Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Info page]

PROPOSED STANDARD
Internet Engineering Task Force (IETF)                            L. ZhuRequest for Comments: 8062                                      P. LeachObsoletes:6112                                    Microsoft CorporationUpdates:4120,4121,4556                                     S. HartmanCategory: Standards Track                              Hadron IndustriesISSN: 2070-1721                                            S. Emery, Ed.                                                                  Oracle                                                           February 2017Anonymity Support for KerberosAbstract   This document defines extensions to the Kerberos protocol to allow a   Kerberos client to securely communicate with a Kerberos application   service without revealing its identity, or without revealing more   than its Kerberos realm.  It also defines extensions that allow a   Kerberos client to obtain anonymous credentials without revealing its   identity to the Kerberos Key Distribution Center (KDC).  This   document updates RFCs 4120, 4121, and 4556.  This document obsoletesRFC 6112 and reclassifies that document as Historic.RFC 6112   contained errors, and the protocol described in that specification is   not interoperable with any known implementation.  This specification   describes a protocol that interoperates with multiple   implementations.Status of This Memo   This is an Internet Standards Track document.   This document is a product of the Internet Engineering Task Force   (IETF).  It represents the consensus of the IETF community.  It has   received public review and has been approved for publication by the   Internet Engineering Steering Group (IESG).  Further information on   Internet Standards is available inSection 2 of RFC 7841.   Information about the current status of this document, any errata,   and how to provide feedback on it may be obtained athttp://www.rfc-editor.org/info/rfc8062.Zhu, et al.                  Standards Track                    [Page 1]

RFC 8062               Kerberos Anonymity Support          February 2017Copyright Notice   Copyright (c) 2017 IETF Trust and the persons identified as the   document authors.  All rights reserved.   This document is subject toBCP 78 and the IETF Trust's Legal   Provisions Relating to IETF Documents   (http://trustee.ietf.org/license-info) in effect on the date of   publication of this document.  Please review these documents   carefully, as they describe your rights and restrictions with respect   to this document.  Code Components extracted from this document must   include Simplified BSD License text as described in Section 4.e of   the Trust Legal Provisions and are provided without warranty as   described in the Simplified BSD License.   This document may contain material from IETF Documents or IETF   Contributions published or made publicly available before November   10, 2008.  The person(s) controlling the copyright in some of this   material may not have granted the IETF Trust the right to allow   modifications of such material outside the IETF Standards Process.   Without obtaining an adequate license from the person(s) controlling   the copyright in such materials, this document may not be modified   outside the IETF Standards Process, and derivative works of it may   not be created outside the IETF Standards Process, except to format   it for publication as an RFC or to translate it into languages other   than English.Zhu, et al.                  Standards Track                    [Page 2]

RFC 8062               Kerberos Anonymity Support          February 2017Table of Contents1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .31.1.  Changes sinceRFC 6112  . . . . . . . . . . . . . . . . .42.  Conventions Used in This Document . . . . . . . . . . . . . .43.  Definitions . . . . . . . . . . . . . . . . . . . . . . . . .44.  Protocol Description  . . . . . . . . . . . . . . . . . . . .64.1.  Anonymity Support in AS Exchange  . . . . . . . . . . . .64.1.1.  Anonymous PKINIT  . . . . . . . . . . . . . . . . . .74.2.  Anonymity Support in TGS Exchange . . . . . . . . . . . .8     4.3.  Subsequent Exchanges and Protocol Actions Common to AS           and TGS for Anonymity Support . . . . . . . . . . . . . .105.  Interoperability Requirements . . . . . . . . . . . . . . . .116.  GSS-API Implementation Notes  . . . . . . . . . . . . . . . .117.  PKINIT Client Contribution to the Ticket Session Key  . . . .127.1.  Combining Two Protocol Keys . . . . . . . . . . . . . . .148.  Security Considerations . . . . . . . . . . . . . . . . . . .149.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .1510. References  . . . . . . . . . . . . . . . . . . . . . . . . .1610.1.  Normative References . . . . . . . . . . . . . . . . . .1610.2.  Informative References . . . . . . . . . . . . . . . . .17   Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . .17   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .181.  Introduction   In certain situations, the Kerberos [RFC4120] client may wish to   authenticate a server and/or protect communications without revealing   the client's own identity.  For example, consider an application that   provides read access to a research database and that permits queries   by arbitrary requesters.  A client of such a service might wish to   authenticate the service, to establish trust in the information   received from it, but might not wish to disclose the client's   identity to the service for privacy reasons.   Extensions to Kerberos are specified in this document by which a   client can authenticate the Key Distribution Center (KDC) and request   an anonymous ticket.  The client can use the anonymous ticket to   authenticate the server and protect subsequent client-server   communications.   By using the extensions defined in this specification, the client can   request an anonymous ticket where the client may reveal the client's   identity to the client's own KDC, or the client can hide the client's   identity completely by using anonymous Public Key Cryptography for   Initial Authentication in Kerberos (PKINIT) as defined inSection 4.1.  Using the returned anonymous ticket, the client remainsZhu, et al.                  Standards Track                    [Page 3]

RFC 8062               Kerberos Anonymity Support          February 2017   anonymous in subsequent Kerberos exchanges thereafter to KDCs on the   cross-realm authentication path and to the server with which it   communicates.   In this specification, the client realm in the anonymous ticket is   the anonymous realm name when anonymous PKINIT is used to obtain the   ticket.  The client realm is the client's real realm name if the   client is authenticated using the client's long-term keys.  Note that   a membership in a realm can imply a member of the community   represented by the realm.   The interaction with Generic Security Service Application Program   Interface (GSS-API) is described after the protocol description.   This specification replaces [RFC6112] to correct technical errors in   that specification.RFC 6112 is classified as Historic;   implementation ofRFC 6112 is NOT RECOMMENDED.  All known   implementations comply with this specification and notRFC 6112.1.1.  Changes sinceRFC 6112   InSection 7, the pepper2 string "KeyExchange" used inRFC 6112 is   corrected to appear in all capital letters to comply with the string   actually used by implementations.   The requirement for the anonymous option to be used when an anonymous   ticket is used in a Ticket-Granting Service (TGS) request is reduced   from a MUST to a SHOULD.  At least one implementation does not   require this; it is not necessary that both the anonymous option and   anonymous ticket be used as an indicator of request type.   The authorization data type name "AD-INITIAL-VERIFIED-CAS" used inRFC 6112 is corrected to appear as "AD_INITIAL_VERIFIED_CAS" in this   document.2.  Conventions Used in This Document   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this   document are to be interpreted as described in [RFC2119].3.  Definitions   The anonymous Kerberos realm name is defined as a well-known realm   name based on [RFC6111], and the value of this well-known realm name   is the literal "WELLKNOWN:ANONYMOUS".Zhu, et al.                  Standards Track                    [Page 4]

RFC 8062               Kerberos Anonymity Support          February 2017   The anonymous Kerberos principal name is defined as a well-known   Kerberos principal name based on [RFC6111].  The value of the name-   type field is KRB_NT_WELLKNOWN [RFC6111], and the value of the name-   string field is a sequence of two KerberosString components:   "WELLKNOWN" and "ANONYMOUS".   The anonymous ticket flag is defined as bit 16 (with the first bit   being bit 0) in the TicketFlags:           TicketFlags     ::= KerberosFlags             -- anonymous(16)             -- TicketFlags and KerberosFlags are defined in [RFC4120]   This is a new ticket flag that is used to indicate that a ticket is   an anonymous one.   An anonymous ticket is a ticket that has all of the following   properties:   o  The cname field contains the anonymous Kerberos principal name.   o  The crealm field contains the client's realm name or the anonymous      realm name.   o  The anonymous ticket contains no information that can reveal the      client's identity.  However, the ticket may contain the client      realm, intermediate realms on the client's authentication path,      and authorization data that may provide information related to the      client's identity.  For example, an anonymous principal that is      identifiable only as being in a particular group of users can be      implemented using authorization data.  Such authorization data, if      included in the anonymous ticket, would disclose that the client      is a member of the group observed.   o  The anonymous ticket flag is set.   The anonymous KDC option is defined as bit 16 (with the first bit   being bit 0) in the KDCOptions:           KDCOptions      ::= KerberosFlags             -- anonymous(16)             -- KDCOptions and KerberosFlags are defined in [RFC4120]   As described inSection 4, the anonymous KDC option is set to request   an anonymous ticket in an Authentication Service (AS) request or a   Ticket-Granting Service (TGS) request.Zhu, et al.                  Standards Track                    [Page 5]

RFC 8062               Kerberos Anonymity Support          February 20174.  Protocol Description   In order to request an anonymous ticket, the client sets the   anonymous KDC option in an AS request or a TGS request.   The rest of this section is organized as follows: it first describes   protocol actions specific to AS exchanges, then it describes those of   TGS exchanges.  These are then followed by the description of   protocol actions common to both AS and TGS and those in subsequent   exchanges.4.1.  Anonymity Support in AS Exchange   The client requests an anonymous ticket by setting the anonymous KDC   option in an AS exchange.   The Kerberos client can use the client's long-term keys, the client's   X.509 certificates [RFC4556], or any other pre-authentication data to   authenticate to the KDC and request an anonymous ticket in an AS   exchange where the client's identity is known to the KDC.   If the client in the AS request is anonymous, the anonymous KDC   option MUST be set in the request.  Otherwise, the KDC MUST return a   KRB-ERROR message with the code KDC_ERR_BADOPTION.   If the client is anonymous and the KDC does not have a key to encrypt   the reply (this can happen when, for example, the KDC does not   support PKINIT [RFC4556]), the KDC MUST return an error message with   the code KDC_ERR_NULL_KEY [RFC4120].   When policy allows, the KDC issues an anonymous ticket.  If the   client name in the request is the anonymous principal, the client   realm (crealm) in the reply is the anonymous realm; otherwise, the   client realm is the realm of the AS.  As specified by [RFC4120], the   client name and the client realm in the EncTicketPart of the reply   MUST match with the corresponding client name and the client realm of   the KDC reply; the client MUST use the client name and the client   realm returned in the KDC-REP in subsequent message exchanges when   using the obtained anonymous ticket.   The KDC MUST NOT reveal the client's identity in the authorization   data of the returned ticket when populating the authorization data in   a returned anonymous ticket.   The AD_INITIAL_VERIFIED_CAS authorization data, as defined in   [RFC4556], contains the issuer name of the client certificate.  This   authorization is not applicable and MUST NOT be present in the   returned anonymous ticket when anonymous PKINIT is used.  When theZhu, et al.                  Standards Track                    [Page 6]

RFC 8062               Kerberos Anonymity Support          February 2017   client is authenticated (i.e., anonymous PKINIT is not used), if it   is undesirable to disclose such information about the client's   identity, the AD_INITIAL_VERIFIED_CAS authorization data SHOULD be   removed from the returned anonymous ticket.   The client can use the client's key to mutually authenticate with the   KDC and request an anonymous Ticket-Granting Ticket (TGT) in the AS   request.  In that case, the reply key is selected as normal,   according toSection 3.1.3 of [RFC4120].4.1.1.  Anonymous PKINIT   This sub-section defines anonymous PKINIT.   As described earlier in this section, the client can request an   anonymous ticket by authenticating to the KDC using the client's   identity; alternatively, without revealing the client's identity to   the KDC, the Kerberos client can request an anonymous ticket as   follows: the client sets the client name as the anonymous principal   in the AS exchange and provides PA_PK_AS_REQ pre-authentication data   [RFC4556] where the signerInfos field of the SignedData [RFC5652] of   the PA_PK_AS_REQ is empty, and the certificates field is absent.   Because the anonymous client does not have an associated asymmetric   key pair, the client MUST choose the Diffie-Hellman key agreement   method by filling in the Diffie-Hellman domain parameters in the   clientPublicValue [RFC4556].  This use of the anonymous client name   in conjunction with PKINIT is referred to as "anonymous PKINIT".  If   anonymous PKINIT is used, the realm name in the returned anonymous   ticket MUST be the anonymous realm.   Upon receiving the anonymous PKINIT request from the client, the KDC   processes the request, according toSection 3.1.2 of [RFC4120].  The   KDC skips the checks for the client's signature and the client's   public key (such as the verification of the binding between the   client's public key and the client name) but performs otherwise   applicable checks and proceeds as normal, according to [RFC4556].   For example, the AS MUST check if the client's Diffie-Hellman domain   parameters are acceptable.  The Diffie-Hellman key agreement method   MUST be used and the reply key is derived according toSection 3.2.3.1 of [RFC4556].  If the clientPublicValue is not   present in the request, the KDC MUST return a KRB-ERROR with the code   KDC_ERR_PUBLIC_KEY_ENCRYPTION_NOT_SUPPORTED [RFC4556].  If all goes   well, an anonymous ticket is generated, according toSection 3.1.3 of   [RFC4120], and PA_PK_AS_REP [RFC4556] pre-authentication data is   included in the KDC reply, according to [RFC4556].  If the KDC does   not have an asymmetric key pair, it MAY reply anonymously or reject   the authentication attempt.  If the KDC replies anonymously, theZhu, et al.                  Standards Track                    [Page 7]

RFC 8062               Kerberos Anonymity Support          February 2017   signerInfos field of the SignedData [RFC5652] of PA_PK_AS_REP in the   reply is empty, and the certificates field is absent.  The server   name in the anonymous KDC reply contains the name of the TGS.   Upon receipt of the KDC reply that contains an anonymous ticket and   PA_PK_AS_REP [RFC4556] pre-authentication data, the client can then   authenticate the KDC based on the KDC's signature in the   PA_PK_AS_REP.  If the KDC's signature is missing in the KDC reply   (the reply is anonymous), the client MUST reject the returned ticket   if it cannot authenticate the KDC otherwise.   A KDC that supports anonymous PKINIT MUST indicate the support of   PKINIT, according toSection 3.4 of [RFC4556].  In addition, such a   KDC MUST indicate support for anonymous PKINIT by including a padata   element of padata-type PA_PKINIT_KX and empty padata-value when   including PA-PK-AS-REQ in an error reply.   When included in a KDC error, PA_PKINIT_KX indicates support for   anonymous PKINIT.  As discussed inSection 7, when included in an   AS-REP, PA_PKINIT_KX proves that the KDC and client both contributed   to the session key for any use of Diffie-Hellman key agreement with   PKINIT.   Note that in order to obtain an anonymous ticket with the anonymous   realm name, the client MUST set the client name as the anonymous   principal in the request when requesting an anonymous ticket in an AS   exchange.  Anonymous PKINIT is the only way via which an anonymous   ticket with the anonymous realm as the client realm can be generated   in this specification.4.2.  Anonymity Support in TGS Exchange   The client requests an anonymous ticket by setting the anonymous KDC   option in a TGS exchange, and in that request, the client can use a   normal Ticket-Granting Ticket (TGT) with the client's identity, an   anonymous TGT, or an anonymous cross-realm TGT.  If the client uses a   normal TGT, the client's identity is known to the TGS.   Note that the client can completely hide the client's identity in an   AS exchange using anonymous PKINIT, as described in the previous   section.   If the ticket in the PA-TGS-REQ of the TGS request is an anonymous   one, the anonymous KDC option SHOULD be set in the request.Zhu, et al.                  Standards Track                    [Page 8]

RFC 8062               Kerberos Anonymity Support          February 2017   When policy allows, the KDC issues an anonymous ticket.  If the   ticket in the TGS request is an anonymous one, the client name and   the client realm are copied from that ticket; otherwise, the ticket   in the TGS request is a normal ticket, the returned anonymous ticket   contains the client name as the anonymous principal and the client   realm as the true realm of the client.  In all cases, according to   [RFC4120], the client name and the client realm in the EncTicketPart   of the reply MUST match with the corresponding client name and the   client realm of the anonymous ticket in the reply; the client MUST   use the client name and the client realm returned in the KDC-REP in   subsequent message exchanges when using the obtained anonymous   ticket.   The TGS MUST NOT reveal the client's identity in the authorization   data of the returned ticket.  When propagating authorization data in   the ticket or in the enc-authorization-data field of the request, the   TGS MUST ensure that the client confidentiality is not violated in   the returned anonymous ticket.  The TGS MUST process the   authorization data recursively, according toSection 5.2.6 of   [RFC4120], beyond the container levels such that all embedded   authorization elements are interpreted.  The TGS SHOULD NOT populate   identity-based authorization data into an anonymous ticket in that   such authorization data typically reveals the client's identity.  The   specification of a new authorization data type MUST specify the   processing rules of the authorization data when an anonymous ticket   is returned.  If there is no processing rule defined for an   authorization data element or the authorization data element is   unknown, the TGS MUST process it when an anonymous ticket is returned   as follows:   o  If the authorization data element may reveal the client's      identity, it MUST be removed unless otherwise specified.   o  If the authorization data element that could reveal the client's      identity is intended to restrict the use of the ticket or limit      the rights otherwise conveyed in the ticket, it cannot be removed      in order to hide the client's identity.  In this case, the      authentication attempt MUST be rejected, and the TGS MUST return      an error message with the code KDC_ERR_POLICY.  Note this is      applicable to both critical and optional authorization data.   o  If the authorization data element is unknown, the TGS MAY remove      it, or transfer it into the returned anonymous ticket, or reject      the authentication attempt, based on local policy for that      authorization data type unless otherwise specified.  If there is      no policy defined for a given unknown authorization data type, the      authentication MUST be rejected.  The error code is KDC_ERR_POLICY      when the authentication is rejected.Zhu, et al.                  Standards Track                    [Page 9]

RFC 8062               Kerberos Anonymity Support          February 2017   The AD_INITIAL_VERIFIED_CAS authorization data, as defined in   [RFC4556], contains the issuer name of the client certificate.  If it   is undesirable to disclose such information about the client's   identity, the AD_INITIAL_VERIFIED_CAS authorization data SHOULD be   removed from an anonymous ticket.   The TGS encodes the name of the previous realm into the transited   field, according toSection 3.3.3.2 of [RFC4120].  Based on local   policy, the TGS MAY omit the previous realm, if the cross-realm TGT   is an anonymous one, in order to hide the authentication path of the   client.  The unordered set of realms in the transited field, if   present, can reveal which realm may potentially be the realm of the   client or the realm that issued the anonymous TGT.  The anonymous   Kerberos realm name MUST NOT be present in the transited field of a   ticket.  The true name of the realm that issued the anonymous ticket   MAY be present in the transited field of a ticket.4.3.  Subsequent Exchanges and Protocol Actions Common to AS and TGS for      Anonymity Support   In both AS and TGS exchanges, the realm field in the KDC request is   always the realm of the target KDC, not the anonymous realm when the   client requests an anonymous ticket.   Absent other information, the KDC MUST NOT include any identifier in   the returned anonymous ticket that could reveal the client's identity   to the server.   Unless anonymous PKINIT is used, if a client requires anonymous   communication, then the client MUST check to make sure that the   ticket in the reply is actually anonymous by checking the presence of   the anonymous ticket flag in the flags field of the EncKDCRepPart.   This is because KDCs ignore unknown KDC options.  A KDC that does not   understand the anonymous KDC option will not return an error but will   instead return a normal ticket.   The subsequent client and server communications then proceed as   described in [RFC4120].   Note that the anonymous principal name and realm are only applicable   to the client in Kerberos messages, and the server cannot be   anonymous in any Kerberos message per this specification.   A server accepting an anonymous service ticket may assume that   subsequent requests using the same ticket originate from the same   client.  Requests with different tickets are likely to originate from   different clients.Zhu, et al.                  Standards Track                   [Page 10]

RFC 8062               Kerberos Anonymity Support          February 2017   Upon receipt of an anonymous ticket, the transited policy check is   performed in the same way as that of a normal ticket if the client's   realm is not the anonymous realm; if the client realm is the   anonymous realm, absent other information, any realm in the   authentication path is allowed by the cross-realm policy check.5.  Interoperability Requirements   Conforming implementations MUST support the anonymous principal with   a non-anonymous realm, and they MAY support the anonymous principal   with the anonymous realm using anonymous PKINIT.6.  GSS-API Implementation Notes   GSS-API defines the name_type GSS_C_NT_ANONYMOUS [RFC2743] to   represent the anonymous identity.  In addition,Section 2.1.1 of   [RFC1964] defines the single string representation of a Kerberos   principal name with the name_type GSS_KRB5_NT_PRINCIPAL_NAME.  The   anonymous principal with the anonymous realm corresponds to the   GSS-API anonymous principal.  A principal with the anonymous   principal name and a non-anonymous realm is an authenticated   principal; hence, such a principal does not correspond to the   anonymous principal in GSS-API with the GSS_C_NT_ANONYMOUS name type.   The [RFC1964] name syntax for GSS_KRB5_NT_PRINCIPAL_NAME MUST be used   for importing the anonymous principal name with a non-anonymous realm   name and for displaying and exporting these names.  In addition, this   syntax must be used along with the name type GSS_C_NT_ANONYMOUS for   displaying and exporting the anonymous principal with the anonymous   realm.   At the GSS-API [RFC2743] level, an initiator/client requests the use   of an anonymous principal with the anonymous realm by asserting the   "anonymous" flag when calling GSS_Init_Sec_Context().  The GSS-API   implementation MAY provide implementation-specific means for   requesting the use of an anonymous principal with a non-anonymous   realm.   GSS-API does not know or define "anonymous credentials", so the   (printable) name of the anonymous principal will rarely be used by or   relevant for the initiator/client.  The printable name is relevant   for the acceptor/server when performing an authorization decision   based on the initiator name that is returned from the acceptor side   upon the successful security context establishment.Zhu, et al.                  Standards Track                   [Page 11]

RFC 8062               Kerberos Anonymity Support          February 2017   A GSS-API initiator MUST carefully check the resulting context   attributes from the initial call to GSS_Init_Sec_Context() when   requesting anonymity, because (as in the GSS-API tradition and for   backwards compatibility) anonymity is just another optional context   attribute.  It could be that the mechanism doesn't recognize the   attribute at all or that anonymity is not available for some other   reasons -- and in that case, the initiator MUST NOT send the initial   security context token to the acceptor, because it will likely reveal   the initiator's identity to the acceptor, something that can rarely   be "undone".   Portable initiators are RECOMMENDED to use default credentials   whenever possible and request anonymity only through the input   anon_req_flag [RFC2743] to GSS_Init_Sec_Context().7.  PKINIT Client Contribution to the Ticket Session Key   The definition in this section was motivated by protocol analysis of   anonymous PKINIT (defined in this document) in building secure   channels [RFC6113] and subsequent channel bindings [RFC5056].  In   order to enable applications of anonymous PKINIT to form secure   channels, all implementations of anonymous PKINIT need to meet the   requirements of this section.  There is otherwise no connection to   the rest of this document.   PKINIT is useful for constructing secure channels.  To ensure that an   active attacker cannot create separate channels to the client and KDC   with the same known key, it is desirable that neither the KDC nor the   client unilaterally determine the ticket session key.  The specific   reason why the ticket session key is derived jointly is discussed at   the end of this section.  To achieve that end, a KDC conforming to   this definition MUST encrypt a randomly generated key, called the   "KDC contribution key", in the PA_PKINIT_KX padata (defined next in   this section).  The KDC contribution key is then combined with the   reply key to form the ticket session key of the returned ticket.   These two keys are combined using the KRB-FX-CF2 operation defined inSection 7.1, where K1 is the KDC contribution key, K2 is the reply   key, the input pepper1 is US-ASCII [ANSI.X3-4] string "PKINIT", and   the input pepper2 is US-ASCII string "KEYEXCHANGE".   PA_PKINIT_KX      147     -- padata for PKINIT that contains an encrypted     -- KDC contribution key.   PA-PKINIT-KX  ::= EncryptedData -- EncryptionKey     -- Contains an encrypted key randomly     -- generated by the KDC (known as the KDC contribution key).     -- Both EncryptedData and EncryptionKey are defined in [RFC4120]Zhu, et al.                  Standards Track                   [Page 12]

RFC 8062               Kerberos Anonymity Support          February 2017   The PA_PKINIT_KX padata MUST be included in the KDC reply when   anonymous PKINIT is used; it SHOULD be included if PKINIT is used   with the Diffie-Hellman key exchange but the client is not anonymous;   it MUST NOT be included otherwise (e.g., when PKINIT is used with the   public key encryption as the key exchange).   The padata-value field of the PA-PKINIT-KX type padata contains the   DER [X.680] [X.690] encoding of the Abstract Syntax Notation One   (ASN.1) type PA-PKINIT-KX.  The PA-PKINIT-KX structure is an   EncryptedData.  The cleartext data being encrypted is the DER-encoded   KDC contribution key randomly generated by the KDC.  The encryption   key is the reply key, and the key usage number is   KEY_USAGE_PA_PKINIT_KX (44).   The client then decrypts the KDC contribution key and verifies that   the ticket session key in the returned ticket is the combined key of   the KDC contribution key and the reply key as described above.  A   conforming client MUST reject anonymous PKINIT authentication if the   PA_PKINIT_KX padata is not present in the KDC reply or if the ticket   session key of the returned ticket is not the combined key of the KDC   contribution key and the reply key when PA-PKINIT-KX is present in   the KDC reply.   This protocol provides a binding between the party that generated the   session key and the Diffie-Hellman exchange used to generate the   reply key.  Hypothetically, if the KDC did not use PA-PKINIT-KX, the   client and KDC would perform a Diffie-Hellman key exchange to   determine a shared key, and that key would be used as a reply key.   The KDC would then generate a ticket with a session key encrypting   the reply with the Diffie-Helman agreement.  A man-in-the-middle   (MITM) attacker would just decrypt the session key and ticket using   the Diffie-Hellman key from the attacker-KDC Diffie-Hellman exchange   and re-encrypt it using the key from the attacker-client Diffie-   Hellman exchange, while keeping a copy of the session key and ticket.   This protocol binds the ticket to the Diffie-Hellman exchange and   prevents the MITM attack by requiring the session key to be created   in a way that can be verified by the client.Zhu, et al.                  Standards Track                   [Page 13]

RFC 8062               Kerberos Anonymity Support          February 20177.1.  Combining Two Protocol Keys   KRB-FX-CF2() combines two protocol keys based on the pseudo-random()   function defined in [RFC3961].   Given two input keys, K1 and K2, where K1 and K2 can be of two   different enctypes, the output key of KRB-FX-CF2(), K3, is derived as   follows:    KRB-FX-CF2(protocol key, protocol key, octet string,              octet string)  ->  (protocol key)    PRF+(K1, pepper1) -> octet-string-1    PRF+(K2, pepper2) -> octet-string-2    KRB-FX-CF2(K1, K2, pepper1, pepper2) ->           random-to-key(octet-string-1 ^ octet-string-2)   Where ^ denotes the exclusive-OR operation.  PRF+() is defined as   follows:   PRF+(protocol key, octet string) -> (octet string)   PRF+(key, shared-info) -> pseudo-random( key,  1 || shared-info ) ||                pseudo-random( key, 2 || shared-info ) ||                pseudo-random( key, 3 || shared-info ) || ...   Here the counter value 1, 2, 3, and so on are encoded as a one-octet   integer.  The pseudo-random() operation is specified by the enctype   of the protocol key.  PRF+() uses the counter to generate enough bits   as needed by the random-to-key() [RFC3961] function for the   encryption type specified for the resulting key; unneeded bits are   removed from the tail.8.  Security Considerations   Since KDCs ignore unknown options, a client requiring anonymous   communication needs to make sure that the returned ticket is actually   anonymous.  This is because a KDC that does not understand the   anonymous option would not return an anonymous ticket.   By using the mechanism defined in this specification, the client does   not reveal the client's identity to the server, but the client's   identity may be revealed to the KDC of the server principal (when the   server principal is in a different realm than that of the client) and   any KDC on the cross-realm authentication path.  The Kerberos client   MUST verify the ticket being used is indeed anonymous before   communicating with the server, otherwise, the client's identity may   be revealed unintentionally.Zhu, et al.                  Standards Track                   [Page 14]

RFC 8062               Kerberos Anonymity Support          February 2017   In cases where specific server principals must not have access to the   client's identity (for example, an anonymous poll service), the KDC   can define the server-principal-specific policy that ensures any   normal service ticket can NEVER be issued to any of these server   principals.   If the KDC that issued an anonymous ticket were to maintain records   of the association of identities to an anonymous ticket, then someone   obtaining such records could breach the anonymity.  Additionally, the   implementations of most (for now all) KDCs respond to requests at the   time that they are received.  Traffic analysis on the connection to   the KDC will allow an attacker to match client identities to   anonymous tickets issued.  Because there are plaintext parts of the   tickets that are exposed on the wire, such matching by a third-party   observer is relatively straightforward.  A service that is   authenticated by the anonymous principals may be able to infer the   identity of the client by examining and linking quasi-static protocol   information such as the IP address from which a request is received   or by linking multiple uses of the same anonymous ticket.   Two mechanisms, the FAST facility with the hide-client-names option   in [RFC6113] and the Kerberos5 starttls option [RFC6251], protect the   client identity so that an attacker would never be able to observe   the client identity sent to the KDC.  Transport- or network-layer   security between the client and the server will help prevent tracking   of a particular ticket to link a ticket to a user.  In addition,   clients can limit how often a ticket is reused to minimize ticket   linking.   The client's real identity is not revealed when the client is   authenticated as the anonymous principal.  Application servers MAY   reject the authentication in order to, for example, prevent   information disclosure or as part of Denial-of-Service (DoS)   prevention.  Application servers MUST avoid accepting anonymous   credentials in situations where they must record the client's   identity, for example, when there must be an audit trail.9.  IANA Considerations   This document defines an 'anonymous' Kerberos well-known name and an   'anonymous' Kerberos well-known realm based on [RFC6111].  IANA has   updated these two entries in the "Well-Known Kerberos Principal   Names" and "Well-Known Kerberos Realm Names" registries,   respectively, to refer to this document.   In addition, IANA has updated the reference for PA_PKINIT_KX (147) in   the "Pre-authentication and Typed Data" registry to refer to this   document.Zhu, et al.                  Standards Track                   [Page 15]

RFC 8062               Kerberos Anonymity Support          February 201710.  References10.1.  Normative References   [ANSI.X3-4]              American National Standards Institute, "Coded Character              Set - 7-bit American Standard Code for Information              Interchange", ANSI X3-4, 1986.   [RFC1964]  Linn, J., "The Kerberos Version 5 GSS-API Mechanism",RFC 1964, DOI 10.17487/RFC1964, June 1996,              <http://www.rfc-editor.org/info/rfc1964>.   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate              Requirement Levels",BCP 14,RFC 2119,              DOI 10.17487/RFC2119, March 1997,              <http://www.rfc-editor.org/info/rfc2119>.   [RFC2743]  Linn, J., "Generic Security Service Application Program              Interface Version 2, Update 1",RFC 2743,              DOI 10.17487/RFC2743, January 2000,              <http://www.rfc-editor.org/info/rfc2743>.   [RFC3961]  Raeburn, K., "Encryption and Checksum Specifications for              Kerberos 5",RFC 3961, DOI 10.17487/RFC3961, February              2005, <http://www.rfc-editor.org/info/rfc3961>.   [RFC4120]  Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The              Kerberos Network Authentication Service (V5)",RFC 4120,              DOI 10.17487/RFC4120, July 2005,              <http://www.rfc-editor.org/info/rfc4120>.   [RFC4556]  Zhu, L. and B. Tung, "Public Key Cryptography for Initial              Authentication in Kerberos (PKINIT)",RFC 4556,              DOI 10.17487/RFC4556, June 2006,              <http://www.rfc-editor.org/info/rfc4556>.   [RFC5652]  Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,RFC 5652, DOI 10.17487/RFC5652, September 2009,              <http://www.rfc-editor.org/info/rfc5652>.   [RFC6111]  Zhu, L., "Additional Kerberos Naming Constraints",RFC 6111, DOI 10.17487/RFC6111, April 2011,              <http://www.rfc-editor.org/info/rfc6111>.   [RFC6112]  Zhu, L., Leach, P., and S. Hartman, "Anonymity Support for              Kerberos",RFC 6112, DOI 10.17487/RFC6112, April 2011,              <http://www.rfc-editor.org/info/rfc6112>.Zhu, et al.                  Standards Track                   [Page 16]

RFC 8062               Kerberos Anonymity Support          February 2017   [X.680]    International Telecommunications Union, "Information              technology - Abstract Syntax Notation One (ASN.1):              Specification of Basic Notation", ITU-T Recommendation              X.680, ISO/IEC International Standard 8824-1:1998, 1997.   [X.690]    International Telecommunications Union, "Information              technology - ASN.1 encoding rules: Specification of Basic              Encoding Rules (BER), Canonical Encoding Rules (CER) and              Distinguished Encoding Rules (DER)", ITU-T Recommendation              X.690, ISO/IEC International Standard 8825-1:1998, 1997.10.2.  Informative References   [RFC5056]  Williams, N., "On the Use of Channel Bindings to Secure              Channels",RFC 5056, DOI 10.17487/RFC5056, November 2007,              <http://www.rfc-editor.org/info/rfc5056>.   [RFC6113]  Hartman, S. and L. Zhu, "A Generalized Framework for              Kerberos Pre-Authentication",RFC 6113,              DOI 10.17487/RFC6113, April 2011,              <http://www.rfc-editor.org/info/rfc6113>.   [RFC6251]  Josefsson, S., "Using Kerberos Version 5 over the              Transport Layer Security (TLS) Protocol",RFC 6251,              DOI 10.17487/RFC6251, May 2011,              <http://www.rfc-editor.org/info/rfc6251>.Acknowledgments   JK Jaganathan helped edit early draft revisions ofRFC 6112.   Clifford Neuman contributed the core notions of this document.   Ken Raeburn reviewed the document and provided suggestions for   improvements.   Martin Rex wrote the text for the GSS-API considerations.   Nicolas Williams reviewed the GSS-API considerations section and   suggested ideas for improvements.   Sam Hartman and Nicolas Williams were great champions of this work.   Miguel Garcia and Phillip Hallam-Baker reviewed the document and   provided helpful suggestions.Zhu, et al.                  Standards Track                   [Page 17]

RFC 8062               Kerberos Anonymity Support          February 2017   In addition, the following individuals made significant   contributions: Jeffrey Altman, Tom Yu, Chaskiel M. Grundman, Love   Hornquist Astrand, Jeffrey Hutzelman, and Olga Kornievskaia.   Greg Hudson and Robert Sparks provided helpful text in this document.Authors' Addresses   Larry Zhu   Microsoft Corporation   One Microsoft Way   Redmond, WA  98052   United States of America   Email: larry.zhu@microsoft.com   Paul Leach   Microsoft Corporation   One Microsoft Way   Redmond, WA  98052   United States of America   Email: pauljleach@msn.com   Sam Hartman   Hadron Industries   Email: hartmans-ietf@mit.edu   Shawn Emery (editor)   Oracle   Email: shawn.emery@gmail.comZhu, et al.                  Standards Track                   [Page 18]

[8]ページ先頭

©2009-2025 Movatter.jp