Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Info page]

EXPERIMENTAL
Internet Engineering Task Force (IETF)                          R. ZhangRequest for Comments: 8350                                 China TelecomCategory: Experimental                                     R. PazhyannurISSN: 2070-1721                                            S. Gundavelli                                                                   Cisco                                                                  Z. Cao                                                                 H. Deng                                                                   Z. Du                                                                  Huawei                                                              April 2018Alternate Tunnel Encapsulation for Data Frames inControl and Provisioning of Wireless Access Points (CAPWAP)Abstract   Control and Provisioning of Wireless Access Points (CAPWAP) is a   protocol for encapsulating a station's data frames between the   Wireless Transmission Point (WTP) and Access Controller (AC).   Specifically, the station's IEEE 802.11 data frames can be either   locally bridged or tunneled to the AC.  When tunneled, a CAPWAP Data   Channel is used for tunneling.  In many deployments, encapsulating   data frames to an entity other than the AC (for example, to an Access   Router (AR)) is desirable.  Furthermore, it may also be desirable to   use different tunnel encapsulation modes between the WTP and the   Access Router.  This document defines an extension to the CAPWAP   protocol that supports this capability and refers to it as alternate   tunnel encapsulation.  The alternate tunnel encapsulation allows 1)   the WTP to tunnel non-management data frames to an endpoint different   from the AC and 2) the WTP to tunnel using one of many known   encapsulation types, such as IP-IP, IP-GRE, or CAPWAP.  The WTP may   advertise support for alternate tunnel encapsulation during the   discovery and join process, and the AC may select one of the   supported alternate tunnel encapsulation types while configuring the   WTP.Zhang, et al.                 Experimental                      [Page 1]

RFC 8350                    Alternate Tunnel                  April 2018Status of This Memo   This document is not an Internet Standards Track specification; it is   published for examination, experimental implementation, and   evaluation.   This document defines an Experimental Protocol for the Internet   community.  This document is a product of the Internet Engineering   Task Force (IETF).  It represents the consensus of the IETF   community.  It has received public review and has been approved for   publication by the Internet Engineering Steering Group (IESG).  Not   all documents approved by the IESG are candidates for any level of   Internet Standard; seeSection 2 of RFC 7841.   Information about the current status of this document, any errata,   and how to provide feedback on it may be obtained athttps://www.rfc-editor.org/info/rfc8350.Copyright Notice   Copyright (c) 2018 IETF Trust and the persons identified as the   document authors.  All rights reserved.   This document is subject toBCP 78 and the IETF Trust's Legal   Provisions Relating to IETF Documents   (https://trustee.ietf.org/license-info) in effect on the date of   publication of this document.  Please review these documents   carefully, as they describe your rights and restrictions with respect   to this document.  Code Components extracted from this document must   include Simplified BSD License text as described in Section 4.e of   the Trust Legal Provisions and are provided without warranty as   described in the Simplified BSD License.Zhang, et al.                 Experimental                      [Page 2]

RFC 8350                    Alternate Tunnel                  April 2018Table of Contents1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .31.1.  Conventions Used in This Document . . . . . . . . . . . .71.2.  Terminology . . . . . . . . . . . . . . . . . . . . . . .71.3.  History of the Document . . . . . . . . . . . . . . . . .82.  Alternate Tunnel Encapsulation Overview . . . . . . . . . . .93.  Extensions for CAPWAP Protocol Message Elements . . . . . . .113.1.  Supported Alternate Tunnel Encapsulations . . . . . . . .113.2.  Alternate Tunnel Encapsulations Type  . . . . . . . . . .113.3.  IEEE 802.11 WTP Alternate Tunnel Failure Indication . . .124.  Alternate Tunnel Types  . . . . . . . . . . . . . . . . . . .134.1.  CAPWAP-Based Alternate Tunnel . . . . . . . . . . . . . .134.2.  PMIPv6-Based Alternate Tunnel . . . . . . . . . . . . . .144.3.  GRE-Based Alternate Tunnel  . . . . . . . . . . . . . . .155.  Alternate Tunnel Information Elements . . . . . . . . . . . .165.1.  Access Router Information Elements  . . . . . . . . . . .165.1.1.  AR IPv4 List Element  . . . . . . . . . . . . . . . .165.1.2.  AR IPv6 List Element  . . . . . . . . . . . . . . . .175.2.  Tunnel DTLS Policy Element  . . . . . . . . . . . . . . .175.3.  IEEE 802.11 Tagging Mode Policy Element . . . . . . . . .195.4.  CAPWAP Transport Protocol Element . . . . . . . . . . . .205.5.  GRE Key Element . . . . . . . . . . . . . . . . . . . . .225.6.  IPv6 MTU Element  . . . . . . . . . . . . . . . . . . . .236.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .247.  Security Considerations . . . . . . . . . . . . . . . . . . .258.  References  . . . . . . . . . . . . . . . . . . . . . . . . .258.1.  Normative References  . . . . . . . . . . . . . . . . . .258.2.  Informative References  . . . . . . . . . . . . . . . . .27   Contributors  . . . . . . . . . . . . . . . . . . . . . . . . . .28   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .281.  Introduction   Service Providers are deploying very large Wi-Fi networks containing   hundreds of thousands of Access Points (APs), which are referred to   as Wireless Transmission Points (WTPs) in Control and Provisioning of   Wireless Access Points (CAPWAP) terminology [RFC5415].  These   networks are designed to carry traffic generated from mobile users.   The volume in mobile user traffic is already very large and expected   to continue growing rapidly.  As a result, operators are looking for   scalable solutions that can meet the increasing demand.  The   scalability requirement can be met by splitting the control/   management plane from the data plane.  This enables the data plane to   scale independent of the control/management plane.  This   specification provides a way to enable such separation.Zhang, et al.                 Experimental                      [Page 3]

RFC 8350                    Alternate Tunnel                  April 2018   CAPWAP [RFC5415] [RFC5416] defines a tunnel mode that describes how   the WTP handles the data plane (user traffic).  The following types   are defined:   o  Local Bridging: All data frames are locally bridged.   o  IEEE 802.3 Tunnel: All data frames are tunneled to the Access      Controller (AC) in IEEE 802.3 format.   o  IEEE 802.11 Tunnel: All data frames are tunneled to the AC in IEEE      802.11 format.   Figure 1 describes a system with Local Bridging.  The AC is in a   centralized location.  The data plane is locally bridged by the WTPs;   this leads to a system with a centralized control plane and a   distributed data plane.  This system has two benefits: 1) it reduces   the scale requirement on the data traffic handling capability of the   AC, and 2) it leads to more efficient/optimal routing of data traffic   while maintaining centralized control/management.                     Locally Bridged             +-----+ Data Frames   +----------------+             | WTP |===============|  Access Router |             +-----+               +----------------+                    \\                     \\  CAPWAP Control Channel   +----------+                       ++=========================|   AC     |                      // CAPWAP Data Channel:     |          |                     //  IEEE 802.11 Mgmt Traffic +----------+                    //             +-----+               +----------------+             | WTP |============== |  Access Router |             +-----+               +----------------+                    Locally Bridged                    Data Frames            Figure 1: Centralized Control with Distributed Data   The AC handles control of WTPs.  In addition, the AC also handles the   IEEE 802.11 management traffic to/from the stations.  There is a   CAPWAP Control and Data Channel between the WTP and the AC.  Note   that even though there is no user traffic transported between the WTP   and AC, there is still a CAPWAP Data Channel.  The CAPWAP Data   Channel carries the IEEE 802.11 management traffic (like IEEE 802.11   Action Frames).Zhang, et al.                 Experimental                      [Page 4]

RFC 8350                    Alternate Tunnel                  April 2018   Figure 2 shows a system where the tunnel mode is configured to tunnel   data frames between the WTP and the AC using either the IEEE 802.3   Tunnel or 802.11 Tunnel configurations.  Operators deploy this   configuration when they need to tunnel the user traffic.  The   tunneling requirement may be driven by the need to apply policy at   the AC.  This requirement could be met in the locally bridged system   (Figure 1) if the Access Router (AR) implemented the required policy.   However, in many deployments, the operator managing the WTP is   different than the operator managing the Access Router.  When the   operators are different, the policy has to be enforced in a tunnel   termination point in the WTP operator's network.              +-----+              | WTP |              +-----+                  \\                    \\  CAPWAP Control Channel   +----------+                      ++=========================|   AC     |                     // CAPWAP Data Channel:     |          |                    //  IEEE 802.11 Mgmt Traffic |          |                   //   Data Frames              +----------+                  //              +-----+              | WTP |              +-----+            Figure 2: Centralized Control and Centralized Data   The key difference with the locally bridged system is that the data   frames are tunneled to the AC instead of being locally bridged.   There are two shortcomings with the system in Figure 2: 1) it does   not allow the WTP to tunnel data frames to an endpoint different from   the AC, and 2) it does not allow the WTP to tunnel data frames using   any encapsulation other than CAPWAP (as specified inSection 4.4.2 of   [RFC5415]).   Figure 3 shows a system where the WTP tunnels data frames to an   alternate entity different from the AC.  The WTP also uses an   alternate tunnel encapsulation such as Layer 2 Tunneling Protocol   (L2TP), L2TPv3, IP-in-IP, IP/GRE, etc.  This enables 1) independent   scaling of data plane and 2) leveraging of commonly used tunnel   encapsulations such as L2TP, GRE, etc.Zhang, et al.                 Experimental                      [Page 5]

RFC 8350                    Alternate Tunnel                  April 2018          Alternate Tunnel to AR (L2TPv3, IP-IP, CAPWAP, etc.)                       _________         +-----+      (         )              +-----------------+         | WTP |======+Internet +==============|Access Router(AR)|         +-----+      (_________)              +-----------------+               \\      ________  CAPWAP Control                \\    (        ) Channel                +--------+                   ++=+Internet+========================|   AC   |                  //  (________)CAPWAP Data Channel:    +--------+                 //             IEEE 802.11 Mgmt Traffic                //   _________         +-----+    (         )                +----------------+         | WTP |====+Internet +================|  Access Router |         +-----+    (_________)                +----------------+          Alternate Tunnel to AR (L2TPv3, IP-in-IP, CAPWAP, etc.)      Figure 3: Centralized Control with an Alternate Tunnel for Data   The WTP may support widely used encapsulation types such as L2TP,   L2TPv3, IP-in-IP, IP/GRE, etc.  The WTP advertises the different   alternate tunnel encapsulation types it can support.  The AC   configures one of the advertised types.  As is shown in Figure 3,   there is a CAPWAP Control and Data Channel between the WTP and AC.   The CAPWAP Data Channel carries the stations' management traffic, as   in the case of the locally bridged system.  The main reason to   maintain a CAPWAP Data Channel is to maintain similarity with the   locally bridged system.  The WTP maintains three tunnels: CAPWAP   Control, CAPWAP Data, and another alternate tunnel for the data   frames.  The data frames are transported by an alternate tunnel   between the WTP and a tunnel termination point, such as an Access   Router.  This specification describes how the alternate tunnel can be   established.  The specification defines message elements for the WTP   to advertise support for alternate tunnel encapsulation, for the AC   to configure alternate tunnel encapsulation, and for the WTP to   report failure of the alternate tunnel.   The alternate tunnel encapsulation also supports the third-party WLAN   service provider scenario (i.e., Virtual Network Operator (VNO)).   Under this scenario, the WLAN provider owns the WTP and AC resources   while the VNOs can rent the WTP resources from the WLAN provider for   network access.  The AC belonging to the WLAN service provider   manages the WTPs in the centralized mode.   As shown in Figure 4, VNO 1 and VNO 2 don't possess the network   access resources; however, they provide services by acquiring   resources from the WLAN provider.  Since a WTP is capable of   supporting up to 16 Service Set Identifiers (SSIDs), the WLAN   provider may provide network access service for different providersZhang, et al.                 Experimental                      [Page 6]

RFC 8350                    Alternate Tunnel                  April 2018   with different SSIDs.  For example, SSID1 is advertised by the WTP   for VNO 1 while SSID2 is advertised by the WTP for VNO 2.  Therefore,   the data traffic from the user can be directly steered to the   corresponding Access Router of the VNO who owns that user.  As is   shown in Figure 4, AC can notify multiple AR addresses for load   balancing or redundancy.                                     +----+                                     | AC |                                     +--+-+                          CAPWAP-CTL    |                      +-----------------+                      |   CAPWAP-DATA: IEEE 802.11 Mgmt Traffic                      |         WLAN Provider|                            VNO 1                +-----+   CAPWAP-DATA (SSID1)    +---------------+         SSID1  | WTP +--------------------------|Access Router 1|         SSID2  +--+-++                          +---------------+                   | |                   | |                             VNO 1                   | |    GRE-DATA (SSID1)       +---------------+                   | +---------------------------|Access Router 2|                   |                             +---------------+                   |                   |                               VNO 2                   |      CAPWAP-DATA (SSID2)    +---------------+                   +-----------------------------|Access Router 3|                                                 +---------------+                Figure 4: Third-Party WLAN Service Provider1.1.  Conventions Used in This Document   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and   "OPTIONAL" in this document are to be interpreted as described inBCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all   capitals, as shown here.1.2.  Terminology   Station (STA): A device that contains an IEEE 802.11-conformant   Medium Access Control (MAC) and Physical layer (PHY) interface to the   Wireless Medium (WM).   Access Controller (AC): The network entity that provides WTP access   to the network infrastructure in the data plane, control plane,   management plane, or a combination therein.Zhang, et al.                 Experimental                      [Page 7]

RFC 8350                    Alternate Tunnel                  April 2018   Access Router (AR): A specialized router usually residing at the edge   or boundary of a network.  This router ensures the connectivity of   its network with external networks, a wide area network, or the   Internet.   Wireless Termination Point (WTP): The physical or network entity that   contains a Radio Frequency (RF) antenna and wireless Physical layer   (PHY) to transmit and receive station traffic for wireless access   networks.   CAPWAP Control Channel: A bidirectional flow defined by the AC IP   Address, WTP IP Address, AC control port, WTP control port, and the   transport-layer protocol (UDP or UDP-Lite) over which CAPWAP Control   packets are sent and received.   CAPWAP Data Channel: A bidirectional flow defined by the AC IP   Address, WTP IP Address, AC data port, WTP data port, and the   transport-layer protocol (UDP or UDP-Lite) over which CAPWAP Data   packets are sent and received.  In certain WTP modes, the CAPWAP Data   Channel only transports IEEE 802.11 management frames and not the   data plane (user traffic).1.3.  History of the Document   This document was started to accommodate Service Providers' need of a   more flexible deployment mode with alternative tunnels [RFC7494].   Experiments and tests have been done for this alternate tunnel   network infrastructure.  However important, the deployment of   relevant technology is yet to be completed.  This Experimental   document is intended to serve as an archival record for any future   work on the operational and deployment requirements.Zhang, et al.                 Experimental                      [Page 8]

RFC 8350                    Alternate Tunnel                  April 20182.  Alternate Tunnel Encapsulation Overview           +-+-+-+-+-+-+                             +-+-+-+-+-+-+           |    WTP    |                             |    AC     |           +-+-+-+-+-+-+                             +-+-+-+-+-+-+                 |Join Request [ Supported Alternate       |                 |       Tunnel Encapsulations ]           |                 |---------------------------------------->|                 |                                         |                 |Join Response                            |                 |<----------------------------------------|                 |                                         |                 |IEEE 802.11 WLAN Configuration Request [ |                 | IEEE 802.11 Add WLAN,                   |                 | Alternate Tunnel Encapsulation (        |                 |   Tunnel Type, Tunnel Info Element)     |                 | ]                                       |                 |<----------------------------------------|                 |                                         |                 |                                         |            +-+-+-+-+-+-+                                  |            | Setup     |                                  |            | Alternate |                                  |            | Tunnel    |                                  |            +-+-+-+-+-+-+                                  |                 |IEEE 802.11 WLAN Configuration Response  |                 |[ Alternate Tunnel Encapsulation (       |                 |   Tunnel Type, Tunnel Info Element) ]   |                 |---------------------------------------->|                 |                                         |            +-+-+-+-+-+-+                                  |            | Tunnel    |                                  |            | Failure   |                                  |            +-+-+-+-+-+-+                                  |                 |WTP Alternate Tunnel Failure Indication  |                 |(Report Failure (AR Address(es)))        |                 |---------------------------------------->|                 |                                         |         +-+-+-+-+-+-+-+                                   |         | Tunnel      |                                   |         | Established |                                   |         +-+-+-+-+-+-+-+                                   |                 |WTP Alternate Tunnel Failure Indication  |                 |(Report Clearing Failure)                |                 |---------------------------------------->|                 |                                         |                  Figure 5: Setup of an Alternate TunnelZhang, et al.                 Experimental                      [Page 9]

RFC 8350                    Alternate Tunnel                  April 2018   The above example describes how the alternate tunnel encapsulation   may be established.  When the WTP joins the AC, it should indicate   its alternate tunnel encapsulation capability.  The AC determines   whether an alternate tunnel configuration is required.  If an   appropriate alternate tunnel type is selected, then the AC provides   the Alternate Tunnel Encapsulations Type message element containing   the tunnel type and a tunnel-specific information element.  The   tunnel-specific information element, for example, may contain   information like the IP address of the tunnel termination point.  The   WTP sets up the alternate tunnel using the Alternate Tunnel   Encapsulations Type message element.   Since an AC can configure a WTP with more than one AR available for   the WTP to establish the data tunnel(s) for user traffic, it may be   useful for the WTP to communicate the selected AR.  To enable this,   the IEEE 802.11 WLAN Configuration Response may carry the Alternate   Tunnel Encapsulations Type message element containing the AR list   element corresponding to the selected AR as shown in Figure 5.   On detecting a tunnel failure, the WTP SHALL forward data frames to   the AC and discard the frames.  In addition, the WTP may dissociate   existing clients and refuse association requests from new clients.   Depending on the implementation and deployment scenario, the AC may   choose to reconfigure the WLAN (on the WTP) to a Local Bridging mode   or to tunnel frames to the AC.  When the WTP detects an alternate   tunnel failure, the WTP informs the AC using a message element, IEEE   802.11 WTP Alternate Tunnel Failure Indication (defined inSection 3.3).  It MAY be carried in the WTP Event Request message,   which is defined in [RFC5415].   The WTP also needs to notify the AC of which AR(s) are unavailable.   Particularly, in the VNO scenario, the AC of the WLAN service   provider needs to maintain the association of the AR addresses of the   VNOs and SSIDs and provide this information to the WTP for the   purpose of load balancing or master-slave mode.   The message element has a Status field that indicates whether the   message is reporting a failure or clearing the previously reported   failure.   For the case where an AC is unreachable but the tunnel endpoint is   still reachable, the WTP behavior is up to the implementation.  For   example, the WTP could choose to either tear down the alternate   tunnel or let the existing user's traffic continue to be tunneled.Zhang, et al.                 Experimental                     [Page 10]

RFC 8350                    Alternate Tunnel                  April 20183.  Extensions for CAPWAP Protocol Message Elements3.1.  Supported Alternate Tunnel Encapsulations   This message element is sent by a WTP to communicate its capability   to support alternate tunnel encapsulations.  The message element   contains the following fields:      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |      Tunnel-Type 1            |      Tunnel-Type 2            |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |            ...                |      Tunnel-Type N            |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+            Figure 6: Supported Alternate Tunnel Encapsulations   o  Type: 54 for Supported Alternate Tunnel Encapsulations Type   o  Length: The length in bytes; two bytes for each Alternative      Tunnel-Type that is included   o  Tunnel-Type: This is identified by the value defined inSection 3.2.  There may be one or more Tunnel-Types, as is shown      in Figure 6.3.2.  Alternate Tunnel Encapsulations Type   This message element can be sent by the AC, allows the AC to select   the alternate tunnel encapsulation, and may be provided along with   the IEEE 802.11 Add WLAN message element.  When the message element   is present, the following fields of the IEEE 802.11 Add WLAN element   SHALL be set as follows: MAC mode is set to 0 (Local MAC), and Tunnel   Mode is set to 0 (Local Bridging).  Besides, the message element can   also be sent by the WTP to communicate the selected AR(s).   The message element contains the following fields:      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |      Tunnel-Type              |  Info Element Length          |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |   Info Element     +-+-+-+-+-+-+-+-+-+              Figure 7: Alternate Tunnel Encapsulations TypeZhang, et al.                 Experimental                     [Page 11]

RFC 8350                    Alternate Tunnel                  April 2018   o  Type: 55 for Alternate Tunnel Encapsulations Type   o  Length: > 4   o  Tunnel-Type: The Tunnel-Type is specified by a 2-byte value.  This      specification defines the values from 0 to 6 as given below.  The      remaining values are reserved for future use.      *  0: CAPWAP.  This refers to a CAPWAP Data Channel described in         [RFC5415] and [RFC5416].      *  1: L2TP.  This refers to tunnel encapsulation described in         [RFC2661].      *  2: L2TPv3.  This refers to tunnel encapsulation described in         [RFC3931].      *  3: IP-in-IP.  This refers to tunnel encapsulation described in         [RFC2003].      *  4: PMIPv6-UDP.  This refers to the UDP encapsulation mode for         Proxy Mobile IPv6 (PMIPv6) described in [RFC5844].  This         encapsulation mode is the basic encapsulation mode and does not         include the TLV header specified inSection 7.2 of [RFC5845].      *  5: GRE.  This refers to GRE tunnel encapsulation as described         in [RFC2784].      *  6: GTPv1-U.  This refers to the GPRS Tunnelling Protocol (GTP)         User Plane mode as described in [TS.3GPP.29.281].   o  Info Element: This field contains tunnel-specific configuration      parameters to enable the WTP to set up the alternate tunnel.  This      specification provides details for this element for CAPWAP,      PMIPv6, and GRE.  This specification reserves the tunnel type      values for the key tunnel types and defines the most common      message elements.  It is anticipated that message elements for the      other protocols (like L2TPv3) will be defined in other      specifications in the future.3.3.  IEEE 802.11 WTP Alternate Tunnel Failure Indication   The WTP MAY include the Alternate Tunnel Failure Indication message   in a WTP Event Request message to inform the AC about the status of   the alternate tunnel.  For the case where the WTP establishes data   tunnels with multiple ARs (e.g., under a VNO scenario), the WTP needs   to notify the AC of which AR(s) are unavailable.  The message element   contains the following fields:Zhang, et al.                 Experimental                     [Page 12]

RFC 8350                    Alternate Tunnel                  April 2018      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |      WLAN ID  |     Status    |         Reserved              |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     .              Access Router Information Element                .     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+       Figure 8: IEEE 802.11 WTP Alternate Tunnel Failure Indication   o  Type: 1062 for IEEE 802.11 WTP Alternate Tunnel Failure Indication   o  Length: > 4   o  WLAN ID: An 8-bit value specifying the WLAN Identifier.  The value      MUST be between 1 and 16.   o  Status: An 8-bit boolean indicating whether the radio failure is      being reported or cleared.  A value of 0 is used to clear the      event, while a value of 1 is used to report the event.   o  Reserved: MUST be set to a value of 0 and MUST be ignored by the      receiver.   o  Access Router Information Element: The IPv4 or IPv6 address of the      Access Router that terminates the alternate tunnel.  The Access      Router Information Elements allow the WTP to notify the AC of      which AR(s) are unavailable.4.  Alternate Tunnel Types4.1.  CAPWAP-Based Alternate Tunnel   If the CAPWAP encapsulation is selected by the AC and configured by   the AC to the WTP, the Info Element field defined inSection 3.2   SHOULD contain the following information:   o  Access Router Information: The IPv4 or IPv6 address of the Access      Router for the alternate tunnel.   o  Tunnel DTLS Policy: The CAPWAP protocol allows optional protection      of data packets using DTLS.  Use of data packet protection on a      WTP is not mandatory but is determined by the associated AC      policy.  (This is consistent with the WTP behavior described in      [RFC5415].)Zhang, et al.                 Experimental                     [Page 13]

RFC 8350                    Alternate Tunnel                  April 2018   o  IEEE 802.11 Tagging Mode Policy: It is used to specify how the      CAPWAP Data Channel packets are to be tagged for QoS purposes (see      [RFC5416] for more details).   o  CAPWAP Transport Protocol: The CAPWAP protocol supports both UDP      and UDP-Lite (see [RFC3828]).  When run over IPv4, UDP is used for      the CAPWAP Data Channels.  When run over IPv6, the CAPWAP Data      Channel may use either UDP or UDP-Lite.   The message element structure for CAPWAP encapsulation is shown in   Figure 9:      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |     Tunnel-Type=0             |   Info Element Length         |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     .              Access Router Information Element                .     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     .              Tunnel DTLS Policy Element                       .     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     .             IEEE 802.11 Tagging Mode Policy Element           .     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     .             CAPWAP Transport Protocol Element                 .     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+             Figure 9: Alternate Tunnel Encapsulation - CAPWAP4.2.  PMIPv6-Based Alternate Tunnel   A user plane based on PMIPv6 (defined in [RFC5213]) can also be used   as an alternate tunnel encapsulation between the WTP and the AR.  In   this scenario, a WTP acts as the Mobile Access Gateway (MAG) function   that manages the mobility-related signaling for a station that is   attached to the WTP IEEE 802.11 radio access.  The Local Mobility   Anchor (LMA) function is at the AR.  If PMIPv6 UDP encapsulation is   selected by the AC and configured by the AC to a WTP, the Info   Element field defined inSection 3.2 SHOULD contain the following   information:   o  Access Router (acting as LMA) Information: IPv4 or IPv6 address      for the alternate tunnel endpoint.Zhang, et al.                 Experimental                     [Page 14]

RFC 8350                    Alternate Tunnel                  April 2018   The message element structure for PMIPv6 encapsulation is shown in   Figure 10:      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |     Tunnel-Type=4             |   Info Element Length         |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     .                 Access Router Information Element             .     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+            Figure 10: Alternate Tunnel Encapsulation - PMIPv64.3.  GRE-Based Alternate Tunnel   A user plane based on Generic Routing Encapsulation (defined in   [RFC2784]) can also be used as an alternate tunnel encapsulation   between the WTP and the AR.  In this scenario, a WTP and the Access   Router represent the two endpoints of the GRE tunnel.  If GRE is   selected by the AC and configured by the AC to a WTP, the Info   Element field defined inSection 3.2 SHOULD contain the following   information:   o  Access Router Information: The IPv4 or IPv6 address for the      alternate tunnel endpoint.   o  GRE Key Information: The Key field is intended to be used for      identifying an individual traffic flow within a tunnel [RFC2890].   The message element structure for GRE is shown in Figure 11:      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |     Tunnel-Type=5             |   Info Element Length         |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     .              Access Router Information Element                .     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     .                    GRE Key Element                            .     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+              Figure 11: Alternate Tunnel Encapsulation - GREZhang, et al.                 Experimental                     [Page 15]

RFC 8350                    Alternate Tunnel                  April 20185.  Alternate Tunnel Information Elements   This section defines the various elements described in Sections4.1,   4.2, and 4.3.   These information elements can only be included in the Alternate   Tunnel Encapsulations Type message element and the IEEE 802.11 WTP   Alternate Tunnel Failure Indication message element as their sub-   elements.5.1.  Access Router Information Elements   The Access Router Information Elements allow the AC to notify a WTP   of which AR(s) are available for establishing a data tunnel.  The AR   information may be an IPv4 or IPv6 address.  For any Tunnel-Type,   this information element SHOULD be included in the Alternate Tunnel   Encapsulations Type message element.   If the Alternate Tunnel Encapsulations Type message element is sent   by the WTP to communicate the selected AR(s), this Access Router   Information Element SHOULD be included in it.   The following are the Access Router Information Elements defined in   this specification.  The AC can use one of them to notify the WTP   about the destination information of the data tunnel.  The Elements   containing the AR IPv4 address MUST NOT be used if an IPv6 Data   Channel with IPv6 transport is used.5.1.1.  AR IPv4 List Element   This element (see Figure 12) is used by the AC to configure a WTP   with the AR IPv4 address available for the WTP to establish the data   tunnel for user traffic.      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |  AR IPv4 Element Type         |          Length               |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     .                     AR IPv4 Address-1                         .     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     .                     AR IPv4 Address-2                         .     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     .                     AR IPv4 Address-N                         .     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                      Figure 12: AR IPv4 List ElementZhang, et al.                 Experimental                     [Page 16]

RFC 8350                    Alternate Tunnel                  April 2018   Type: 0   Length: This refers to the total length in octets of the element,   excluding the Type and Length fields.   AR IPv4 Address: The IPv4 address of the AR.  At least one IPv4   address SHALL be present.  Multiple addresses may be provided for   load balancing or redundancy.5.1.2.  AR IPv6 List Element   This element (see Figure 13) is used by the AC to configure a WTP   with the AR IPv6 address available for the WTP to establish the data   tunnel for user traffic.      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |   AR IPv6 Element Type        |          Length               |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     .                     AR IPv6 Address-1                         .     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     .                     AR IPv6 Address-2                         .     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     .                     AR IPv6 Address-N                         .     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                      Figure 13: AR IPv6 List Element   Type: 1   Length: This refers to the total length in octets of the element   excluding the Type and Length fields.   AR IPv6 Address: The IPv6 address of the AR.  At least one IPv6   address SHALL be present.  Multiple addresses may be provided for   load balancing or redundancy.5.2.  Tunnel DTLS Policy Element   The AC distributes its Datagram Transport Layer Security (DTLS) usage   policy for the CAPWAP data tunnel between a WTP and the AR.  There   are multiple supported options, which are represented by the bit   fields below as defined in AC Descriptor message elements.  The WTP   MUST abide by one of the options for tunneling user traffic with AR.   The Tunnel DTLS Policy Element obeys the definition in [RFC5415].   If, for reliability reasons, the AC has provided more than one AR   address in the Access Router Information Element, the same TunnelZhang, et al.                 Experimental                     [Page 17]

RFC 8350                    Alternate Tunnel                  April 2018   DTLS Policy (the last one in Figure 14) is generally applied for all   tunnels associated with those ARs.  Otherwise, Tunnel DTLS Policy   MUST be bonded together with each of the Access Router Information   Elements, and the WTP will enforce the independent tunnel DTLS policy   for each tunnel with a specific AR.      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |Tunnel DTLS Policy Element Type|        Length                 |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                        Reserved                         |D|C|R|     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     .                       AR Information                          .     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                        Reserved                         |D|C|R|     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     .                       AR Information                          .     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     .                         ......                                .     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                        Reserved                         |D|C|R|     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                   Figure 14: Tunnel DTLS Policy Element   Type: 2   Length: This refers to the total length in octets of the element   excluding the Type and Length fields.   Reserved: A set of reserved bits for future use.  All implementations   complying with this protocol MUST set to 0 any bits that are reserved   in the version of the protocol supported by that implementation.   Receivers MUST ignore all bits not defined for the version of the   protocol they support.   D: DTLS-Enabled Data Channel Supported (see [RFC5415]).   C: Clear Text Data Channel Supported (see [RFC5415]).   R: A reserved bit for future use (see [RFC5415]).   AR Information: This means Access Router Information Element.  In   this context, each address in AR Information MUST be one of   previously specified AR addresses.Zhang, et al.                 Experimental                     [Page 18]

RFC 8350                    Alternate Tunnel                  April 2018   In Figure 14, the last element that has no AR Information is the   default tunnel DTLS policy, which provides options for any address   not previously mentioned.  Therefore, the AR Information field here   is optional.  In this element, if all ARs share the same tunnel DTLS   policy, there won't be an AR Information field or its specific tunnel   DTLS policy.5.3.  IEEE 802.11 Tagging Mode Policy Element   In IEEE 802.11 networks, the IEEE 802.11 Tagging Mode Policy Element   is used to specify how the WTP applies the QoS tagging policy when   receiving the packets from stations on a particular radio.  When the   WTP sends out the packet to data channel to the AR(s), the packets   have to be tagged for QoS purposes (see [RFC5416]).   The IEEE 802.11 Tagging Mode Policy abides by the IEEE 802.11 WTP   Quality of Service defined inSection 6.22 of [RFC5416].   If, for reliability reasons, the AC has provided more than one AR   address in the Access Router Information Element, the same IEEE   802.11 Tagging Mode Policy (the last one in Figure 15) is generally   applied for all tunnels associated with those ARs.  Otherwise, IEEE   802.11 Tagging Mode Policy MUST be bonded together with each of the   Access Router Information Elements, and the WTP will enforce the   independent IEEE 802.11 Tagging Mode Policy for each tunnel with a   specific AR.      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     | Tagging Mode Policy Ele. Type |        Length                 |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                        Reserved                     |P|Q|D|O|I|     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     .                       AR Information                          .     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                        Reserved                     |P|Q|D|O|I|     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     .                       AR Information                          .     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     .                         ......                                .     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                        Reserved                     |P|Q|D|O|I|     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+            Figure 15: IEEE 802.11 Tagging Mode Policy ElementZhang, et al.                 Experimental                     [Page 19]

RFC 8350                    Alternate Tunnel                  April 2018   Type: 3   Length: This refers to the total length in octets of the element   excluding the Type and Length fields.   Reserved: A set of reserved bits for future use.   P: When set, the WTP is to employ the IEEE 802.1p QoS mechanism (see   [RFC5416]).   Q: When the 'P' bit is set, the 'Q' bit is used by the AC to   communicate to the WTP how IEEE 802.1p QoS is to be enforced (see   [RFC5416]).   D: When set, the WTP is to employ the DSCP QoS mechanism (see   [RFC5416]).   O: When the 'D' bit is set, the 'O' bit is used by the AC to   communicate to the WTP how Differentiated Services Code Point (DSCP)   QoS is to be enforced on the outer (tunneled) header (see [RFC5416]).   I: When the 'D' bit is set, the 'I' bit is used by the AC to   communicate to the WTP how DSCP QoS is to be enforced on the   station's packet (inner) header (see [RFC5416]).   AR Information: This means Access Router Information Element.  In   this context, each address in AR information MUST be one of the   previously specified AR addresses.   In Figure 15, the last element that has no AR information is the   default IEEE 802.11 Tagging Mode Policy, which provides options for   any address not previously mentioned.  Therefore, the AR Information   field here is optional.  If all ARs share the same IEEE 802.11   Tagging Mode Policy, in this element, there will not be an AR   Information field and its specific IEEE 802.11 Tagging Mode Policy.5.4.  CAPWAP Transport Protocol Element   The CAPWAP data tunnel supports both UDP and UDP-Lite (see   [RFC3828]).  When run over IPv4, UDP is used for the CAPWAP Data   Channels.  When run over IPv6, the CAPWAP Data Channel may use either   UDP or UDP-Lite.  The AC specifies and configures the WTP for which   the transport protocol is to be used for the CAPWAP data tunnel.   The CAPWAP Transport Protocol Element abides by the definition inSection 4.6.14 of [RFC5415].Zhang, et al.                 Experimental                     [Page 20]

RFC 8350                    Alternate Tunnel                  April 2018   If, for reliability reasons, the AC has provided more than one AR   address in the Access Router Information Element, the same CAPWAP   Transport Protocol (the last one in Figure 16) is generally applied   for all tunnels associated with those ARs.  Otherwise, CAPWAP   Transport Protocol MUST be bonded together with each of the Access   Router Information Elements, and the WTP will enforce the independent   CAPWAP Transport Protocol for each tunnel with a specific AR.      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |       Type=4                  |        Length                 |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |       Transport               |         Reserved              |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     .                       AR Information                          .     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |       Transport               |         Reserved              |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     .                       AR Information                          .     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     .                          ......                               .     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |       Transport               |         Reserved              |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+               Figure 16: CAPWAP Transport Protocol Element   Type: 4   Length: 1   Transport: The transport to use for the CAPWAP Data Channel.  The   following enumerated values are supported:      1 - UDP-Lite: The UDP-Lite transport protocol is to be used for      the CAPWAP Data Channel.  Note that this option MUST NOT be used      if the CAPWAP Control Channel is being used over IPv4 and if the      AR address contained in the AR Information Element is an IPv4      address.      2 - UDP: The UDP transport protocol is to be used for the CAPWAP      Data Channel.   AR Information: This means Access Router Information Element.  In   this context, each address in AR information MUST be one of the   previously specified AR addresses.Zhang, et al.                 Experimental                     [Page 21]

RFC 8350                    Alternate Tunnel                  April 2018   In Figure 16, the last element that has no AR information is the   default CAPWAP Transport Protocol, which provides options for any   address not previously mentioned.  Therefore, the AR Information   field here is optional.  If all ARs share the same CAPWAP Transport   Protocol, in this element, there will not be an AR Information field   and its specific CAPWAP Transport Protocol.5.5.  GRE Key Element   If a WTP receives the GRE Key Element in the Alternate Tunnel   Encapsulations Type message element for GRE selection, the WTP MUST   insert the GRE Key to the encapsulation packet (see [RFC2890]).  An   AR acting as a decapsulating tunnel endpoint identifies packets   belonging to a traffic flow based on the Key value.   The GRE Key Element field contains a 4-octet number defined in   [RFC2890].   If, for reliability reasons, the AC has provided more than one AR   address in the Access Router Information Element, a GRE Key Element   MAY be bonded together with each of the Access Router Information   Elements, and the WTP will enforce the independent GRE Key for each   tunnel with a specific AR.      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     | GRE Key Element Type          |        Length                 |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                         GRE Key                               |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     .                       AR Information                          .     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                         GRE Key                               |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     .                       AR Information                          .     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     .                         ......                                .     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                        Figure 17: GRE Key Element   Type: 5   Length: This refers to the total length in octets of the element   excluding the Type and Length fields.Zhang, et al.                 Experimental                     [Page 22]

RFC 8350                    Alternate Tunnel                  April 2018   GRE Key: The Key field contains a 4-octet number that is inserted by   the WTP according to [RFC2890].   AR Information: This means Access Router Information Element.  In   this context, it SHOULD be restricted to a single address and MUST be   the address of one of previously specified AR addresses.   Any address not explicitly mentioned here does not have a GRE key.5.6.  IPv6 MTU Element   If AC has chosen a tunneling mechanism based on IPv6, it SHOULD   support the minimum IPv6 MTU requirements [RFC8200].  This issue is   described in [ARCH-TUNNELS].  AC SHOULD inform the WTP about the IPv6   MTU information in the Tunnel Info Element field.   If, for reliability reasons, the AC has provided more than one AR   address in the Access Router Information Element, an IPv6 MTU Element   MAY be bonded together with each of the Access Router Information   Elements, and the WTP will enforce the independent IPv6 MTU for each   tunnel with a specific AR.      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |     IPv6 MTU Element Type     |          Length               |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |       Minimum IPv6 MTU        |         Reserved              |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     .                       AR Information                          .     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |       Minimum IPv6 MTU        |         Reserved              |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     .                       AR Information                          .     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                         ......                                |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                        Figure 18: IPv6 MTU Element   Type: 6   Length: This refers to the total length in octets of the element   excluding the Type and Length fields.   Minimum IPv6 MTU: The field contains a 2-octet number indicating the   minimum IPv6 MTU in the tunnel.Zhang, et al.                 Experimental                     [Page 23]

RFC 8350                    Alternate Tunnel                  April 2018   AR Information: This means Access Router Information Element.  In   this context, each address in AR information MUST be one of   previously specified AR addresses.6.  IANA Considerations   Per this document, IANA has registered the following values in the   existing "CAPWAP Message Element Type" registry, defined in   [RFC5415].   o  54: Supported Alternate Tunnel Encapsulations Type as defined inSection 3.1.   o  55: Alternate Tunnel Encapsulations Type as defined inSection 3.2.   o  1062: IEEE 802.11 WTP Alternate Tunnel Failure Indication as      defined inSection 3.3.   Per this document, IANA has created a registry called "Alternate   Tunnel-Types" under "CAPWAP Parameters".  This specification defines   the Alternate Tunnel Encapsulations Type message element.  This   element contains a field Tunnel-Type.  The namespace for the field is   16 bits (0-65535).  This specification defines values 0 through 6 and   can be found inSection 3.2.  Future allocations of values in this   namespace are to be assigned by IANA using the "Specification   Required" policy [RFC8126].  The registry format is given below.        Description           Value         Reference        CAPWAP                0             [RFC5415] [RFC5416]        L2TP                  1             [RFC2661]        L2TPv3                2             [RFC3931]        IP-IP                 3             [RFC2003]        PMIPv6-UDP            4             [RFC5844]        GRE                   5             [RFC2784]        GTPv1-U               6             [TS.3GPP.29.281]Zhang, et al.                 Experimental                     [Page 24]

RFC 8350                    Alternate Tunnel                  April 2018   Per this document, IANA has created a registry called "Alternate   Tunnel Sub-elements" under "CAPWAP Parameters".  This specification   defines the Alternate Tunnel Sub-elements.  Currently, these   information elements can only be included in the Alternate Tunnel   Encapsulations Type message element with the IEEE 802.11 WTP   Alternate Tunnel Failure Indication message element as its sub-   elements.  These information elements contain a Type field.  The   namespace for the field is 16 bits (0-65535).  This specification   defines values 0 through 6 inSection 5.  This namespace is managed   by IANA, and assignments require an Expert Review [RFC8126].        Description                              Value        AR IPv4 List                             0        AR IPv6 List                             1        Tunnel DTLS Policy                       2        IEEE 802.11 Tagging Mode Policy          3        CAPWAP Transport Protocol                4        GRE Key                                  5        IPv6 MTU                                 67.  Security Considerations   This document introduces three new CAPWAP WTP message elements.   These elements are transported within CAPWAP Control messages as the   existing message elements.  Therefore, this document does not   introduce any new security risks to the control plane compared to   [RFC5415] and [RFC5416].  In the data plane, if the encapsulation   type selected itself is not secured, it is suggested to protect the   tunnel by using known secure methods, such as IPsec.8.  References8.1.  Normative References   [RFC2003]  Perkins, C., "IP Encapsulation within IP",RFC 2003,              DOI 10.17487/RFC2003, October 1996,              <https://www.rfc-editor.org/info/rfc2003>.   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate              Requirement Levels",BCP 14,RFC 2119,              DOI 10.17487/RFC2119, March 1997,              <https://www.rfc-editor.org/info/rfc2119>.   [RFC2661]  Townsley, W., Valencia, A., Rubens, A., Pall, G., Zorn,              G., and B. Palter, "Layer Two Tunneling Protocol "L2TP"",RFC 2661, DOI 10.17487/RFC2661, August 1999,              <https://www.rfc-editor.org/info/rfc2661>.Zhang, et al.                 Experimental                     [Page 25]

RFC 8350                    Alternate Tunnel                  April 2018   [RFC2784]  Farinacci, D., Li, T., Hanks, S., Meyer, D., and P.              Traina, "Generic Routing Encapsulation (GRE)",RFC 2784,              DOI 10.17487/RFC2784, March 2000,              <https://www.rfc-editor.org/info/rfc2784>.   [RFC2890]  Dommety, G., "Key and Sequence Number Extensions to GRE",RFC 2890, DOI 10.17487/RFC2890, September 2000,              <https://www.rfc-editor.org/info/rfc2890>.   [RFC3828]  Larzon, L-A., Degermark, M., Pink, S., Jonsson, L-E., Ed.,              and G. Fairhurst, Ed., "The Lightweight User Datagram              Protocol (UDP-Lite)",RFC 3828, DOI 10.17487/RFC3828, July              2004, <https://www.rfc-editor.org/info/rfc3828>.   [RFC3931]  Lau, J., Ed., Townsley, M., Ed., and I. Goyret, Ed.,              "Layer Two Tunneling Protocol - Version 3 (L2TPv3)",RFC 3931, DOI 10.17487/RFC3931, March 2005,              <https://www.rfc-editor.org/info/rfc3931>.   [RFC5415]  Calhoun, P., Ed., Montemurro, M., Ed., and D. Stanley,              Ed., "Control And Provisioning of Wireless Access Points              (CAPWAP) Protocol Specification",RFC 5415,              DOI 10.17487/RFC5415, March 2009,              <https://www.rfc-editor.org/info/rfc5415>.   [RFC5416]  Calhoun, P., Ed., Montemurro, M., Ed., and D. Stanley,              Ed., "Control and Provisioning of Wireless Access Points              (CAPWAP) Protocol Binding for IEEE 802.11",RFC 5416,              DOI 10.17487/RFC5416, March 2009,              <https://www.rfc-editor.org/info/rfc5416>.   [RFC8126]  Cotton, M., Leiba, B., and T. Narten, "Guidelines for              Writing an IANA Considerations Section in RFCs",BCP 26,RFC 8126, DOI 10.17487/RFC8126, June 2017,              <https://www.rfc-editor.org/info/rfc8126>.   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase inRFC2119 Key Words",BCP 14,RFC 8174, DOI 10.17487/RFC8174,              May 2017, <https://www.rfc-editor.org/info/rfc8174>.   [RFC8200]  Deering, S. and R. Hinden, "Internet Protocol, Version 6              (IPv6) Specification", STD 86,RFC 8200,              DOI 10.17487/RFC8200, July 2017,              <https://www.rfc-editor.org/info/rfc8200>.Zhang, et al.                 Experimental                     [Page 26]

RFC 8350                    Alternate Tunnel                  April 20188.2.  Informative References   [ARCH-TUNNELS]              Touch, J. and M. Townsley, "IP Tunnels in the Internet              Architecture", Work in Progress,draft-ietf-intarea-tunnels-08, January 2018.   [RFC5213]  Gundavelli, S., Ed., Leung, K., Devarapalli, V.,              Chowdhury, K., and B. Patil, "Proxy Mobile IPv6",RFC 5213, DOI 10.17487/RFC5213, August 2008,              <https://www.rfc-editor.org/info/rfc5213>.   [RFC5844]  Wakikawa, R. and S. Gundavelli, "IPv4 Support for Proxy              Mobile IPv6",RFC 5844, DOI 10.17487/RFC5844, May 2010,              <https://www.rfc-editor.org/info/rfc5844>.   [RFC5845]  Muhanna, A., Khalil, M., Gundavelli, S., and K. Leung,              "Generic Routing Encapsulation (GRE) Key Option for Proxy              Mobile IPv6",RFC 5845, DOI 10.17487/RFC5845, June 2010,              <https://www.rfc-editor.org/info/rfc5845>.   [RFC7494]  Shao, C., Deng, H., Pazhyannur, R., Bari, F., Zhang, R.,              and S. Matsushima, "IEEE 802.11 Medium Access Control              (MAC) Profile for Control and Provisioning of Wireless              Access Points (CAPWAP)",RFC 7494, DOI 10.17487/RFC7494,              April 2015, <https://www.rfc-editor.org/info/rfc7494>.   [TS.3GPP.29.281]              3GPP, "General Packet Radio System (GPRS) Tunnelling              Protocol User Plane (GTPv1-U)", 3GPP TS 29.281, V13.1.0,              March 2016.Zhang, et al.                 Experimental                     [Page 27]

RFC 8350                    Alternate Tunnel                  April 2018Contributors   The authors would like to thank Andreas Schultz, Hong Liu, Yifan   Chen, Chunju Shao, Li Xue, Jianjie You, Jin Li, Joe Touch, Alexey   Melnikov, Kathleen Moriarty, Mirja Kuehlewind, Catherine Meadows, and   Paul Kyzivat for their valuable comments.Authors' Addresses   Rong Zhang   China Telecom   No.109 Zhongshandadao avenue   Guangzhou  510630   China   Email: zhangr@gsta.com   Rajesh S. Pazhyannur   Cisco   170 West Tasman Drive   San Jose, CA 95134   United States of America   Email: rpazhyan@cisco.com   Sri Gundavelli   Cisco   170 West Tasman Drive   San Jose, CA 95134   United States of America   Email: sgundave@cisco.com   Zhen Cao   Huawei   Xinxi Rd. 3   Beijing  100085   China   Email: zhencao.ietf@gmail.comZhang, et al.                 Experimental                     [Page 28]

RFC 8350                    Alternate Tunnel                  April 2018   Hui Deng   Huawei   Xinxi Rd. 3   Beijing 100085   China   Email: denghui02@gmail.com   Zongpeng Du   Huawei   No.156 Beiqing Rd. Z-park, HaiDian District   Beijing  100095   China   Email: duzongpeng@huawei.comZhang, et al.                 Experimental                     [Page 29]

[8]ページ先頭

©2009-2025 Movatter.jp