Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Info page]

INFORMATIONAL
Internet Engineering Task Force (IETF)                        W. CervenyRequest for Comments: 8161                                Arbor NetworksCategory: Informational                                        R. BonicaISSN: 2070-1721                                                R. Thomas                                                        Juniper Networks                                                                May 2017Benchmarking the Neighbor Discovery ProtocolAbstract   This document provides benchmarking procedures for the Neighbor   Discovery Protocol (NDP).  It also proposes metrics by which an NDP   implementation's scaling capabilities can be measured.Status of This Memo   This document is not an Internet Standards Track specification; it is   published for informational purposes.   This document is a product of the Internet Engineering Task Force   (IETF).  It represents the consensus of the IETF community.  It has   received public review and has been approved for publication by the   Internet Engineering Steering Group (IESG).  Not all documents   approved by the IESG are a candidate for any level of Internet   Standard; seeSection 2 of RFC 7841.   Information about the current status of this document, any errata,   and how to provide feedback on it may be obtained athttp://www.rfc-editor.org/info/rfc8161.Copyright Notice   Copyright (c) 2017 IETF Trust and the persons identified as the   document authors.  All rights reserved.   This document is subject toBCP 78 and the IETF Trust's Legal   Provisions Relating to IETF Documents   (http://trustee.ietf.org/license-info) in effect on the date of   publication of this document.  Please review these documents   carefully, as they describe your rights and restrictions with respect   to this document.  Code Components extracted from this document must   include Simplified BSD License text as described in Section 4.e of   the Trust Legal Provisions and are provided without warranty as   described in the Simplified BSD License.Cerveny, et al.               Informational                     [Page 1]

RFC 8161                    NDP Benchmarking                    May 2017Table of Contents1. Introduction ....................................................21.1. Requirements Language ......................................42. Test Setup ......................................................42.1. Device Under Test (DUT) ....................................42.1.1. Interfaces ..........................................42.1.2. Neighbor Discovery Protocol (NDP) ...................52.1.3. Routing .............................................52.2. Tester .....................................................62.2.1. Interfaces ..........................................62.2.2. Neighbor Discovery Protocol (NDP) ...................62.2.3. Routing .............................................62.2.4. Test Traffic ........................................72.2.5. Counters ............................................83. Tests ...........................................................83.1. Baseline Test ..............................................83.1.1. Procedure ...........................................93.1.2. Baseline Test Procedure Flow Chart ..................93.1.3. Results ............................................113.2. Scaling Test ..............................................113.2.1. Procedure ..........................................113.2.2. Scaling Test Procedure Flow Chart ..................133.2.3. Results ............................................154. Measurements Explicitly Excluded ...............................154.1. DUT CPU Utilization .......................................154.2. Malformed Packets .........................................155. IANA Considerations ............................................166. Security Considerations ........................................167. Normative References ...........................................16   Acknowledgments ...................................................16   Authors' Addresses ................................................171.  Introduction   When an IPv6 node forwards a packet, it executes the following   procedure:   o  Identifies the outbound interface and IPv6 next hop.   o  Queries a local Neighbor Cache (NC) to determine the IPv6 next      hop's link-layer address.   o  Encapsulates the packet in a link-layer header.  The link-layer      header includes the IPv6 next hop's link-layer address.   o  Forwards the packet to the IPv6 next hop.Cerveny, et al.               Informational                     [Page 2]

RFC 8161                    NDP Benchmarking                    May 2017   IPv6 nodes use the Neighbor Discovery Protocol (NDP) [RFC4861] to   maintain the NC.  Operational experience [RFC6583] shows that when an   implementation cannot maintain a sufficiently complete NC, its   ability to forward packets is impaired.   NDP, like any other protocol, consumes processing, memory, and   bandwidth resources.  Its ability to maintain a sufficiently complete   NC depends upon the availability of the above-mentioned resources.   This document provides benchmarking procedures for NDP.  Benchmarking   procedures include a Baseline Test and an NDP Scaling Test.  In both   tests, the Device Under Test (DUT) is an IPv6 router.  Two physical   links (A and B) connect the DUT to a Tester.  The Tester sends   traffic through Link A to the DUT.  The DUT forwards that traffic,   through Link B, back to the Tester.   The above-mentioned traffic stream contains one or more interleaved   flows.  An IPv6 Destination Address uniquely identifies each flow.   Or, said another way, every packet within a flow has the same IPv6   Destination Address.   In the Baseline Test, the traffic stream contains exactly one flow.   Because every packet in the stream has the same IPv6 Destination   Address, the DUT can forward the entire stream using exactly one NC   entry.  NDP is exercised minimally, and no packet loss should be   observed.   The NDP Scaling Test is identical to the Baseline Test, except that   the traffic stream contains many flows.  In order to forward the   stream without loss, the DUT must maintain one NC entry for each   flow.  If the DUT cannot maintain one NC entry for each flow, packet   loss will be observed and attributed to NDP scaling limitations.   This document proposes an NDP scaling metric, called NDP-MAX-   NEIGHBORS.  NDP-MAX-NEIGHBORS is the maximum number of neighbors to   which an IPv6 node can send traffic during periods of high NDP   activity.   The procedures described herein reveal how many IPv6 neighbors an NDP   implementation can discover.  They also provide a rough estimate of   the time required to discover those neighbors.  However, that   estimate does not reflect the maximum rate at which the   implementation can discover neighbors.  Maximum rate discovery is a   topic for further exploration.Cerveny, et al.               Informational                     [Page 3]

RFC 8161                    NDP Benchmarking                    May 2017   The test procedures described herein assume that NDP does not compete   with other applications for resources on the DUT.  When NDP competes   for resources, its scaling characteristics may differ from those   reported by the benchmarks described and may vary over time.1.1.  Requirements Language   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this   document are to be interpreted as described inRFC 2119 [RFC2119].2.  Test Setup                +---------------+             +-----------+                |               |             |           |                |               |   Link A    |   Device  |                |               |------------>|   Under   |                |    Tester     |             |   Test    |                |               |<------------|   (DUT)   |                |               |   Link B    |           |                +---------------+             +-----------+                           Figure 1: Test Setup   The DUT is an IPv6 router.  Two links (A and B) connect the DUT to   the Tester.  Link A capabilities must be identical to Link B   capabilities.  For example, if the interface to Link A is a 10   Gigabit Ethernet port, the interface to Link B must also be a 10   Gigabit Ethernet port.2.1.  Device Under Test (DUT)2.1.1.  Interfaces   DUT interfaces are numbered as follows:   o  Link A - 2001:2:0:0::2/64   o  Link B - 2001:2:0:1::1/64   Both DUT interfaces should be configured with a 1500-byte MTU.   However, if they cannot support a 1500-byte MTU, they may be   configured with a 1280-byte MTU.Cerveny, et al.               Informational                     [Page 4]

RFC 8161                    NDP Benchmarking                    May 20172.1.2.  Neighbor Discovery Protocol (NDP)   NDP is enabled on both DUT interfaces.  Therefore, the DUT emits both   solicited and unsolicited Router Advertisement (RA) messages.  The   DUT emits an RA message at least once every 600 seconds and no more   frequently than once every 200 seconds.   When the DUT sends an RA message, it includes the following   information:   o  Router Lifetime - 1800 seconds   o  Reachable Time - 0 seconds   o  Retrans Time - 0 seconds   o  Source Link-Layer Address - link-layer address of DUT interface   o  M-bit is clear (0)   o  O-bit is clear (0)   The above-mentioned values are chosen because they are the default   values specified inRFC 4861.   NDP manages the NC.  Each NC entry represents an on-link neighbor and   is identified by the neighbor's on-link unicast IP address.  As perRFC 4861, each NC entry needs to be refreshed periodically.  NDP   refreshes NC entries by exchanging Neighbor Solicitation (NS) and   Neighbor Advertisement (NA) messages.   No static NC entries are configured on the DUT.2.1.3.  Routing   The DUT maintains a direct route to 2001:2:0:0/64 through Link A.  It   also maintains a direct route to 2001:2:0:1/64 through Link B.  No   static routes or dynamic routing protocols are configured on the DUT.Cerveny, et al.               Informational                     [Page 5]

RFC 8161                    NDP Benchmarking                    May 20172.2.  Tester2.2.1.  Interfaces   Interfaces are numbered as follows:   o  Link A - 2001:2:0:0::1/64   o  Link B - Multiple addresses are configured on Link B.  These      addresses are drawn sequentially from the 2001:2:0:1::/64 address      block.  The first address is 2001:2:0:1::2/64.  Subsequent      addresses are 2001:2:0:1::3/64, 2001:2:0:1::4/64,      2001:2:0:1::5/64, etc.  The number of configured addresses should      be the expected value of NDP-MAX-NEIGHBORS times 1.1.   Both Tester interfaces should be configured with a 1500-byte MTU.   However, if they cannot support a 1500-byte MTU, they may be   configured with a 1280-byte MTU.2.2.2.  Neighbor Discovery Protocol (NDP)   NDP is enabled on both Tester interfaces.  Therefore, upon   initiation, the Tester sends Router Solicitation (RS) messages and   waits for Router Advertisement (RA) messages.  The Tester also   exchanges Neighbor Solicitation (NS) and Neighbor Advertisement (NA)   messages with the DUT.   No static NC entries are configured on the Tester.2.2.3.  Routing   The Tester maintains a direct route to 2001:2:0:0/64 through Link A.   It also maintains a direct route to 2001:2:0:1/64 through Link B.  No   static routes or dynamic routing protocols are configured on the   Tester.Cerveny, et al.               Informational                     [Page 6]

RFC 8161                    NDP Benchmarking                    May 20172.2.4.  Test Traffic   The Tester sends a stream of test traffic through Link A to the DUT.   The test traffic stream contains one or more interleaved flows.   Flows are numbered 1 through N, sequentially.   Within each flow, each packet contains an IPv6 header, and each IPv6   header contains the following information:   o  Version - 6   o  Traffic Class - 0   o  Flow Label - 0   o  Payload Length - 0   o  Next Header - IPv6-NoNxt (59)   o  Hop Limit - 255   o  Source Address - 2001:2:0:0::1   o  Destination Address - The first 64 bits of the Destination Address      are 2001:2:0:1::.  The next 64 are uniquely associated with the      flow.  Every packet in the first flow carries the Destination      Address 2001:2:0:1::2.  Every subsequent flow has an IP address      one greater than the last (i.e., 2001:2:0:1::3, 2001:2:0:1::4,      etc.).   In order to avoid link congestion, test traffic is offered at a rate   not to exceed 50% of available link bandwidth.  In order to avoid   burstiness and buffer occupancy, every packet in the stream is   exactly 40 bytes long (i.e., the length of an IPv6 header with no   IPv6 payload).  Furthermore, the gap between packets is identical.   During the course of a test, the number of flows that the test stream   contains may increase.  When this occurs, the rate at which test   traffic is offered remains constant.  For example, assume that a test   stream is offered at a rate of 1,000 packets per second.  This stream   contains two flows, each contributing 500 packets per second to the   1,000 packet per second aggregate.  When a third stream is added to   the flow, all three streams must contribute 333 packets per second in   order to maintain the 1,000 packet per second limit.  (As in this   example, rounding error is acceptable.)Cerveny, et al.               Informational                     [Page 7]

RFC 8161                    NDP Benchmarking                    May 2017   The DUT attempts to forward every packet in the test stream through   Link B to the Tester.  It does this because:   o  Every packet in the test stream has a Destination Address drawn      from the 2001:2:0:1::/64 address block.   o  The DUT has a direct route to 2001:2:0:1/64 through Link B.2.2.5.  Counters   On the Tester, two counters are configured for each flow.  One   counter, configured on Link A, increments when the Tester sends a   packet belonging to the flow.  The other counter, configured on Link   B, increments when the Tester receives a packet from the flow.  In   order for a packet to be associated with a flow, the following   conditions must all be true:   o  The IPv6 Destination Address must be that of the flow.   o  The IPv6 Next Header must be IPv6-NoNxt (59).   The following counters also are configured on both Tester Interfaces:   o  RS packets sent   o  RA packets received   o  NS packets sent   o  NS packets received   o  NA packets sent   o  NA packets received   o  Total packets sent   o  Total packets received3.  Tests3.1.  Baseline Test   The purpose of the Baseline Test is to ensure that the DUT can   forward every packet in the test stream, without loss, when NDP is   minimally exercised and not operating near its scaling limit.Cerveny, et al.               Informational                     [Page 8]

RFC 8161                    NDP Benchmarking                    May 20173.1.1.  Procedure   o  On the DUT, clear the NC.   o  On the Tester, clear all counters.   o  On the Tester, set a timer to expire in 60 seconds.   o  On the Tester, start the test stream with exactly one flow (i.e.,      IPv6 Destination Address equals 2001:2:0:1::2).   o  Wait for either the timer to expire or the packets-received      counter associated with the flow to increment.   o  If the timer expires, stop the test stream and end the test.   o  If the packets-received counter increments, pause the traffic      stream, log the initial counter values, clear the counters, reset      the timer to expire in 1800 seconds, and restart the traffic      stream.   o  When the timer expires, stop the test stream, wait sufficient time      for any queued packets to exit, log the final counter values, and      end the test.3.1.2.  Baseline Test Procedure Flow Chart                      +--------------------------+                      | On the DUT, clear the NC |                      +-------------|------------+                                    |                 +------------------v------------------+                 |  On the Tester, clear all counters  |                 +------------------|------------------+                                    |                 +------------------v-----------------+                 |        On the Tester, set a        |                 |        timer to expire in          |                 |        60 seconds                  |                 +------------------|-----------------+                                    |                 +------------------v-----------------+                 |On the Tester, start the test stream|                 |with exactly one flow (i.e., IPv6   |                 |Destination Address equals          |                 |2001:2:0:0:1::2)                    |                 +------------------|-----------------+                                    |Cerveny, et al.               Informational                     [Page 9]

RFC 8161                    NDP Benchmarking                    May 2017                                    |                 +------------------v-----------------+                 |Wait for either the timer to expire |                 |or packets-received counter         |                 |associated with the flow to         |                 |increment                           |                 +------------------|-----------------+                                    |                            /-------v-------\                           /                 \  Yes  +--------------+                           |Did timer expire?|-------| End the test |                           \                 /       +--------------+                            \-------|-------/                                    | No                                    |                          /---------v--------\                         /                    \  No  +--------------+                         |Did packets-received|------| End the test |                         |counter increment?  |      +--------------+                         \                    /                          \---------|--------/                                    | Yes                                    |                 +------------------v-----------------+                 |Pause traffic stream, log initial   |                 |counter values, clear the counters, |                 |reset the timer to expire in 1800   |                 |seconds, and restart traffic stream |                 +------------------|-----------------+                                    |                 +------------------v-----------------+                 |When timer expires, stop the test   |                 |stream, wait sufficient time for    |                 |any queued packets to exit, log the |                 |final counter values                |                 +------------------|-----------------+                                    |                               +----v---+                               |End test|                               +--------+               Figure 2: Baseline Test Procedure Flow ChartCerveny, et al.               Informational                    [Page 10]

RFC 8161                    NDP Benchmarking                    May 20173.1.3.  Results   The log contains initial and final values for the following counters:   o  packets-sent   o  packets-received   The initial values of packets-sent and packets-received may be equal   to one another.  If these values are identical, none of the initial   packets belonging to the flow were lost.  However, if the initial   value of packets-sent is greater than the initial value of packets-   received, initial packets were lost.  This loss of initial packets is   acceptable.   The final values of packets-sent and packets-received should be equal   to one another.  If they are not, an error has occurred.  Because   this error is likely to affect Scaling Test results, the error must   be corrected before the Scaling Test is executed.3.2.  Scaling Test   The purpose of the Scaling Test is to discover the number of   neighbors to which an IPv6 node can send traffic during periods of   high NDP activity.  We call this number NDP-MAX-NEIGHBORS.3.2.1.  Procedure   Execute the following procedure:   o  On the DUT, clear the NC.   o  On the Tester, clear all counters.   o  On the Tester, set a timer to expire in 60 seconds.   o  On the Tester, start the test stream with exactly one flow (i.e.,      IPv6 Destination Address equals 2001:2:0:1::2).   o  Wait for either the timer to expire or the packets-received      counter associated with the flow to increment.   o  If the timer expires, stop the test stream and end the test.Cerveny, et al.               Informational                    [Page 11]

RFC 8161                    NDP Benchmarking                    May 2017   o  If the packets-received counter increments, execute the following      procedure N times, starting at 2 and ending at the expected value      of NDP-MAX-NEIGHBORS times 1.1.      *  Pause the test stream.      *  Log the time and the value of N minus one.      *  Clear the packets-sent and packets-received counters associated         with the previous flow (i.e., N minus one).      *  Reset the timer to expire in 60 seconds.      *  Add the next flow to the test stream (i.e., IPv6 Destination         Address is a function of N).      *  Restart the test stream.      *  Wait for either the timer to expire or the packets-received         counter associated with the new flow to increment.   After the procedure described above has been executed N times, clear   the timer and reset it to expire in 1800 seconds.  When the timer   expires, stop the stream, log all counters, and end the test (after   waiting sufficient time for any queued packets to exit).Cerveny, et al.               Informational                    [Page 12]

RFC 8161                    NDP Benchmarking                    May 20173.2.2.  Scaling Test Procedure Flow Chart                      +--------------------------+                      | On the DUT, clear the NC |                      +-------------|------------+                                    |                 +------------------v------------------+                 |  On the Tester, clear all counters  |                 +------------------|------------------+                                    |                 +------------------v-----------------+                 |        On the Tester, set a        |                 |        timer to expire in          |                 |        60 seconds                  |                 +------------------|-----------------+                                    |                 +------------------v-----------------+                 |On the Tester, start the test stream|                 |with exactly one flow (i.e., IPv6   |                 |Destination Address equals          |                 |2001:2:0:0:1::2)                    |                 +------------------|-----------------+                                    |                 +------------------v-----------------+                 |Wait for either the timer to expire |                 |or packets-received counter         |                 |associated with the flow to         |                 |increment                           |                 +------------------|-----------------+                                    |                            /-------v-------\                           /                 \  Yes  +--------------+                           |Did timer expire?|-------|   End test   |                           \                 /       |   and return |                            \-------|-------/        +--------------+                                    | No                                    |                          /---------v--------\                         /                    \  No  +--------------+                         |Did packets-received|------|   End test   |                         |counter increment?  |      |   and return |                         \                    /      +--------------+                          \---------|--------/                                    |  Yes                                    |                             +------v------+                             |     N=2     |                             +------|------+Cerveny, et al.               Informational                    [Page 13]

RFC 8161                    NDP Benchmarking                    May 2017                                    |                     /--------------v-------------\                    /              Is              \ No +----------+                    |      N < NDP-MAX-NEIGHBORS   |----| End test |             -------|         times 1.1            |    +----------+             |      \                              /             |       \--------------|-------------/             |                      |    Yes             |          +-----------v----------+             |          |Pause the test stream |             |          +-----------|----------+             |                      |             |           +----------v----------+             |           |Log the time and the |             |           |value of N minus one |             |           +----------|----------+             |                      |             |          +-----------v-----------+             |          |Clear the packets-sent |             |          |and packets-received   |             |          |counters associated    |             |          |with the previous flow |             |          |(i.e., N minus one)    |             |          +-----------|-----------+             |                      |             |           +----------v----------+             |           |Reset the timer to   |             |           |expire in 60 seconds |             |           +----------|----------+             |                      |             |       +--------------v---------------+             |       |Add the next flow to the test |             |       |stream (i.e., IPv6 Destination|             |       |Address is a function of N)   |             |       +--------------|---------------+             |                      |             |               +------v------+             |               |     N=N+1   |             |               +------|------+             |                      |             |           +----------v------------+             ------------|Restart the test stream|                         +-----------------------+                Figure 3: Scaling Test Procedure Flow ChartCerveny, et al.               Informational                    [Page 14]

RFC 8161                    NDP Benchmarking                    May 20173.2.3.  Results   The test report includes the following:   o  A description of the DUT (make, model, processor, memory, and      interfaces)   o  Rate at which the Tester offers test traffic to the DUT (measured      in packets per second)   o  A log that records the time at which each flow was introduced to      the test stream and the final value of all counters   o  The expected value of NDP-MAX-NEIGHBORS   o  The actual value of NDP-MAX-NEIGHBORS   NDP-MAX-NEIGHBORS is equal to the number of counter pairs where   packets-sent is equal to packets-received.  Two counters are members   of a pair if they are both associated with the same flow.  If   packets-sent is equal to packets-received for every counter pair, the   test should be repeated with a larger expected value of NDP-MAX-   NEIGHBORS.   If an implementation abides by the recommendation ofSection 7.1 of   RFC 6583, for any given counter pair, packets-received will either be   equal to zero or packets-sent.   The log documents the time at which each flow was introduced to the   test stream.  This log reveals the effect of NC size to the time   required to discover a new IPv6 neighbor.4.  Measurements Explicitly Excluded   These measurements aren't recommended because of the itemized reasons   below:4.1.  DUT CPU Utilization   This measurement relies on the DUT to provide utilization   information, which is not externally observable (not black-box).   However, some testing organizations may find the CPU utilization is   useful auxiliary information specific to the DUT model, etc.4.2.  Malformed Packets   This benchmarking test is not intended to test DUT behavior in the   presence of malformed packets.Cerveny, et al.               Informational                    [Page 15]

RFC 8161                    NDP Benchmarking                    May 20175.  IANA Considerations   This document does not require any IANA actions.6.  Security Considerations   Benchmarking activities as described in this memo are limited to   technology characterization using controlled stimuli in a laboratory   environment, with dedicated address space and the constraints   specified in the sections above.   The benchmarking network topology will be an independent test setup   and MUST NOT be connected to devices that may forward the test   traffic into a production network or misroute traffic to the test   management network.   Further, benchmarking is performed on a "black-box" basis, relying   solely on measurements observable external to the DUT or System Under   Test (SUT).  Special capabilities SHOULD NOT exist in the DUT/SUT   specifically for benchmarking purposes.   Any implications for network security arising from the DUT/SUT SHOULD   be identical in the lab and in production networks.7.  Normative References   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate              Requirement Levels",BCP 14,RFC 2119,              DOI 10.17487/RFC2119, March 1997,              <http://www.rfc-editor.org/info/rfc2119>.   [RFC4861]  Narten, T., Nordmark, E., Simpson, W., and H. Soliman,              "Neighbor Discovery for IP version 6 (IPv6)",RFC 4861,              DOI 10.17487/RFC4861, September 2007,              <http://www.rfc-editor.org/info/rfc4861>.   [RFC6583]  Gashinsky, I., Jaeggli, J., and W. Kumari, "Operational              Neighbor Discovery Problems",RFC 6583,              DOI 10.17487/RFC6583, March 2012,              <http://www.rfc-editor.org/info/rfc6583>.Acknowledgments   Helpful comments and suggestions were offered by Al Morton, Joel   Jaeggli, Nalini Elkins, Scott Bradner, and Ram Krishnan on the BMWG   email list and at BMWG meetings.  Precise grammatical corrections and   suggestions were offered by Ann Cerveny.Cerveny, et al.               Informational                    [Page 16]

RFC 8161                    NDP Benchmarking                    May 2017Authors' Addresses   Bill Cerveny   Arbor Networks   2727 South State Street   Ann Arbor, MI  48104   United States of America   Email: wcerveny@arbor.net   Ron Bonica   Juniper Networks   2251 Corporate Park Drive   Herndon, VA  20170   United States of America   Email: rbonica@juniper.net   Reji Thomas   Juniper Networks   Elnath-Exora Business Park Survey   Bangalore, KA  560103   India   Email: rejithomas@juniper.netCerveny, et al.               Informational                    [Page 17]

[8]ページ先頭

©2009-2026 Movatter.jp