considered malformed as   described inSection 5.  Hence, this mode of compatibility is known   as "sparse-mode".  The advantage of sparse-mode is that functionality   utilizing the OSPFv3 Extended LSAs can be added to an existing OSPFv3   routing domain without the requirement for migration.  In essence,   this compatibility mode is very much like the approach taken for   OSPFv2 [OSPF-PREFIX-LINK].  As with all the compatibility modes,   backward compatibility for the functions utilizing the Extended LSAs   must be described in the IETF documents describing those functions.6.3.  LSA TLV Processing Backward Compatibility   This section defines the general rules for processing LSA TLVs.  To   ensure compatibility of future TLV-based LSA extensions, all   implementations MUST adhere to these rules:   1.  Unrecognized TLVs and sub-TLVs are ignored when parsing or       processing Extended LSAs.   2.  Whether or not partial deployment of a given TLV is supported       MUST be specified.   3.  If partial deployment is not supported, mechanisms to ensure the       corresponding feature is not deployed MUST be specified in the       document defining the new TLV or sub-TLV.   4.  If partial deployment is supported, backward compatibility and       partial deployment MUST be specified in the document defining the       new TLV or sub-TLV.   5.  If a TLV or sub-TLV is recognized but the length is less than the       minimum, then the LSA should be considered malformed, and it       SHOULD NOT be acknowledged.  Additionally, the occurrence SHOULD       be logged with enough information to identify the LSA by type,       Link State ID, originator, and sequence number and identify the       TLV or sub-TLV in error.  Ideally, the log entry would include       the hexadecimal or binary representation of the LSA including the       malformed TLV or sub-TLV.Lindem, et al.               Standards Track                   [Page 26]

RFC 8362                OSPFv3 LSA Extensibility              April 2018   6.  Documents specifying future TLVs or Sub-TLVs MUST specify the       requirements for usage of those TLVs or sub-TLVs.   7.  Future TLVs or sub-TLVs must be optional.  However, there may be       requirements for sub-TLVs if an optional TLV is specified.7.  Security Considerations   In general, extensible OSPFv3 LSAs are subject to the same security   concerns as those described inRFC 5340 [OSPFV3].  Additionally,   implementations must assure that malformed TLV and sub-TLV   permutations do not result in errors that cause hard OSPFv3 failures.   If there were ever a requirement to digitally sign OSPFv3 LSAs as   described for OSPFv2 LSAs inRFC 2154 [OSPF-DIGITAL-SIGNATURE], the   mechanisms described herein would greatly simplify the extension.8.  IANA Considerations   This specification defines nine OSPFv3 Extended LSA types as   described inSection 2.  These have been added to the existing OSPFv3   LSA Function Codes registry.   The specification defines a code point for the N-bit in the OSPFv3   Prefix-Options registry.  The value 0x20 has been assigned.   This specification also creates two registries for OSPFv3 Extended   LSA TLVs and sub-TLVs.  The TLV and sub-TLV code points in these   registries are common to all Extended LSAs, and their respective   definitions must define where they are applicable.8.1.  OSPFv3 Extended LSA TLV Registry   The "OSPFv3 Extended LSA TLVs" registry defines top-level TLVs for   Extended LSAs and has been placed in the existing OSPFv3 IANA   registry.   Nine values have been allocated:   o  0 - Reserved   o  1 - Router-Link TLV   o  2 - Attached-Routers TLV   o  3 - Inter-Area-Prefix TLV   o  4 - Inter-Area-Router TLVLindem, et al.               Standards Track                   [Page 27]

RFC 8362                OSPFv3 LSA Extensibility              April 2018   o  5 - External-Prefix TLV   o  6 - Intra-Area-Prefix TLV   o  7 - IPv6 Link-Local Address TLV   o  8 - IPv4 Link-Local Address TLV   Types in the range 9-32767 are allocated via IETF Review or IESG   Approval [RFC8126].   Types in the range 32768-33023 are Reserved for Experimental Use;   these will not be registered with IANA and MUST NOT be mentioned by   RFCs.   Types in the range 33024-45055 are to be assigned on a First Come   First Served (FCFS) basis.   Types in the range 45056-65535 are not to be assigned at this time.   Before any assignments can be made in the 33024-65535 range, there   MUST be an IETF specification that specifies IANA Considerations that   cover the range being assigned.8.2.  OSPFv3 Extended LSA Sub-TLV Registry   The "OSPFv3 Extended LSA Sub-TLVs" registry defines sub-TLVs at any   level of nesting for Extended LSAs and has been placed in the   existing OSPFv3 IANA registry.   Four values have been allocated:   o  0 - Reserved   o  1 - IPv6-Forwarding-Address sub-TLV   o  2 - IPv4-Forwarding-Address sub-TLV   o  3 - Route-Tag sub-TLV   Types in the range 4-32767 are allocated via IETF Review or IESG   Approval.   Types in the range 32768-33023 are Reserved for Experimental Use;   these will not be registered with IANA and MUST NOT be mentioned by   RFCs.   Types in the range 33024-45055 are to be assigned on an FCFS basis.Lindem, et al.               Standards Track                   [Page 28]

RFC 8362                OSPFv3 LSA Extensibility              April 2018   Types in the range 45056-65535 are not to be assigned at this time.   Before any assignments can be made in the 33024-65535 range, there   MUST be an IETF specification that specifies IANA Considerations that   cover the range being assigned.9.  References9.1.  Normative References   [NSSA]     Murphy, P., "The OSPF Not-So-Stubby Area (NSSA) Option",RFC 3101, DOI 10.17487/RFC3101, January 2003,              <https://www.rfc-editor.org/info/rfc3101>.   [OSPFV3]   Coltun, R., Ferguson, D., Moy, J., and A. Lindem, "OSPF              for IPv6",RFC 5340, DOI 10.17487/RFC5340, July 2008,              <https://www.rfc-editor.org/info/rfc5340>.   [OSPFV3-AF]              Lindem, A., Ed., Mirtorabi, S., Roy, A., Barnes, M., and              R. Aggarwal, "Support of Address Families in OSPFv3",RFC 5838, DOI 10.17487/RFC5838, April 2010,              <https://www.rfc-editor.org/info/rfc5838>.   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate              Requirement Levels",BCP 14,RFC 2119,              DOI 10.17487/RFC2119, March 1997,              <https://www.rfc-editor.org/info/rfc2119>.   [RFC8126]  Cotton, M., Leiba, B., and T. Narten, "Guidelines for              Writing an IANA Considerations Section in RFCs",BCP 26,RFC 8126, DOI 10.17487/RFC8126, June 2017,              <https://www.rfc-editor.org/info/rfc8126>.   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase inRFC2119 Key Words",BCP 14,RFC 8174, DOI 10.17487/RFC8174,              May 2017, <https://www.rfc-editor.org/info/rfc8174>.   [TE]       Katz, D., Kompella, K., and D. Yeung, "Traffic Engineering              (TE) Extensions to OSPF Version 2",RFC 3630,              DOI 10.17487/RFC3630, September 2003,              <https://www.rfc-editor.org/info/rfc3630>.Lindem, et al.               Standards Track                   [Page 29]

RFC 8362                OSPFv3 LSA Extensibility              April 20189.2.  Informative References   [IPV6-ADDRESS-ARCH]              Hinden, R. and S. Deering, "IP Version 6 Addressing              Architecture",RFC 4291, DOI 10.17487/RFC4291, February              2006, <https://www.rfc-editor.org/info/rfc4291>.   [MT-OSPFV3]              Mirtorabi, S. and A. Roy, "Multi-topology routing in              OSPFv3 (MT-OSPFv3)", Work in Progress,draft-ietf-ospf-mt-ospfv3-03, July 2007.   [OSPF-DIGITAL-SIGNATURE]              Murphy, S., Badger, M., and B. Wellington, "OSPF with              Digital Signatures",RFC 2154, DOI 10.17487/RFC2154, June              1997, <https://www.rfc-editor.org/info/rfc2154>.   [OSPF-PREFIX-LINK]              Psenak, P., Gredler, H., Shakir, R., Henderickx, W.,              Tantsura, J., and A. Lindem, "OSPFv2 Prefix/Link Attribute              Advertisement",RFC 7684, DOI 10.17487/RFC7684, November              2015, <https://www.rfc-editor.org/info/rfc7684>.   [SEGMENT-ROUTING]              Psenak, P., Previdi, S., Filsfils, C., Gredler, H.,              Shakir, R., Henderickx, W., and J. Tantsura, "OSPFv3              Extensions for Segment Routing", Work in Progress,draft-ietf-ospf-ospfv3-segment-routing-extensions-11,              January 2018.Lindem, et al.               Standards Track                   [Page 30]

RFC 8362                OSPFv3 LSA Extensibility              April 2018Appendix A.  Global Configuration Parameters   The global configurable parameter ExtendedLSASupport is added to the   OSPFv3 protocol.  If ExtendedLSASupport is enabled, the OSPFv3 router   will originate OSPFv3 Extended LSAs and use the LSAs for the SPF   computation.  If ExtendedLSASupport is not enabled, a subset of   OSPFv3 Extended LSAs may still be originated and used for other   functions as described inSection 6.2.Appendix B.  Area Configuration Parameters   The area configurable parameter AreaExtendedLSASupport is added to   the OSPFv3 protocol.  If AreaExtendedLSASupport is enabled, the   OSPFv3 router will originate link and area OSPFv3 Extended LSAs and   use the LSAs for the SPF computation.  Legacy AS-Scoped LSAs will   still be originated and used for the AS-External-LSA computation.  If   AreaExtendedLSASupport is not enabled, a subset of OSPFv3 link and   area Extended LSAs may still be originated and used for other   functions as described inSection 6.2.   For regular areas, i.e., areas where AS-scoped LSAs are flooded,   disabling AreaExtendedLSASupport for a regular OSPFv3 area (not a   Stub or NSSA area) when ExtendedLSASupport is enabled is   contradictory and SHOULD be prohibited by implementations.Lindem, et al.               Standards Track                   [Page 31]

RFC 8362                OSPFv3 LSA Extensibility              April 2018Acknowledgments   OSPFv3 TLV-based LSAs were first proposed in "Multi-topology routing   in OSPFv3 (MT-OSPFv3)" [MT-OSPFV3].   Thanks for Peter Psenak for significant contributions to the   backward-compatibility mechanisms.   Thanks go to Michael Barnes, Mike Dubrovsky, Anton Smirnov, and Tony   Przygienda for review of the draft versions and discussions of   backward compatibility.   Thanks to Alan Davey for review and comments including the suggestion   to separate the Extended LSA TLV definitions from the Extended LSAs   definitions.   Thanks to David Lamparter for review and suggestions on backward   compatibility.   Thanks to Karsten Thomann, Chris Bowers, Meng Zhang, and Nagendra   Kumar for review and editorial comments.   Thanks to Alia Atlas for substantive Routing Area Director (AD)   comments prior to IETF last call.   Thanks to Alvaro Retana and Suresh Krishnan for substantive comments   during IESG Review.   Thanks to Mehmet Ersue for the Operations and Management (OPS)   Directorate review.Contributors   Sina Mirtorabi   Cisco Systems   170 Tasman Drive   San Jose, CA  95134   United States of America   Email: sina@cisco.comLindem, et al.               Standards Track                   [Page 32]

RFC 8362                OSPFv3 LSA Extensibility              April 2018Authors' Addresses   Acee Lindem   Cisco Systems   301 Midenhall Way   Cary, NC  27513   United States of America   Email: acee@cisco.com   Abhay Roy   Cisco Systems   170 Tasman Drive   San Jose, CA  95134   United States of America   Email: akr@cisco.com   Dirk Goethals   Nokia   Copernicuslaan 50   Antwerp 2018   Belgium   Email: dirk.goethals@nokia.com   Veerendranatha Reddy Vallem   Bangalore   India   Email: vallem.veerendra@gmail.com   Fred Baker   Santa Barbara, California  93117   United States of America   Email: FredBaker.IETF@gmail.comLindem, et al.               Standards Track                   [Page 33]

[8]ページ先頭

©2009-2026 Movatter.jp