Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Errata] [Info page]

PROPOSED STANDARD
Errata Exist
Internet Engineering Task Force (IETF)                         B. BurmanRequest for Comments: 7728                                      A. AkramUpdates:5104                                                   EricssonCategory: Standards Track                                        R. EvenISSN: 2070-1721                                      Huawei Technologies                                                           M. Westerlund                                                                Ericsson                                                           February 2016RTP Stream Pause and ResumeAbstract   With the increased popularity of real-time multimedia applications,   it is desirable to provide good control of resource usage, and users   also demand more control over communication sessions.  This document   describes how a receiver in a multimedia conversation can pause and   resume incoming data from a sender by sending real-time feedback   messages when using the Real-time Transport Protocol (RTP) for real-   time data transport.  This document extends the Codec Control Message   (CCM) RTP Control Protocol (RTCP) feedback package by explicitly   allowing and describing specific use of existing CCMs and adding a   group of new real-time feedback messages used to pause and resume RTP   data streams.  This document updatesRFC 5104.Status of This Memo   This is an Internet Standards Track document.   This document is a product of the Internet Engineering Task Force   (IETF).  It represents the consensus of the IETF community.  It has   received public review and has been approved for publication by the   Internet Engineering Steering Group (IESG).  Further information on   Internet Standards is available inSection 2 of RFC 5741.   Information about the current status of this document, any errata,   and how to provide feedback on it may be obtained athttp://www.rfc-editor.org/info/rfc7728.Burman, et al.               Standards Track                    [Page 1]

RFC 7728                    RTP Stream Pause               February 2016Copyright Notice   Copyright (c) 2016 IETF Trust and the persons identified as the   document authors.  All rights reserved.   This document is subject toBCP 78 and the IETF Trust's Legal   Provisions Relating to IETF Documents   (http://trustee.ietf.org/license-info) in effect on the date of   publication of this document.  Please review these documents   carefully, as they describe your rights and restrictions with respect   to this document.  Code Components extracted from this document must   include Simplified BSD License text as described in Section 4.e of   the Trust Legal Provisions and are provided without warranty as   described in the Simplified BSD License.   This document may contain material from IETF Documents or IETF   Contributions published or made publicly available before November   10, 2008.  The person(s) controlling the copyright in some of this   material may not have granted the IETF Trust the right to allow   modifications of such material outside the IETF Standards Process.   Without obtaining an adequate license from the person(s) controlling   the copyright in such materials, this document may not be modified   outside the IETF Standards Process, and derivative works of it may   not be created outside the IETF Standards Process, except to format   it for publication as an RFC or to translate it into languages other   than English.Burman, et al.               Standards Track                    [Page 2]

RFC 7728                    RTP Stream Pause               February 2016Table of Contents1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .42.  Definitions . . . . . . . . . . . . . . . . . . . . . . . . .52.1.  Abbreviations . . . . . . . . . . . . . . . . . . . . . .52.2.  Terminology . . . . . . . . . . . . . . . . . . . . . . .62.3.  Requirements Language . . . . . . . . . . . . . . . . . .73.  Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . .83.1.  Point to Point  . . . . . . . . . . . . . . . . . . . . .83.2.  RTP Mixer to Media Sender . . . . . . . . . . . . . . . .93.3.  RTP Mixer to Media Sender in Point to Multipoint  . . . .103.4.  Media Receiver to RTP Mixer . . . . . . . . . . . . . . .113.5.  Media Receiver to Media Sender across RTP Mixer . . . . .114.  Design Considerations . . . . . . . . . . . . . . . . . . . .124.1.  Real-Time Nature  . . . . . . . . . . . . . . . . . . . .124.2.  Message Direction . . . . . . . . . . . . . . . . . . . .124.3.  Apply to Individual Sources . . . . . . . . . . . . . . .124.4.  Consensus . . . . . . . . . . . . . . . . . . . . . . . .134.5.  Message Acknowledgments . . . . . . . . . . . . . . . . .134.6.  Request Retransmission  . . . . . . . . . . . . . . . . .144.7.  Sequence Numbering  . . . . . . . . . . . . . . . . . . .144.8.  Relation to Other Solutions . . . . . . . . . . . . . . .145.  Solution Overview . . . . . . . . . . . . . . . . . . . . . .155.1.  Expressing Capability . . . . . . . . . . . . . . . . . .165.2.  PauseID . . . . . . . . . . . . . . . . . . . . . . . . .165.3.  Requesting to Pause . . . . . . . . . . . . . . . . . . .175.4.  Media Sender Pausing  . . . . . . . . . . . . . . . . . .185.5.  Requesting to Resume  . . . . . . . . . . . . . . . . . .195.6.  TMMBR/TMMBN Considerations  . . . . . . . . . . . . . . .206.  Participant States  . . . . . . . . . . . . . . . . . . . . .226.1.  Playing State . . . . . . . . . . . . . . . . . . . . . .226.2.  Pausing State . . . . . . . . . . . . . . . . . . . . . .226.3.  Paused State  . . . . . . . . . . . . . . . . . . . . . .236.3.1.  RTCP BYE Message  . . . . . . . . . . . . . . . . . .246.3.2.  SSRC Time-Out . . . . . . . . . . . . . . . . . . . .246.4.  Local Paused State  . . . . . . . . . . . . . . . . . . .247.  Message Format  . . . . . . . . . . . . . . . . . . . . . . .268.  Message Details . . . . . . . . . . . . . . . . . . . . . . .288.1.  PAUSE . . . . . . . . . . . . . . . . . . . . . . . . . .298.2.  PAUSED  . . . . . . . . . . . . . . . . . . . . . . . . .308.3.  RESUME  . . . . . . . . . . . . . . . . . . . . . . . . .318.4.  REFUSED . . . . . . . . . . . . . . . . . . . . . . . . .328.5.  Transmission Rules  . . . . . . . . . . . . . . . . . . .329.  Signaling . . . . . . . . . . . . . . . . . . . . . . . . . .339.1.  Offer/Answer Use  . . . . . . . . . . . . . . . . . . . .379.2.  Declarative Use . . . . . . . . . . . . . . . . . . . . .39Burman, et al.               Standards Track                    [Page 3]

RFC 7728                    RTP Stream Pause               February 201610. Examples  . . . . . . . . . . . . . . . . . . . . . . . . . .3910.1.  Offer/Answer . . . . . . . . . . . . . . . . . . . . . .4010.2.  Point-to-Point Session . . . . . . . . . . . . . . . . .4110.3.  Point to Multipoint Using Mixer  . . . . . . . . . . . .4510.4.  Point to Multipoint Using Translator . . . . . . . . . .4711. IANA Considerations . . . . . . . . . . . . . . . . . . . . .5012. Security Considerations . . . . . . . . . . . . . . . . . . .5013. References  . . . . . . . . . . . . . . . . . . . . . . . . .5213.1.  Normative References . . . . . . . . . . . . . . . . . .5213.2.  Informative References . . . . . . . . . . . . . . . . .53   Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . .54   Contributors  . . . . . . . . . . . . . . . . . . . . . . . . . .54   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .551.  Introduction   As real-time communication attracts more people, more applications   are created; multimedia conversation applications is one example.   Multimedia conversation further exists in many forms, for example,   peer-to-peer chat application and multiparty video conferencing   controlled by central media nodes, such as RTP Mixers.   Multimedia conferencing may involve many participants; each has its   own preferences for the communication session, not only at the start   but also during the session.  This document describes several   scenarios in multimedia communication where a conferencing node or   participant chooses to temporarily pause an incoming RTP [RFC3550]   stream and later resume it when needed.  The receiver does not need   to terminate or inactivate the RTP session and start all over again   by negotiating the session parameters, for example, using SIP   [RFC3261] with the Session Description Protocol (SDP) [RFC4566]   offer/answer [RFC3264].   Centralized nodes, like RTP Mixers or Multipoint Control Units (MCUs)   that use either logic based on voice activity, other measurements, or   user input could reduce the resources consumed in both the sender and   the network by temporarily pausing the RTP streams that aren't   required by the RTP Mixer.  If the number of conference participants   are greater than what the conference logic has chosen to present   simultaneously to receiving participants, some participant RTP   streams sent to the RTP Mixer may not need to be forwarded to any   other participant.  Those RTP streams could then be temporarily   paused.  This becomes especially useful when the media sources are   provided in multiple encoding versions (Simulcast) [SDP-SIMULCAST] or   with Multi-Session Transmission (MST) of scalable encoding such as   Scalable Video Coding (SVC) [RFC6190].  There may be some of theBurman, et al.               Standards Track                    [Page 4]

RFC 7728                    RTP Stream Pause               February 2016   defined encodings or a combination of scalable layers that are not   used or cannot be used all of the time.  As an example, a centralized   node may choose to pause such unused RTP streams without being   explicitly requested to do so, maybe due to temporarily limited   network or processing resources.  It may then also send an explicit   indication that the streams are paused.   As the set of RTP streams required at any given point in time is   highly dynamic in such scenarios, using the out-of-band signaling   channel for pausing, and even more importantly resuming, an RTP   stream is difficult due to the performance requirements.  Instead,   the pause and resume signaling should be in the media plane and go   directly between the affected nodes.  When using RTP [RFC3550] for   media transport, using "Extended RTP Profile for Real-time Transport   Control Protocol (RTCP)-Based Feedback (RTP/AVPF)" [RFC4585] appears   appropriate.  No currently existing RTCP feedback message explicitly   supports pausing and resuming an incoming RTP stream.  As this   affects the generation of packets and may even allow the encoding   process to be paused, the functionality appears to match Codec   Control Messages (CCMs) in the RTP Audio-Visual Profile with Feedback   (AVPF) [RFC5104].  This document defines the solution as a CCM   extension.   The Temporary Maximum Media Bitrate Request (TMMBR) message of CCM is   used by video conferencing systems for flow control.  It is desirable   to be able to use that method with a bitrate value of zero for pause,   whenever possible.  This specification updatesRFC 5104 by adding the   new pause and resume semantics to the TMMBR and Temporary Maximum   Media Bitrate Notification (TMMBN) messages.2.  Definitions2.1.  Abbreviations   AVPF:     Audio-Visual Profile with Feedback (RFC 4585)   CCM:      Codec Control Message (RFC 5104)   CNAME:    Canonical Name (RTCP Source Description)   CSRC:     Contributing Source (RTP)   FCI:      Feedback Control Information (AVPF)   FIR:      Full Intra Refresh (CCM)   FMT:      Feedback Message Type (AVPF)Burman, et al.               Standards Track                    [Page 5]

RFC 7728                    RTP Stream Pause               February 2016   MCU:      Multipoint Control Unit   MTU:      Maximum Transfer Unit   PT:       Payload Type (RTP)   RTP:      Real-time Transport Protocol (RFC 3550)   RTCP:     RTP Control Protocol (RFC 3550)   RTCP RR:  RTCP Receiver Report   RTCP SR:  RTCP Sender Report   SDP:      Session Description Protocol (RFC 4566)   SIP:      Session Initiation Protocol (RFC 3261)   SSRC:     Synchronization Source (RTP)   SVC:      Scalable Video Coding   TMMBR:    Temporary Maximum Media Bitrate Request (CCM)   TMMBN:    Temporary Maximum Media Bitrate Notification (CCM)   UA:       User Agent (SIP)   UDP:      User Datagram Protocol (RFC 768)2.2.  Terminology   In addition to the following, the definitions from RTP [RFC3550],   AVPF [RFC4585], CCM [RFC5104], and RTP Taxonomy [RFC7656] also apply   in this document.   Feedback Messages:  CCM [RFC5104] categorized different RTCP feedback      messages into four types: Request, Command, Indication, and      Notification.  This document places the PAUSE and RESUME messages      into the Request category, PAUSED as an Indication, and REFUSED as      a Notification.      PAUSE:    Request from an RTP stream receiver to pause a stream      RESUME:   Request from an RTP stream receiver to resume a paused                streamBurman, et al.               Standards Track                    [Page 6]

RFC 7728                    RTP Stream Pause               February 2016      PAUSED:   Indication from an RTP stream sender that a stream is                paused      REFUSED:  Notification from an RTP stream sender that a PAUSE or                RESUME request will not be honored   Mixer:  The intermediate RTP node that receives an RTP stream from      different endpoints, combines them to make one RTP stream, and      forwards them to destinations, in the sense described for Topo-      Mixer in "RTP Topologies" [RFC7667].   Participant:  A member that is part of an RTP session, acting as the      receiver, sender, or both.   Paused sender:  An RTP stream sender that has stopped its      transmission, i.e., no other participant receives its RTP      transmission, based on having received either a PAUSE request,      defined in this specification, or a local decision.   Pausing receiver:  An RTP stream receiver that sends a PAUSE request,      defined in this specification, to another participant(s).   Stream:  Used as a short term for RTP stream, unless otherwise noted.   Stream receiver:  Short for RTP stream receiver; the RTP entity      responsible for receiving an RTP stream, usually a Media      Depacketizer.   Stream sender:  Short for RTP stream sender; the RTP entity      responsible for creating an RTP stream, usually a Media      Packetizer.2.3.  Requirements Language   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and   "OPTIONAL" in this document are to be interpreted as described inRFC2119 [RFC2119].Burman, et al.               Standards Track                    [Page 7]

RFC 7728                    RTP Stream Pause               February 20163.  Use Cases   This section discusses the main use cases for RTP stream pause and   resume.   The RTCWEB WG's use case and requirements document [RFC7478] defines   the following API requirements inAppendix A, which is also used by   the W3C WebRTC WG:   A8  The web API must provide means for the web application to mute/       unmute a stream or stream component(s).  When a stream is sent to       a peer, mute status must be preserved in the stream received by       the peer.   A9  The web API must provide means for the web application to cease       the sending of a stream to a peer.   This document provides means to optimize transport usage by stopping   the sending of muted streams and starting the sending of streams   again when unmuted.  Here, it is assumed that "mute" above can be   taken to apply also to media other than audio.  At the time of   publication for this specification, the RTCWEB WG did not specify any   pause/resume functionality.3.1.  Point to Point   This is the most basic use case with an RTP session containing two   endpoints.  Each endpoint sends one or more streams.                            +---+         +---+                            | A |<------->| B |                            +---+         +---+                         Figure 1: Point to Point   The usage of RTP stream pause in this use case is to temporarily halt   delivery of streams that the sender provides but the receiver does   not currently use.  This can, for example, be due to minimized   applications where the video stream is not actually shown on any   display, or it is not used in any other way, such as being recorded.   In this case, since there is only a single receiver of the stream,   pausing or resuming a stream does not impact anyone else other than   the sender and the single receiver of that stream.Burman, et al.               Standards Track                    [Page 8]

RFC 7728                    RTP Stream Pause               February 20163.2.  RTP Mixer to Media Sender   One of the most commonly used topologies in centralized conferencing   is based on the RTP Mixer [RFC7667].  The main reason for this is   that it provides a very consistent view of the RTP session towards   each participant.  That is accomplished through the Mixer originating   its own streams, identified by distinct SSRC values, and any RTP   streams sent to the participants will be sent using those SSRC   values.  If the Mixer wants to identify the underlying media sources   for its conceptual streams, it can identify them using CSRC.  The   stream the Mixer provides can be an actual mix of multiple media   sources, but it might also be switching received streams as described   in Sections3.6 -3.8 of "RTP Topologies" [RFC7667].                    +---+      +-----------+      +---+                    | A |<---->|           |<---->| B |                    +---+      |           |      +---+                               |   Mixer   |                    +---+      |           |      +---+                    | C |<---->|           |<---->| D |                    +---+      +-----------+      +---+                    Figure 2: RTP Mixer in Unicast Only   Which streams from clients B, C, and D that are delivered to a given   receiver, A, can depend on several things:   o  The RTP Mixer's own logic and measurements, such as voice activity      on the incoming audio streams.   o  The number of sent media sources exceed what is reasonable to      present simultaneously at any given receiver.   o  A human controlling the conference that determines how the media      should be mixed.  This would be more common in lecture or similar      applications where regular listeners may be prevented from      breaking into the session unless approved by the moderator.   o  The streams may also be part of a Simulcast [SDP-SIMULCAST] or      scalable encoded (for Multi-Session Transmission) [RFC6190], thus      providing multiple versions that can be delivered by the RTP      stream sender.   These examples indicate that there are numerous reasons why a   particular stream would not currently be in use but must be available   for use at very short notice if any dynamic event occurs that causes   a different stream selection to be done in the Mixer.Burman, et al.               Standards Track                    [Page 9]

RFC 7728                    RTP Stream Pause               February 2016   Because of this, it would be highly beneficial if the Mixer could   request the RTP stream sender to pause a particular stream.  The   Mixer also needs to be able to request the RTP stream sender to   resume delivery with minimal delay.   In some cases, especially when the Mixer sends multiple RTP streams   per receiving client, there may be situations that make it desirable   for the Mixer to pause some of its sent RTP streams, even without   being explicitly asked to do so by the receiving client.  Such   situations can, for example, be caused by a temporary lack of   available Mixer network or processing resources.  An RTP stream   receiver that no longer receives an RTP stream could interpret this   as an error condition and try to take action to re-establish the RTP   stream.  Such action would likely be undesirable if the RTP stream   was in fact deliberately paused by the Mixer.  Undesirable RTP stream   receiver actions could be avoided if the Mixer is able to explicitly   indicate that an RTP stream is deliberately paused.   Just as for point to point (Section 3.1), there is only a single   receiver of the stream, the RTP Mixer, and pausing or resuming a   stream does not affect anyone else other than the sender and single   receiver of that stream.3.3.  RTP Mixer to Media Sender in Point to Multipoint   This use case is similar to the previous section; however, the RTP   Mixer is involved in three domains that need to be separated: the   Multicast Network (including participants A and C), participant B,   and participant D.  The difference from above is that A and C share a   multicast domain, which is depicted below.                        +-----+             +---+     /       \     +-----------+      +---+             | A |<---/         \    |           |<---->| B |             +---+   /   Multi-  \   |           |      +---+                    +    cast     +->|   Mixer   |             +---+   \  Network  /   |           |      +---+             | C |<---\         /    |           |<---->| D |             +---+     \       /     +-----------+      +---+                        +-----+                Figure 3: RTP Mixer in Point to Multipoint   If the RTP Mixer pauses a stream from A, it will not only pause the   stream towards itself but will also stop the stream from arriving to   C, which C is heavily impacted by, might not approve of, and should   thus have a say on.Burman, et al.               Standards Track                   [Page 10]

RFC 7728                    RTP Stream Pause               February 2016   If the Mixer resumes a paused stream from A, it will be resumed also   towards C.  In this case, if C is not interested, it can simply   ignore the stream and is not impacted as much as above.   In this use case, there are several receivers of a stream, and the   Mixer must take special care so as not to pause a stream that is   still wanted by some receivers.3.4.  Media Receiver to RTP Mixer   In this use case, the direction of the request to pause is the   opposite compared to the two previous use cases.  An endpoint in   Figure 2 could potentially request to pause the delivery of a given   stream.  Possible reasons include those in the point-to-point case   (Section 3.1) above.   When the RTP Mixer is only connected to individual unicast paths, the   use case and any considerations are identical to the point-to-point   use case.   However, when the endpoint requesting stream pause is connected to   the RTP Mixer through a multicast network, such as A or C in   Figure 3, the use case instead becomes identical to the one inSection 3.3, only with reverse direction of the streams and pause/   resume requests.3.5.  Media Receiver to Media Sender across RTP Mixer   An endpoint, like A in Figure 2, could potentially request to pause   the delivery of a given stream, like one of B's, over any of the   SSRCs used by the Mixer by sending a pause request for the CSRC   identifying the stream.  However, the authors are of the opinion that   this is not a suitable solution for several reasons:   1.  The Mixer might not include CSRC in its stream indications.   2.  An endpoint cannot rely on the CSRC to correctly identify the       stream to be paused when the delivered media is some type of mix.       A more elaborate stream identification solution is needed to       support this in the general case.   3.  The endpoint cannot determine if a given stream is still needed       by the RTP Mixer to deliver to another session participant.   Due to the above reasons, we exclude this use case from further   consideration.Burman, et al.               Standards Track                   [Page 11]

RFC 7728                    RTP Stream Pause               February 20164.  Design Considerations   This section describes the requirements that this specification needs   to meet.4.1.  Real-Time Nature   The first section (Section 1) of this specification describes some   possible reasons why a receiver may pause an RTP sender.  Pausing and   resuming is time dependent, i.e., a receiver may choose to pause an   RTP stream for a certain duration, after which the receiver may want   the sender to resume.  This time dependency means that the messages   related to pause and resume must be transmitted to the sender in a   timely fashion in order for them to be purposeful.  The pause   operation is arguably not as time critical as the resume operation,   since it mainly provides a reduction of resource usage.  Timely   handling of the resume operation is, however, likely to directly   impact the end-user's perceived quality experience, since it affects   the availability of media that the user expects to receive more or   less instantly.  It may also be highly desirable for a receiver to   quickly learn that an RTP stream is intentionally paused on the RTP   sender's own behalf.4.2.  Message Direction   It is the responsibility of an RTP stream receiver that wants to   pause or resume a stream from the sender(s) to transmit PAUSE and   RESUME messages.  An RTP stream sender that wants to pause itself can   often simply do it, but sometimes this will adversely affect the   receiver and an explicit indication that the RTP stream is paused may   then help.  Any indication that an RTP stream is paused is the   responsibility of the RTP stream sender and may in some cases not   even be needed by the stream receiver.4.3.  Apply to Individual Sources   The PAUSE and RESUME messages apply to single RTP streams identified   by their SSRC, which means the receiver targets the sender's SSRC in   the PAUSE and RESUME requests.  If a paused sender starts sending   with a new SSRC, the receivers will need to send a new PAUSE request   in order to pause it.  PAUSED indications refer to a single one of   the sender's own paused SSRC.Burman, et al.               Standards Track                   [Page 12]

RFC 7728                    RTP Stream Pause               February 20164.4.  Consensus   An RTP stream sender should not pause an SSRC that some receiver   still wishes to receive.   The reason is that in RTP topologies where the stream is shared   between multiple receivers, a single receiver on that shared network   must not single-handedly cause the stream to be paused without   letting all other receivers voice their opinions on whether or not   the stream should be paused.  Such shared networks can, for example,   be multicast, a mesh with a joint RTP session, or a transport   Translator-based network.  A consequence of this is that a newly   joining receiver first needs to learn the existence of paused streams   and secondly should be able to resume any paused stream.  A newly   joining receiver can, for example, be detected through an RTCP   Receiver Report containing both a new SSRC and a CNAME that does not   already occur in the session.  Any single receiver wanting to resume   a stream should also cause it to be resumed.  An important exception   to this is when the RTP stream sender is aware of conditions that   make it desirable or even necessary to pause the RTP stream on its   own behalf, without being explicitly asked to do so.  Such local   consideration in the RTP sender takes precedence over RTP receiver   wishes to receive the stream.4.5.  Message Acknowledgments   RTP and RTCP does not guarantee reliable data transmission.  It uses   whatever assurance the lower-layer transport protocol can provide.   However, this is commonly UDP that provides no reliability   guarantees.  Thus, it is possible that a PAUSE and/or RESUME message   transmitted from an RTP endpoint does not reach its destination,   i.e., the targeted RTP stream sender.  When PAUSE or RESUME reaches   the RTP stream sender and is effective, i.e., an active RTP stream   sender pauses or a resuming RTP stream sender has media data to   transmit, it is immediately seen from the arrival or non-arrival of   RTP packets for that RTP stream.  Thus, no explicit acknowledgments   are required in this case.   In some cases, when a PAUSE or RESUME message reaches the RTP stream   sender, it will not be able to pause or resume the stream due to some   local consideration, for example, lack of data to transmit.  In this   error condition, a negative acknowledgment may be needed to avoid   unnecessary retransmission of requests (Section 4.6).Burman, et al.               Standards Track                   [Page 13]

RFC 7728                    RTP Stream Pause               February 20164.6.  Request Retransmission   When the stream is not affected as expected by a PAUSE or RESUME   request, the request may have been lost and the sender of the request   will need to retransmit it.  The retransmission should take the   round-trip time into account, and will also need to take the normal   RTCP bandwidth and timing rules applicable to the RTP session into   account, when scheduling retransmission of feedback.   When it comes to resume requests or unsolicited paused indications   that are more time critical, the best performance may be achieved by   repeating the message as often as possible until a sufficient number   have been sent to reach a high probability of message delivery or at   an explicit indication that the message was delivered.  For resume   requests, such explicit indication can be delivery of the RTP stream   being requested to be resumed.4.7.  Sequence Numbering   A PAUSE request message will need to have a sequence number to   separate retransmissions from new requests.  A retransmission keeps   the sequence number unchanged, while it is incremented every time a   new PAUSE request is transmitted that is not a retransmission of a   previous request.   Since RESUME always takes precedence over PAUSE and is even allowed   to avoid pausing a stream, there is a need to keep strict ordering of   PAUSE and RESUME.  Thus, RESUME needs to share sequence number space   with PAUSE and implicitly reference which PAUSE it refers to.  For   the same reasons, the explicit PAUSED indication also needs to share   sequence number space with PAUSE and RESUME.4.8.  Relation to Other Solutions   A performance comparison between SIP/SDP and RTCP signaling   technologies was made and included in draft versions of this   specification.  Using SIP and SDP to carry pause and resume   information means that they will need to traverse the entire   signaling path to reach the signaling destination (either the remote   endpoint or the entity controlling the RTP Mixer) across any   signaling proxies that potentially also have to process the SDP   content to determine if they are expected to act on it.  The amount   of bandwidth required for a signaling solution based on SIP/SDP is in   the order of at least 10 times more than an RTCP-based solution.   Especially for a UA sitting on mobile wireless access, this will risk   introducing delays that are too long (Section 4.1) to provide a good   user experience, and the bandwidth cost may also be considered   infeasible compared to an RTCP-based solution.  RTCP data sentBurman, et al.               Standards Track                   [Page 14]

RFC 7728                    RTP Stream Pause               February 2016   through the media path, which is likely shorter (contains fewer   intermediate nodes) than the signaling path, may have to traverse a   few intermediate nodes anyway.  The amount of processing and   buffering required in intermediate nodes to forward those RTCP   messages is, however, believed to be significantly less than for   intermediate nodes in the signaling path.  Based on those   considerations, RTCP is chosen as the signaling protocol for the   pause and resume functionality.5.  Solution Overview   The proposed solution implements pause and resume functionality based   on sending AVPF RTCP feedback messages from any RTP session   participant that wants to pause or resume a stream targeted at the   stream sender, as identified by the sender SSRC.   This solution reuses CCM TMMBR and TMMBN [RFC5104] to the extent   possible and defines a small set of new RTCP feedback messages where   new semantics is needed.   A single feedback message specification is used to implement the new   messages.  The message consists of a number of Feedback Control   Information (FCI) blocks, where each block can be a PAUSE request, a   RESUME request, a PAUSED indication, a REFUSED notification, or an   extension to this specification.  This structure allows a single   feedback message to handle pause functionality on a number of   streams.   The PAUSED functionality is also defined in such a way that it can be   used as a standalone by the RTP stream sender to indicate a local   decision to pause, and it can inform any receiver of the fact that   halting media delivery is deliberate and which RTP packet was the   last transmitted.   Special considerations that apply when using TMMBR/TMMBN for pause   and resume purposes are described inSection 5.6.  This specification   applies to both the new messages defined herein as well as their   TMMBR/TMMBN counterparts, except when explicitly stated otherwise.   An obvious exception is any reference to the message parameters that   are only available in the messages defined here.  For example, any   reference to PAUSE in the text below is equally applicable to   TMMBR 0, and any reference to PAUSED is equally applicable to TMMBN   0.  Therefore, and for brevity, TMMBR/TMMBN will not be mentioned in   the text, unless there is specific reason to do so.   This section is intended to be explanatory and therefore   intentionally contains no mandatory statements.  Such statements can   instead be found in other parts of this specification.Burman, et al.               Standards Track                   [Page 15]

RFC 7728                    RTP Stream Pause               February 20165.1.  Expressing Capability   An endpoint can use an extension to CCM SDP signaling to declare   capability to understand the messages defined in this specification.   Capability to understand only a subset of messages is possible, to   support partial implementation, which is specifically believed to be   feasible for the 'RTP Mixer to Media Sender' use case (Section 3.2).   In that use case, only the RTP Mixer has capability to request the   media sender to pause or resume.  Consequently, in that same use   case, only the media sender has capability to pause and resume its   sent streams based on requests from the RTP Mixer.  Allowing for   partial implementation of this specification is not believed to   hamper interoperability, as long as the subsets are well defined and   describe a consistent functionality, including a description of how a   more capable implementation must perform fallback.   For the case when TMMBR/TMMBN are used for pause and resume purposes,   it is possible to explicitly express joint support for TMMBR and   TMMBN, but not for TMMBN only.5.2.  PauseID   All messages defined in this specification (Section 8) contain a   PauseID, satisfying the design consideration on sequence numbering   (Section 4.7).  This PauseID is scoped by and thus a property of the   targeted RTP stream (SSRC) and is not only a sequence number for   individual messages.  Instead, it numbers an entire "pause and resume   operation" for the RTP stream, typically keeping PauseID constant for   multiple, related messages.  The PauseID value used during such   operation is called the current PauseID.  A new "pause and resume   operation" is defined to start when the RTP stream sender resumes the   RTP stream after it was being paused.  The current PauseID is then   incremented by one in modulo arithmetic.  In the subsequent   descriptions below, it is sometimes necessary to refer to PauseID   values that were already used as the current PauseID, which is   denoted as the past PauseID.  It should be noted that since PauseID   uses modulo arithmetic, a past PauseID may have a larger value than   the current PauseID.  Since PauseID uses modulo arithmetic, it is   also useful to define what PauseID values are considered "past" to   clearly separate it from what could be considered "future" PauseID   values.  Half of the entire PauseID value range is chosen to   represent a past PauseID, while a quarter of the PauseID value range   is chosen to represent future values.  The remaining quarter of the   PauseID value range is intentionally left undefined in that respect.Burman, et al.               Standards Track                   [Page 16]

RFC 7728                    RTP Stream Pause               February 20165.3.  Requesting to Pause   An RTP stream receiver can choose to send a PAUSE request at any   time, subject to AVPF timing rules.   The PAUSE request contains the current PauseID (Section 5.2).   When a non-paused RTP stream sender receives the PAUSE request, it   continues to send the RTP stream while waiting for some time to allow   other RTP stream receivers in the same RTP session that saw this   PAUSE request to disapprove by sending a RESUME (Section 5.5) for the   same stream and with the same current PauseID as in the PAUSE being   disapproved.  If such a disapproving RESUME arrives at the RTP stream   sender during the hold-off period before the stream is paused, the   pause is not performed.  In point-to-point configurations, the hold-   off period may be set to zero.  Using a hold-off period of zero is   also appropriate when using TMMBR 0 and is in line with the semantics   for that message.   If the RTP stream sender receives further PAUSE requests with the   current PauseID while waiting as described above, those additional   requests are ignored.   If the PAUSE request is lost before it reaches the RTP stream sender,   it will be discovered by the RTP stream receiver because it continues   to receive the RTP stream.  It will also not see any PAUSED   indication (Section 5.4) for the stream.  The same condition can be   caused by the RTP stream sender having received a disapproving RESUME   from stream receiver A for a PAUSE request sent by stream sender B,   except that the PAUSE sender (B) did not receive the RESUME (from A)   and may instead think that the PAUSE was lost.  In both cases, a   PAUSE request can be retransmitted using the same current PauseID.   If using TMMBR 0, the request MAY be retransmitted when the requester   fails to receive a TMMBN 0 confirmation.   If the pending stream pause is aborted due to a disapproving RESUME,   the pause and resume operation for that PauseID is concluded, the   current PauseID is updated, and any new PAUSE must therefore use the   new current PauseID to be effective.   An RTP stream sender receiving a PAUSE not using the current PauseID   informs the RTP stream receiver sending the ineffective PAUSE of this   condition by sending a REFUSED notification that contains the current   PauseID value.   A situation where an ineffective PauseID is chosen can appear when a   new RTP stream receiver joins a session and wants to PAUSE a stream   but does not yet know the current PauseID to use.  The REFUSEDBurman, et al.               Standards Track                   [Page 17]

RFC 7728                    RTP Stream Pause               February 2016   notification will then provide sufficient information to create a   valid PAUSE.  The required extra signaling round trip is not   considered harmful, since it is assumed that pausing a stream is not   time critical (Section 4.1).   There may be local considerations making it impossible or infeasible   to pause the stream, and the RTP stream sender can then respond with   a REFUSED.  In this case, if the used current PauseID would otherwise   have been effective, REFUSED contains the same current PauseID as in   the PAUSE request.  Note that when using TMMBR 0 as PAUSE, that   request cannot be refused (TMMBN > 0) due to the existing restriction   inSection 4.2.2.2 of [RFC5104] that TMMBN shall contain the current   bounding set, and the fact that a TMMBR 0 will always be the most   restrictive point in any bounding set, regardless of the bounding set   overhead value.   If the RTP stream sender receives several identical PAUSE requests   for an RTP stream that was already responded to at least once with   REFUSED and the condition causing REFUSED remains, those additional   REFUSED notifications should be sent with regular RTCP timing.  A   single REFUSED can respond to several identical PAUSE requests.5.4.  Media Sender Pausing   An RTP stream sender can choose to pause the stream at any time.   This can be either a result of receiving a PAUSE or based on some   local sender consideration.  When it does, it sends a PAUSED   indication, containing the current PauseID.  Note that the current   PauseID in an unsolicited PAUSED (without having received a PAUSE) is   incremented compared to a previously sent PAUSED.  It also sends the   PAUSED indication in the next two regular RTCP reports, given that   the pause condition is then still effective.   There is no reply to a PAUSED indication; it is simply an explicit   indication of the fact that an RTP stream is paused.  This can be   helpful for the RTP stream receiver, for example, to quickly   understand that transmission is deliberately and temporarily   suspended and no specific corrective action is needed.   The RTP stream sender may want to apply some local consideration to   exactly when the RTP stream is paused, for example, completing some   media unit or a forward error correction block, before pausing the   stream.   The PAUSED indication also contains information about the RTP   extended highest sequence number when the pause became effective.   This provides RTP stream receivers with firsthand information that   allows them to know whether they lost any packets just before theBurman, et al.               Standards Track                   [Page 18]

RFC 7728                    RTP Stream Pause               February 2016   stream paused or when the stream is resumed again.  This allows RTP   stream receivers to quickly and safely take into account that the   stream is paused in, for example, retransmission or congestion   control algorithms.   If the RTP stream sender receives PAUSE requests with the current   PauseID while the stream is already paused, those requests are   ignored.   As long as the stream is being paused, the PAUSED indication MAY be   sent together with any regular RTCP Sender Report (SR) or Receiver   Report (RR).  Including PAUSED in this way allows RTP stream   receivers to join while the stream is paused and to quickly know that   there is a paused stream, what the last sent extended RTP sequence   number is, and what the current PauseID is, which enables them to   construct valid PAUSE and RESUME requests at a later stage.   When the RTP stream sender learns that a new endpoint has joined the   RTP session, for example, by a new SSRC and a CNAME that was not   previously seen in the RTP session, it should send PAUSED indications   for all its paused streams at its earliest opportunity.  In addition,   it should continue to include PAUSED indications in at least two   regular RTCP reports.5.5.  Requesting to Resume   An RTP stream receiver can request the RTP stream sender to resume a   stream with a RESUME request at any time, subject to AVPF timing   rules.  The RTP stream receiver must include the current PauseID in   the RESUME request for it to be effective.   A pausing RTP stream sender that receives a RESUME including the   current PauseID resumes the stream at the earliest opportunity.   Receiving RESUME requests for a stream that is not paused does not   require any action and can be ignored.   There may be local considerations at the RTP stream sender, for   example, that the media device is not ready, making it temporarily   impossible to resume the stream at that point in time, and the RTP   stream sender can then respond with a REFUSED containing the current   PauseID.  When receiving such REFUSED with a current PauseID   identical to the one in the sent RESUME, RTP stream receivers should   avoid sending further RESUME requests for some reasonable amount of   time to allow the condition to clear.  An RTP stream sender having   sent a REFUSED SHOULD resume the stream through local considerations   (see below) when the condition that caused the REFUSED is no longer   true.Burman, et al.               Standards Track                   [Page 19]

RFC 7728                    RTP Stream Pause               February 2016   If the RTP stream sender receives several identical RESUME requests   for an RTP stream that was already at least once responded to with   REFUSED and the condition causing REFUSED remains, those additional   REFUSED notifications should be sent with regular RTCP timing.  A   single REFUSED can respond to several identical RESUME requests.   A pausing RTP stream sender can apply local considerations and can   resume a paused RTP stream at any time.  If TMMBR 0 was used to pause   the RTP stream, resumption is prevented by protocol, even if the RTP   sender would like to resume due to local considerations.  If TMMBR/   TMMBN signaling is used, the RTP stream is paused due to local   considerations (Section 5.4), and the RTP stream sender thus owns the   TMMBN bounding set, the RTP stream can be resumed due to local   considerations.   When resuming a paused stream, especially for media that makes use of   temporal redundancy between samples such as video, it may not be   appropriate to use such temporal dependency in the encoding between   samples taken before the pause and at the time instant the stream is   resumed.  Should such temporal dependency between media samples   before and after the media was paused be used by the RTP stream   sender, it requires the RTP stream receiver to have saved the samples   from before the pause for successful continued decoding when   resuming.  The use of this temporal dependency of media samples from   before the pause is left up to the RTP stream sender.  If temporal   dependency on samples from before the pause is not used when the RTP   stream is resumed, the first encoded sample after the pause will not   contain any temporal dependency on samples before the pause (for   video it may be a so-called intra picture).  If temporal dependency   on samples from before the pause is used by the RTP stream sender   when resuming, and if the RTP stream receiver did not save any sample   from before the pause, the RTP stream receiver can use a FIR request   [RFC5104] to explicitly ask for a sample without temporal dependency   (for video a so-called intra picture), even at the same time as   sending the RESUME.5.6.  TMMBR/TMMBN Considerations   As stated above, TMMBR/TMMBN may be used to provide pause and resume   functionality for the point-to-point case.  If the topology is not   point to point, TMMBR/TMMBN cannot safely be used for pause or   resume.  This use is expected to be mainly for interworking with   implementations that don't support the messages defined in this   specification (Section 8) but make use of TMMBR/TMMBN to achieve a   similar effect.Burman, et al.               Standards Track                   [Page 20]

RFC 7728                    RTP Stream Pause               February 2016   This is a brief summary of what functionality is provided when using   TMMBR/TMMBN:   TMMBR 0:  Corresponds to PAUSE, without the requirement for any hold-      off period to wait for RESUME before pausing the RTP stream.   TMMBR > 0:  Corresponds to RESUME when the RTP stream was previously      paused with TMMBR 0.  Since there is only a single RTP stream      receiver, there is no need for the RTP stream sender to delay      resuming the stream until after sending TMMBN > 0 or to apply the      hold-off period specified in [RFC5104] before increasing the      bitrate from zero.  The bitrate value used when resuming after      pausing with TMMBR 0 is either according to known limitations or      based on starting a stream with the configured maximum for the      stream or session, for example, given by "b=" line in SDP.   TMMBN 0:  Corresponds to PAUSED when the RTP stream was paused with      TMMBR 0 but may, just as PAUSED, also be used unsolicited.  An      unsolicited RTP stream pause based on local sender considerations      uses the RTP stream's own SSRC as the TMMBR restriction owner in      the TMMBN message bounding set.  It also corresponds to a REFUSED      notification when a stream is requested to be resumed with      TMMBR > 0, thus resulting in the stream sender becoming the owner      of the bounding set in the TMMBN message.   TMMBN > 0:  Cannot be used as a REFUSED notification when a stream is      requested to be paused with TMMBR 0, for reasons stated inSection 5.3.Burman, et al.               Standards Track                   [Page 21]

RFC 7728                    RTP Stream Pause               February 20166.  Participant States   This document introduces three new states for a stream in an RTP   sender, according to the figure and subsections below.  Any   references to PAUSE, PAUSED, RESUME, and REFUSED in this section   SHALL be taken to apply to the extent possible also when TMMBR/TMMBN   are used (Section 5.6) for this functionality.         +------------------------------------------------------+         |                     Received RESUME                  |         v                                                      |    +---------+ Received PAUSE  +---------+ Hold-off period +--------+    | Playing |---------------->| Pausing |---------------->| Paused |    |         |<----------------|         |                 |        |    +---------+ Received RESUME +---------+                 +--------+      ^     |                        | PAUSE decision           |      |     |                        v                          |      |     |  PAUSE decision   +---------+    PAUSE decision   |      |     +------------------>| Local   |<--------------------+      +-------------------------| Paused  |              RESUME decision   +---------+                   Figure 4: RTP Pause States in Sender6.1.  Playing State   This state is not new but is the normal media sending state from   [RFC3550].  When entering the state, the current PauseID MUST be   incremented by one in modulo arithmetic.  The RTP sequence number for   the first packet sent after a pause SHALL be incremented by one   compared to the highest RTP sequence number sent before the pause.   The first RTP timestamp for the first packet sent after a pause   SHOULD be set according to capture times at the source, meaning the   RTP timestamp difference compared to before the pause reflects the   time the RTP stream was paused.6.2.  Pausing State   In this state, the RTP stream sender has received at least one PAUSE   message for the stream in question.  The RTP stream sender SHALL wait   during a hold-off period for the possible reception of RESUME   messages for the RTP stream being paused before actually pausing RTP   stream transmission.  The hold-off period to wait SHALL be long   enough to allow another RTP stream receiver to respond to the PAUSE   with a RESUME, if it determines that it would not like to see the   stream paused.  This hold-off period is determined by the formula:      2 * RTT + T_dither_max,Burman, et al.               Standards Track                   [Page 22]

RFC 7728                    RTP Stream Pause               February 2016   where RTT is the longest round trip known to the RTP stream sender   and T_dither_max is defined inSection 3.4 of [RFC4585].  The hold-   off period MAY be set to 0 by some signaling (Section 9) means when   it can be determined that there is only a single receiver, for   example, in point to point or some unicast situations.   If the RTP stream sender has set the hold-off period to 0 and   receives information that it was an incorrect decision and that there   are in fact several receivers of the stream, it MUST change the hold-   off period to be based on the above formula instead.   An RTP stream sender SHOULD use the following criteria to determine   if there is only a single receiver, unless it has explicit and more   reliable information:   o  Observing only a single CNAME across all received SSRCs (CNAMEs      for received CSRCs are insignificant), or   o  If RTCP reporting groups [MULTI-STREAM-OPT] is used, observing      only a single, endpoint external RTCP reporting group.6.3.  Paused State   An RTP stream is in paused state when the sender pauses its   transmission after receiving at least one PAUSE message and the hold-   off period has passed without receiving any RESUME message for that   stream.  Pausing transmission SHOULD only be done when reaching an   appropriate place to pause in the stream, like a media boundary that   avoids a media receiver to trigger repair or concealment actions.   When entering the state, the RTP stream sender SHALL send a PAUSED   indication to all known RTP stream receivers, and SHALL also repeat   PAUSED in the next two regular RTCP reports, as long as it is then   still in paused state.   Pausing an RTP stream MUST NOT affect the sending of RTP keepalive   [RFC6263][RFC5245] applicable to that RTP stream.   The following subsections discuss some potential issues when an RTP   sender goes into paused state.  These conditions are also valid if an   RTP Translator is used in the communication.  When an RTP Mixer   implementing this specification is involved between the participants   (which forwards the stream by marking the RTP data with its own   SSRC), it SHALL be a responsibility of the Mixer to control sending   PAUSE and RESUME requests to the sender.  The below conditions also   apply to the sender and receiver parts of the RTP Mixer,   respectively.Burman, et al.               Standards Track                   [Page 23]

RFC 7728                    RTP Stream Pause               February 20166.3.1.  RTCP BYE Message   When a participant leaves the RTP session, it sends an RTCP BYE   message.  In addition to the semantics described in Sections6.3.4   and 6.3.7 of RTP [RFC3550], the following two conditions MUST also be   considered when an RTP participant sends an RTCP BYE message:   o  If a paused sender sends an RTCP BYE message, receivers observing      this SHALL NOT send further PAUSE or RESUME requests to it.   o  Since a sender pauses its transmission on receiving the PAUSE      requests from any receiver in a session, the sender MUST keep      record of which receiver caused the RTP stream to pause.  If that      receiver sends an RTCP BYE message observed by the sender, the      sender SHALL resume the RTP stream.  No receivers that were in the      RTP session when the stream was paused objected that the stream      was paused, but if there were so far undetected receivers added to      the session during pause, those may not have learned about the      existence of the paused stream because either there was no PAUSED      sent for the paused RTP stream or those receivers did not support      PAUSED.  Resuming the stream when the pausing party leaves the RTP      session allows those potentially undetected receivers to learn      that the stream exists.6.3.2.  SSRC Time-OutSection 6.3.5 in RTP [RFC3550] describes the SSRC time-out of an RTP   participant.  Every RTP participant maintains a sender and receiver   list in a session.  If a participant does not get any RTP or RTCP   packets from some other participant for the last five RTCP reporting   intervals, it removes that participant from the receiver list.  Any   streams that were paused by that removed participant SSRC SHALL be   resumed.6.4.  Local Paused State   This state can be entered at any time, based on local decision from   the RTP stream sender.  Pausing transmission SHOULD only be done when   reaching an appropriate place to pause in the stream, like a media   boundary that avoids a media receiver to trigger repair or   concealment actions.   As with paused state (Section 6.3), the RTP stream sender SHALL send   a PAUSED indication to all known RTP stream receivers, when entering   the state, unless the stream was already in paused state   (Section 6.3).  Such PAUSED indication SHALL be repeated a sufficientBurman, et al.               Standards Track                   [Page 24]

RFC 7728                    RTP Stream Pause               February 2016   number of times to reach a high probability that the message is   correctly delivered, stopping such repetition whenever leaving the   state.   When using TMMBN 0 as a PAUSED indication and when already in paused   state, the actions when entering local paused state depends on the   bounding set overhead value in the received TMMBR 0 that caused the   paused state and the bounding set overhead value used in (the RTP   stream sender's own) TMMBN 0:   TMMBN 0 overhead <= TMMBR 0 overhead:  The RTP stream sender SHALL      NOT send any new TMMBN 0 replacing that active (more restrictive)      bounding set, even if entering local paused state.   TMMBN 0 overhead > TMMBR 0 overhead:  The RTP stream sender SHALL      send TMMBN 0 with itself in the TMMBN bounding set when entering      local paused state.   The case above, when using TMMBN 0 as a PAUSED indication, being in   local paused state, and having received a TMMBR 0 with a bounding set   overhead value greater than the value the RTP stream sender would   itself use in a TMMBN 0, requires further consideration and is for   clarity henceforth referred to as "restricted local paused state".   As indicated in Figure 4, local paused state has higher precedence   than paused state (Section 6.3), and RESUME messages alone cannot   resume a paused RTP stream as long as the local decision still   applies.  An RTP stream sender in local paused state is responsible   for leaving the state whenever the conditions that caused the   decision to enter the state no longer apply.   If the RTP stream sender is in restricted local paused state, it   cannot leave that state until the TMMBR 0 limit causing the state is   removed by a TMMBR > 0 (RESUME).  If the RTP stream sender then needs   to stay in local paused state due to local considerations, it MAY   continue pausing the RTP stream by entering local paused state and   MUST then act accordingly, including sending a TMMBN 0 with itself in   the bounding set.   Pausing an RTP stream MUST NOT affect the sending of RTP keepalive   [RFC6263][RFC5245] applicable to that RTP stream.   When leaving the local paused state, the stream state SHALL become   Playing, regardless of whether or not there were any RTP stream   receivers that sent PAUSE for that stream during the local paused   state, effectively clearing the RTP stream sender's memory for that   stream.Burman, et al.               Standards Track                   [Page 25]

RFC 7728                    RTP Stream Pause               February 20167.  Message FormatSection 6 of AVPF [RFC4585] defines three types of low-delay RTCP   feedback messages, i.e., transport-layer, payload-specific, and   application-layer feedback messages.  This document defines a new   transport-layer feedback message, which is further subtyped into   either a PAUSE request, a RESUME request, a PAUSED indication, or a   REFUSED notification.   The transport-layer feedback messages are identified by having the   RTCP payload type be RTPFB (205) as defined by AVPF [RFC4585].  This   transport-layer feedback message, containing one or more of the   subtyped messages, is henceforth referred to as the PAUSE-RESUME   message.  The specific FCI format is identified by a Feedback Message   Type (FMT) value in a common packet header for the feedback message   defined inSection 6.1 of AVPF [RFC4585].  The PAUSE-RESUME   transport-layer feedback message FCI is identified by FMT value = 9.   The Common Packet Format for feedback messages defined by AVPF   [RFC4585] is:      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |V=2|P|   FMT   |       PT      |          Length               |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                  SSRC of packet sender                        |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                  SSRC of media source                         |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     :            Feedback Control Information (FCI)                 :     :                                                               :           Figure 5: AVPF Common Feedback Message Packet Format   For the PAUSE-RESUME message defined in this memo, the following   interpretations of the packet fields apply:   FMT:  The FMT value identifying the PAUSE-RESUME FCI: 9   PT:  Payload Type = 205 (RTPFB)   Length:  As defined by AVPF, i.e., the length of this packet in      32-bit words minus one, including the header and any padding.Burman, et al.               Standards Track                   [Page 26]

RFC 7728                    RTP Stream Pause               February 2016   SSRC of packet sender:  The SSRC of the RTP session participant      sending the messages in the FCI.  Note, for endpoints that have      multiple SSRCs in an RTP session, any of its SSRCs MAY be used to      send any of the pause message types.   SSRC of media source:  Not used; SHALL be set to 0.  The FCI      identifies the SSRC the message is targeted for.   The FCI field consists of one or more PAUSE, RESUME, PAUSED, or   REFUSED messages or any future extension.  These messages have the   following FCI format:      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                           Target SSRC                         |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     | Type  |  Res  | Parameter Len |           PauseID             |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     :                         Type Specific                         :     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+       Figure 6: Syntax of FCI Entry in the PAUSE and RESUME Message   The FCI fields have the following definitions:   Target SSRC (32 bits):  For a PAUSE-RESUME message, this value is the      SSRC that the request is intended for.  For PAUSED, it MUST be the      SSRC being paused.  If pausing is the result of a PAUSE request,      the value in PAUSED is effectively the same as Target SSRC in a      related PAUSE request.  For REFUSED, it MUST be the Target SSRC of      the PAUSE or RESUME request that cannot change state.  A CSRC MUST      NOT be used as a target as the interpretation of such a request is      unclear.   Type (4 bits):  The pause feedback type.  The values defined in this      specification are as follows:      0: PAUSE request message.      1: RESUME request message.      2: PAUSED indication message.      3: REFUSED notification message.Burman, et al.               Standards Track                   [Page 27]

RFC 7728                    RTP Stream Pause               February 2016      4-15:  Reserved for future use.  FCI fields with these Type values         SHALL be ignored on reception by receivers and MUST NOT be used         by senders implementing this specification.   Res: (4 bits):  Type Specific reserved.  It SHALL be ignored by      receivers implementing this specification and MUST be set to 0 by      senders implementing this specification.   Parameter Len (8 bits):  Length of the Type Specific field in 32-bit      words.  MAY be 0.   PauseID (16 bits):  Message sequence identification, as described inSection 5.2.  SHALL be incremented by one modulo 2^16 for each new      PAUSE message, unless the message is retransmitted.  The initial      value SHOULD be 0.  The PauseID is scoped by the Target SSRC,      meaning that PAUSE, RESUME, and PAUSED messages therefore share      the same PauseID space for a specific Target SSRC.   Type Specific (variable):  Defined per pause feedback type.  MAY be      empty.  A receiver implementing this specification MUST be able to      skip and ignore any unknown Type Specific data, even for Type      values defined in this specification.8.  Message Details   This section contains detailed explanations of each message defined   in this specification.  All transmissions of requests and indications   are governed by the transmission rules as defined bySection 8.5.   Any references to PAUSE, PAUSED, RESUME, and REFUSED in this section   SHALL be taken to apply to the extent possible and also when TMMBR/   TMMBN are used (Section 5.6) for this functionality.  TMMBR/TMMBN MAY   be used instead of the messages defined in this specification when   the effective topology is point to point.  This use is expected to be   mainly for interworking with implementations that don't support the   messages defined in this specification but make use of TMMBR/TMMBN to   achieve a similar effect.  If either sender or receiver learns that   the topology is not point to point, TMMBR/TMMBN MUST NOT be used for   pause/resume functionality.  If the messages defined in this   specification are supported in addition to TMMBR/TMMBN by all   involved parties, pause/resume signaling MUST use messages from this   specification.  If the topology is not point to point and the   messages defined in this specification are not supported, pause/   resume functionality with TMMBR/TMMBN MUST NOT be used.   For the scope of this specification, a past PauseID (Section 5.2) is   defined as having a value between and including (PauseID - 2^15) MOD   2^16 and (PauseID - 1) MOD 2^16, where "MOD" is the modulo operator.Burman, et al.               Standards Track                   [Page 28]

RFC 7728                    RTP Stream Pause               February 2016   Similarly, a future PauseID is defined as having a value between and   including (PauseID + 1) MOD 2^16 and (PauseID + 2^14) MOD 2^16.  It   is intentional that future PauseID is not defined as the entire range   outside that of past PauseID.  The remaining range of PauseID is   simply "not current".8.1.  PAUSE   An RTP stream receiver MAY schedule PAUSE for transmission at any   time.   PAUSE has no defined Type Specific parameters.   PauseID SHOULD be the current PauseID, as indicated by PAUSED   (Section 8.2), REFUSED (Section 8.4), or implicitly determined by   previously received PAUSE or RESUME (Section 8.3) requests.  A   randomly chosen PauseID MAY be used if it was not possible to   retrieve current PauseID information, in which case the PAUSE will   either succeed or the current PauseID can be found in the returned   REFUSED (Section 8.4).   It can be noted that as a result of what is described inSection 6.1,   PauseID is incremented by one, in modulo arithmetic, for each PAUSE   request that is not a retransmission, compared to what was used in   the last PAUSED indication sent by the media sender.  PauseID in the   message is supposed to match current PauseID at the RTP stream   sender.   If an RTP stream receiver that sent a PAUSE with a certain PauseID   for a Target SSRC receives a RESUME or a REFUSED with the same   PauseID for the same Target SSRC, it is RECOMMENDED that it refrains   from scheduling further PAUSE requests for some appropriate time.   This is because the RESUME indicates that there are other receivers   that still wish to receive the stream, and the REFUSED indicates that   the RTP stream sender is currently not able to pause the stream.   What is an appropriate time can vary from application to application   and will also depend on the importance of achieving the bandwidth   saving, but 2-5 regular RTCP intervals is expected to be appropriate.   If the targeted RTP stream does not pause, if no PAUSED indication   with a future PauseID compared to the one used in PAUSE is received,   and if no REFUSED with the current or a future PauseID is received   within 2 * RTT + T_dither_max, the PAUSE MAY be scheduled for   retransmission, using the same current PauseID.  RTT is the observed   round trip to the RTP stream sender, and T_dither_max is defined inSection 3.4 of [RFC4585].  An RTP stream receiver in a bi-directional   RTP communication will generally have an RTT estimate to the RTP   stream sender, e.g., from RTCP SR/RR as described inSection 6.4 ofBurman, et al.               Standards Track                   [Page 29]

RFC 7728                    RTP Stream Pause               February 2016   [RFC3550].  However, RTP stream receivers that don't send any RTP   streams will lack an RTT estimate unless they use additional   mechanisms, such as the "Receiver Reference Time Report Block" part   of RTCP XR [RFC3611].  RTP stream receivers that lack an RTT estimate   to the sender SHOULD use 500 ms as the default value.   When an RTP stream sender in playing state (Section 6.1) receives a   PAUSE with the current PauseID, and unless local considerations   currently make it impossible to pause the stream, it SHALL enter   pausing state (Section 6.2) and act accordingly.   If an RTP stream sender receives a PAUSE with the current PauseID   while in pausing, paused (Section 6.3), or local paused (Section 6.4)   states, the received PAUSE SHALL be ignored.8.2.  PAUSED   The PAUSED indication, if supported, MUST be sent whenever entering   paused state (Section 6.3) or local paused state (Section 6.4).   PauseID in the PAUSED message MUST contain the current PauseID that   can be included in a subsequent RESUME (Section 8.3).  For local   paused state, this means that PauseID in the message is the current   PauseID, just as if the RTP stream sender had sent a PAUSE to itself.   PAUSED SHALL contain a fixed-length 32-bit parameter at the start of   the Type Specific field with the extended RTP sequence number of the   last RTP packet sent before the RTP stream was paused, in the same   format as the extended highest sequence number received   (Section 6.4.1 of [RFC3550]).   After having entered paused or local paused state and thus having   sent PAUSED once, PAUSED MUST also be included in (at least) the next   two regular RTCP reports, given that the pause condition is then   still effective.   PAUSED indications MAY be retransmitted, subject to transmission   rules (Section 8.5), to increase the probability that the message   reaches the receiver in a timely fashion.  This can be especially   important when entering local paused state.  The number of   repetitions to use could be tuned to observed loss rate and desired   loss probability, for example, based on RTCP reports received from   the intended message target.   While remaining in paused or local paused states, PAUSED MAY be   included in all compound RTCP reports, as long as the negotiated RTCP   bandwidth is not exceeded.Burman, et al.               Standards Track                   [Page 30]

RFC 7728                    RTP Stream Pause               February 2016   When in paused or local paused states, whenever the RTP stream sender   learns that there are endpoints that did not previously receive the   stream, for example, by RTCP reports with an SSRC and a CNAME that   were not previously seen in the RTP session, it is RECOMMENDED to   send PAUSED at the earliest opportunity and also to include it in (at   least) the next two regular RTCP reports, given that the pause   condition is then still effective.8.3.  RESUME   An RTP stream receiver MAY schedule RESUME for transmission whenever   it wishes to resume a paused stream or disapprove a stream from being   paused.   PauseID SHOULD be the current PauseID, as indicated by PAUSED   (Section 8.2) or implicitly determined by previously received PAUSE   (Section 8.1) or RESUME requests.  A randomly chosen PauseID MAY be   used if it was not possible to retrieve current PauseID information,   in which case the RESUME will either succeed or the current PauseID   can be found in a returned REFUSED (Section 8.4).   If an RTP stream receiver that sent a RESUME with a certain PauseID   receives a REFUSED with the same PauseID, it is RECOMMENDED that it   refrains from scheduling further RESUME requests for some appropriate   time since the REFUSE indicates that it is currently not possible to   resume the stream.  What is an appropriate time can vary from   application to application and will also depend on the importance of   resuming the stream, but 1-2 regular RTCP intervals is expected to be   appropriate.   RESUME requests MAY be retransmitted, subject to transmission rules   (Section 8.5), to increase the probability that the message reaches   the receiver in a timely fashion.  The number of repetitions to use   could be tuned to observed loss rate and desired loss probability,   for example, based on RTCP reports received from the intended message   target.  Such retransmission SHOULD stop as soon as RTP packets from   the targeted stream are received or when a REFUSED with the current   PauseID for the targeted RTP stream is received.   RESUME has no defined Type Specific parameters.   When an RTP stream sender in pausing (Section 6.2), paused   (Section 6.3), or local paused state (Section 6.4) receives a RESUME   with the current PauseID, and unless local considerations currently   make it impossible to resume the stream, it SHALL enter playing state   (Section 6.1) and act accordingly.  If the RTP stream sender is   incapable of honoring a RESUME request with the current PauseID, or   if it receives a RESUME request with a PauseID that is not theBurman, et al.               Standards Track                   [Page 31]

RFC 7728                    RTP Stream Pause               February 2016   current PauseID while in paused or pausing state, the RTP stream   sender SHALL schedule a REFUSED message for transmission as specified   below.   If an RTP stream sender in playing state receives a RESUME containing   either the current PauseID or a past PauseID, the received RESUME   SHALL be ignored.8.4.  REFUSED   If an RTP stream sender receives a PAUSE (Section 8.1) or RESUME   (Section 8.3) request containing the current PauseID, where the   requested action cannot be fulfilled by the RTP stream sender due to   some local consideration, it SHALL schedule transmission of a REFUSED   notification containing the current PauseID from the rejected   request.   REFUSED has no defined Type Specific parameters.   If an RTP stream sender receives a PAUSE or RESUME request with a   PauseID that is not the current PauseID, it SHALL schedule a REFUSED   notification containing the current PauseID, except if the RTP stream   sender is in playing state and receives a RESUME with a past PauseID,   in which case the RESUME SHALL be ignored.   If several PAUSE or RESUME requests that would render identical   REFUSED notifications are received before the scheduled REFUSED is   sent, duplicate REFUSED notifications MUST NOT be scheduled for   transmission.  This effectively lets a single REFUSED respond to   several ineffective PAUSE or RESUME requests.   An RTP stream receiver that sent a PAUSE or RESUME request and   receives a REFUSED containing the same PauseID as in the request   SHOULD refrain from sending an identical request for some appropriate   time to allow the condition that caused REFUSED to clear.  For PAUSE,   an appropriate time is suggested inSection 8.1.  For RESUME, an   appropriate time is suggested inSection 8.3.   An RTP stream receiver that sent a PAUSE or RESUME request and   receives a REFUSED containing a PauseID different from the request   MAY schedule another request using the PauseID from the REFUSED   notification.8.5.  Transmission Rules   The transmission of any RTCP feedback messages defined in this   specification MUST follow the normal AVPF-defined timing rules and   depend on the session's mode of operation.Burman, et al.               Standards Track                   [Page 32]

RFC 7728                    RTP Stream Pause               February 2016   All messages defined in this specification, as well as TMMBR/TMMBN   used for pause/resume purposes (Section 5.6), can use either Regular,   Early, or Immediate timings but should make a trade-off between   timely transmission (Section 4.1) and RTCP bandwidth consumption.   This can be achieved by taking the following into consideration:   o  It is recommended that PAUSE use Early or Immediate timing, except      for retransmissions where RTCP bandwidth can motivate the use of      Regular timing.   o  The first transmission of PAUSED for each (non-wrapped) PauseID is      recommended to be sent with Immediate or Early timing to stop      unnecessary repetitions of PAUSE.  It is recommended that      subsequent transmissions of PAUSED for that PauseID use Regular      timing to avoid excessive PAUSED RTCP bandwidth caused by multiple      PAUSE requests.   o  It is recommended that unsolicited PAUSED (sent when entering      local paused state (Section 6.4)) always use Immediate or Early      timing, until PAUSED for that PauseID is considered delivered at      least once to all receivers of the paused RTP stream, to avoid RTP      stream receivers that take unnecessary corrective action when the      RTP stream is no longer received, after which it is recommended      that PAUSE uses Regular timing (as for PAUSED triggered by PAUSE      above).   o  RESUME is often time critical, and it is recommended that it      always uses Immediate or Early timing.   o  The first transmission of REFUSED for each (non-wrapped) PauseID      is recommended to be sent with Immediate or Early timing to stop      unnecessary repetitions of PAUSE or RESUME.  It is recommended      that subsequent REFUSED notifications for that PauseID use Regular      timing to avoid excessive REFUSED RTCP bandwidth caused by      multiple unreasonable requests.9.  Signaling   The capability of handling messages defined in this specification MAY   be exchanged at a higher layer such as SDP.  This document extends   the "rtcp-fb" attribute defined inSection 4 of AVPF [RFC4585] to   include the request for pause and resume.  This specification follows   all the rules defined in AVPF [RFC4585] and CCM [RFC5104] for an   "rtcp-fb" attribute relating to the payload type in a session   description.Burman, et al.               Standards Track                   [Page 33]

RFC 7728                    RTP Stream Pause               February 2016   This specification defines a new parameter "pause" to the "ccm"   feedback value defined in CCM [RFC5104], representing the capability   to understand the RTCP feedback message and all of the defined FCIs   of PAUSE, RESUME, PAUSED, and REFUSED.      Note: When TMMBR 0 / TMMBN 0 are used to implement pause and      resume functionality (with the restrictions described in this      specification), signaling the "rtcp-fb" attribute with the "ccm"      and "tmmbr" parameters is sufficient and no further signaling is      necessary.  There is, however, no guarantee that TMMBR/TMMBN      implementations predating this specification work exactly as      described here when used with a bitrate value of 0.   The "pause" parameter has two optional attributes, which are "nowait"   and "config":   o  "nowait" indicates that the hold-off period defined inSection 6.2      can be set to 0, reducing the latency before the stream can be      paused after receiving a PAUSE request.  This condition occurs      when there will only be a single receiver per direction in the RTP      session, for example, in point-to-point sessions.  It is also      possible to use in scenarios using unidirectional media.  The      conditions that allow "nowait" to be set (Section 6.2) also      indicate that it would be possible to use CCM TMMBR/TMMBN as      pause/resume signaling.   o  "config" allows for partial implementation of this specification      according to the different roles in the use-cases section      (Section 3) and takes a value that describes what subset is      implemented:      1  Full implementation of this specification.  This is the default         configuration.  A missing "config" pause attribute MUST be         treated equivalent to providing a "config" value of 1.      2  The implementation intends to send PAUSE and RESUME requests         for received RTP streams and is thus also capable of receiving         PAUSED and REFUSED.  It does not support receiving PAUSE and         RESUME requests, but it may pause sent RTP streams due to local         considerations and then intend to send PAUSED for them.      3  The implementation supports receiving PAUSE and RESUME requests         targeted for RTP streams it sends.  It will send PAUSED and         REFUSED as needed.  The node will not send any PAUSE and RESUME         requests but supports and desires receiving PAUSED if received         RTP streams are paused.Burman, et al.               Standards Track                   [Page 34]

RFC 7728                    RTP Stream Pause               February 2016      4  The implementation intends to send PAUSE and RESUME requests         for received RTP streams and is thus also capable of receiving         PAUSED and REFUSED.  It cannot pause any RTP streams it sends,         and thus does not support receiving PAUSE and RESUME requests,         and it also does not support sending PAUSED indications.      5  The implementation supports receiving PAUSE and RESUME requests         targeted for RTP streams it sends.  It will send PAUSED and         REFUSED as needed.  It does not support sending PAUSE and         RESUME requests to pause received RTP streams, and it also does         not support receiving PAUSED indications.      6  The implementation supports sent and received RTP streams being         paused due to local considerations and thus supports sending         and receiving PAUSED indications.      7  The implementation supports and desires to receive PAUSED         indications for received RTP streams but does not pause or send         PAUSED indications for sent RTP streams.  It does not support         any other messages defined in this specification.      8  The implementation supports pausing sent RTP streams and         sending PAUSED indications for them but does not support         receiving PAUSED indications for received RTP streams.  It does         not support any other messages defined in this specification.   All implementers of this specification are encouraged to include full   support for all messages ("config=1"), but it is recognized that this   is sometimes not meaningful for implementations operating in an   environment where only parts of the functionality provided by this   specification are needed.  The above defined "config" functionality   subsets provide a trade-off between completeness and the need for   implementation interoperability, achieving at least a level of   functionality corresponding to what is desired by the least-capable   party when used as specified here.  Implementing any functionality   subsets other than those defined above is NOT RECOMMENDED.   When signaling a "config" value other than 1, an implementation MUST   ignore non-supported messages on reception and SHOULD omit sending   messages not supported by the remote peer.  One example where it can   be motivated to send messages that some receivers do not support is   when there are multiple message receivers with different message   support (different "config" values).  That approach avoids letting   the least-capable receiver limit the functionality provided to   others.  The below table summarizes per-message send and receive   support for the different "config" pause attribute values ("X"   indicating support and "-" indicating non-support):Burman, et al.               Standards Track                   [Page 35]

RFC 7728                    RTP Stream Pause               February 2016     +---+-----------------------------+-----------------------------+     | # | Send                        | Receive                     |     |   | PAUSE RESUME PAUSED REFUSED | PAUSE RESUME PAUSED REFUSED |     +---+-----------------------------+-----------------------------+     | 1 |   X      X      X      X    |   X      X      X      X    |     | 2 |   X      X      X      -    |   -      -      X      X    |     | 3 |   -      -      X      X    |   X      X      X      -    |     | 4 |   X      X      -      -    |   -      -      X      X    |     | 5 |   -      -      X      X    |   X      X      -      -    |     | 6 |   -      -      X      -    |   -      -      X      -    |     | 7 |   -      -      -      -    |   -      -      X      -    |     | 8 |   -      -      X      -    |   -      -      -      -    |     +---+-----------------------------+-----------------------------+        Figure 7: Supported Messages for Different "config" Values   In the above description of partial implementations, "config" values   2 and 4 correspond to the RTP Mixer in the 'RTP Mixer to Media   Sender' use case (Section 3.2), and "config" values 3 and 5   correspond to the media sender in that same use case.  For that use   case, it should be clear that an RTP Mixer implementing only "config"   values 3 or 5 will not provide a working solution.  Similarly, for   that use case, a media sender implementing only "config" values 2 or   4 will not provide a working solution.  Both the RTP Mixer and the   media sender will of course work when implementing the full set of   messages, corresponding to "config=1".   A partial implementation is not suitable for pause/resume support   between cascaded RTP Mixers, but it would require support   corresponding to "config=1" between such RTP Mixers.  This is because   an RTP Mixer is then also a media sender towards the other RTP Mixer,   requiring support for the union of "config" values 2 and 3 or   "config" values 4 and 5, which effectively becomes "config=1".   As can be seen from Figure 7 above, "config" values 2 and 3 differ   from "config" values 4 and 5 only in that in the latter, the PAUSE/   RESUME message sender (e.g., the RTP Mixer side) does not support   local pause (Section 6.4) for any of its own streams and therefore   also does not support sending PAUSED.   Partial implementations that only support local pause functionality   can declare this capability through "config" values 6-8.   Viable fallback rules between different "config" values are described   inSection 9.1 and Figure 9.Burman, et al.               Standards Track                   [Page 36]

RFC 7728                    RTP Stream Pause               February 2016   This is the resulting ABNF [RFC5234], extending the existing ABNF inSection 7.1 of CCM [RFC5104]:   rtcp-fb-ccm-param  =/ SP "pause" *(SP pause-attr)   pause-attr         = pause-config ; partial message support                      / "nowait"     ; no hold-off period                      / byte-string  ; for future extensions   pause-config       = "config=" pause-config-value   pause-config-value = 1*2DIGIT   ; byte-string as defined inRFC 4566                              Figure 8: ABNF   An endpoint implementing this specification and using SDP to signal   capability SHOULD indicate the new "pause" parameter with "ccm"   signaling but MAY instead use existing "ccm tmmbr" signaling   [RFC5104] if the limitations in functionality when using TMMBR/TMMBN   as described in this specification (Section 5.6) are considered   acceptable.  In that case, no partial message support is possible.   The messages from this specification (Section 8) SHOULD NOT be used   towards receivers that did not declare capability to receive those   messages.   The pause functionality can normally be expected to work   independently of the payload type.  However, there might exist   situations where an endpoint needs to restrict or at least configure   the capabilities differently depending on the payload type carrying   the media stream.  Reasons for this might relate to capabilities to   correctly handle media boundaries and avoid any pause or resume   operation to occur where it would leave a receiver or decoder with no   choice than to attempt to repair or discard the media received just   prior to or at the point of resuming.   There MUST NOT be more than one "a=rtcp-fb" line with "pause"   applicable to a single payload type in the SDP, unless the additional   line uses "*" as the payload type, in which case "*" SHALL be   interpreted as applicable to all listed payload types that do not   have an explicit "pause" specification.  The "config" pause attribute   MUST NOT appear more than once for each "pause" CCM parameter.  The   "nowait" pause attribute MUST NOT appear more than once for each   "pause" CCM parameter.9.1.  Offer/Answer Use   An offerer implementing this specification needs to include the   "pause" CCM parameter with a suitable configuration attribute   ("config") in the SDP, according to what messages it intends to send   and desires to receive in the session.Burman, et al.               Standards Track                   [Page 37]

RFC 7728                    RTP Stream Pause               February 2016   In SDP offer/answer, the "config" pause attribute and its message   directions are interpreted based on the agent providing the SDP.  The   offerer is described in an offer, and the answerer is described in an   answer.   An answerer receiving an offer with a "pause" CCM line and a "config"   pause attribute with a certain value, describing a certain capability   to send and receive messages, MAY change the "config" pause attribute   value in the answer to another configuration.  The permitted answers   are listed in the below table.      SDP Offer "config" value | Permitted SDP Answer "config" values      -------------------------+-------------------------------------                   1           | 1, 2, 3, 4, 5, 6, 7, 8                   2           | 3, 4, 5, 6, 7, 8                   3           | 2, 4, 5, 6, 7, 8                   4           | 5, 6, 7, 8                   5           | 4, 6, 7, 8                   6           | 6, 7, 8                   7           | 8                   8           | 7                 Figure 9: "config" Values in Offer/Answer   An offer or answer omitting the "config" pause attribute MUST be   interpreted as equivalent to "config=1".  Implementations of this   specification MUST NOT use any "config" values other than those   defined above in an offer or answer and MUST remove the "pause" CCM   line in the answer when receiving an offer with a "config" value it   does not understand.  In all cases, the answerer MAY also completely   remove any "pause" CCM line to indicate that it does not understand   or desire to use any pause functionality for the affected payload   types.   If the offerer believes that itself and the intended answerer are   likely the only endpoints in the RTP session, it MAY include the   "nowait" pause attribute on the "pause" line in the offer.  If an   answerer receives the "nowait" pause attribute on the "pause" line in   the SDP, and if it has information that the offerer and itself are   not the only endpoints in the RTP session, it MUST NOT include any   "nowait" pause attribute on its "pause" line in the SDP answer.  The   answerer MUST NOT add "nowait" on the "pause" line in the answer   unless it is present on the "pause" line in the offer.  If both offer   and answer contain a "nowait" pause attribute, then the hold-off   period is configured to 0 at both the offerer and answerer.   Unknown pause attributes MUST be ignored in the offer and MUST then   be omitted from the answer.Burman, et al.               Standards Track                   [Page 38]

RFC 7728                    RTP Stream Pause               February 2016   If both "pause" and "tmmbr" are present in the offer, both MAY be   included also in the answer, in which case TMMBR/TMMBN MUST NOT be   used for pause/resume purposes (with a bitrate value of 0), to avoid   signaling ambiguity.9.2.  Declarative Use   In declarative use, the SDP is used to configure the node receiving   the SDP.  This has implications on the interpretation of the SDP   signaling extensions defined in this specification.   First, the "config" pause attribute and its message directions are   interpreted based on the node receiving the SDP, and it describes the   RECOMMENDED level of operation.  If the joining client does not   support the indicated "config" value, some RTP session stream   optimizations may not be possible in that some RTP streams will not   be paused by the joining client, and/or the joining client may not be   able to resume and receive wanted streams because they are paused.   Second, the "nowait" pause attribute, if included, is followed as   specified.  It is the responsibility of the declarative SDP sender to   determine if a configured node will participate in a session that   will be point to point, based on the usage.  For example, a   conference client being configured for an any source multicast   session using the Session Announcement Protocol (SAP) [RFC2974] will   not be in a point-to-point session, thus "nowait" cannot be included.   A Real-Time Streaming Protocol (RTSP) [RFC2326] client receiving a   declarative SDP may very well be in a point-to-point session,   although it is highly doubtful that an RTSP client would need to   support this specification, considering the inherent PAUSE support in   RTSP.   Unknown pause attributes MUST be ignored.   If both "pause" and "tmmbr" are present in the SDP, TMMBR/TMMBN MUST   NOT be used for pause/resume purposes (with a bitrate value of 0) to   avoid signaling ambiguity.10.  Examples   The following examples show use of PAUSE and RESUME messages,   including use of offer/answer:   1.  Offer/Answer   2.  Point-to-Point Session   3.  Point to Multipoint using MixerBurman, et al.               Standards Track                   [Page 39]

RFC 7728                    RTP Stream Pause               February 2016   4.  Point to Multipoint using Relay10.1.  Offer/Answer   The below figures contain an example of how to show support for   pausing and resuming the streams, as well as indicating whether or   not the hold-off period can be set to 0.   v=0   o=alice 3203093520 3203093520 IN IP4 alice.example.com   s=Pausing Media   t=0 0   c=IN IP4 alice.example.com   m=audio 49170 RTP/AVPF 98 99   a=rtpmap:98 G719/48000   a=rtpmap:99 PCMA/8000   a=rtcp-fb:* ccm pause nowait           Figure 10: SDP Offer with Pause and Resume Capability   The offerer supports all of the messages defined in this   specification, leaving out the optional "config" pause attribute.   The offerer also believes that it will be the sole receiver of the   answerer's stream as well as that the answerer will be the sole   receiver of the offerer's stream and thus includes the "nowait" pause   attribute for the "pause" parameter.   This is the SDP answer:   v=0   o=bob 293847192 293847192 IN IP4 bob.example.com   s=-   t=0 0   c=IN IP4 bob.example.com   m=audio 49202 RTP/AVPF 98   a=rtpmap:98 G719/48000   a=rtcp-fb:98 ccm pause config=2          Figure 11: SDP Answer with Pause and Resume Capability   The answerer will not allow its sent streams to be paused or resumed   and thus restricts the answer to indicate "config=2".  It also   supports pausing its own RTP streams due to local considerations,   which is why "config=2" is chosen rather than "config=4".  The   answerer somehow knows that it will not be a point-to-point RTP   session and has therefore removed "nowait" from the "pause" line,   meaning that the offerer must use a non-zero hold-off period when   being requested to pause the stream.Burman, et al.               Standards Track                   [Page 40]

RFC 7728                    RTP Stream Pause               February 2016   When using TMMBR 0 / TMMBN 0 to achieve pause and resume   functionality, there are no differences in SDP compared to CCM   [RFC5104]; therefore, no such examples are included here.10.2.  Point-to-Point Session   This is the most basic scenario, which involves two participants,   each acting as a sender and/or receiver.  Any RTP data receiver sends   PAUSE or RESUME messages to the sender, which pauses or resumes   transmission accordingly.  The hold-off period before pausing a   stream is 0.           +---------------+                   +---------------+           |  RTP Sender   |                   | RTP Receiver  |           +---------------+                   +---------------+                  :           t1: RTP data           :                  | -------------------------------> |                  |           t2: PAUSE(3)           |                  | <------------------------------- |                  |       < RTP data paused >        |                  |           t3: PAUSED(3)          |                  | -------------------------------> |                  :       < Some time passes >       :                  |           t4: RESUME(3)          |                  | <------------------------------- |                  |           t5: RTP data           |                  | -------------------------------> |                  :       < Some time passes >       :                  |           t6: PAUSE(4)           |                  | <------------------------------- |                  |       < RTP data paused >        |                  |           t7: PAUSED(4)          |                  | -------------------------------> |                  :                                  :          Figure 12: Pause and Resume Operation in Point to Point   Figure 12 shows the basic pause and resume operation in a   point-to-point scenario.  At time t1, an RTP sender sends data to a   receiver.  At time t2, the RTP receiver requests the sender to pause   the stream, using PauseID 3 (which it knew since before in this   example).  The sender pauses the data and replies with a PAUSED   containing the same PauseID.  Some time later (at time t4), the   receiver requests the sender to resume, which resumes its   transmission.  The next PAUSE, sent at time t6, contains an updated   PauseID (4), with a corresponding PAUSED being sent at time t7.Burman, et al.               Standards Track                   [Page 41]

RFC 7728                    RTP Stream Pause               February 2016           +---------------+                   +---------------+           |  RTP Sender   |                   | RTP Receiver  |           +---------------+                   +---------------+                  :           t1: RTP data           :                  | -------------------------------> |                  |           t2: TMMBR 0            |                  | <------------------------------- |                  |       < RTP data paused >        |                  |           t3: TMMBN 0            |                  | -------------------------------> |                  :       < Some time passes >       :                  |           t4: TMMBR 150000       |                  | <------------------------------- |                  |           t5: RTP data           |                  | -------------------------------> |                  :       < Some time passes >       :                  |           t6: TMMBR 0            |                  | <------------------------------- |                  |       < RTP data paused >        |                  |           t7: TMMBN 0            |                  | -------------------------------> |                  :                                  :            Figure 13: TMMBR Pause and Resume in Point to Point   Figure 13 describes the same point-to-point scenario as above, but   using TMMBR/TMMBN signaling.Burman, et al.               Standards Track                   [Page 42]

RFC 7728                    RTP Stream Pause               February 2016           +---------------+                 +----------------+           | RTP Sender A  |                 | RTP Receiver B |           +---------------+                 +----------------+                  :           t1: RTP data           :                  | -------------------------------> |                  |       < RTP data paused >        |                  |           t2: TMMBN {A:0}        |                  | -------------------------------> |                  :       < Some time passes >       :                  |           t3: TMMBR 0            |                  | <------------------------------- |                  |           t4: TMMBN {A:0,B:0}    |                  | -------------------------------> |                  :       < Some time passes >       :                  |           t5: TMMBN {B:0}        |                  | -------------------------------> |                  :       < Some time passes >       :                  |           t6: TMMBR 80000        |                  | <------------------------------- |                  |           t7: RTP data           |                  | -------------------------------> |                  :                                  :                 Figure 14: Unsolicited PAUSED Using TMMBN   Figure 14 describes the case when an RTP stream sender (A) chooses to   pause an RTP stream due to local considerations.  Both A and the RTP   stream receiver (B) use TMMBR/TMMBN signaling for pause/resume   purposes.  A decides to pause the RTP stream at time t2 and uses   TMMBN 0 to signal PAUSED, including itself in the TMMBN bounding set.   At time t3, despite the fact that the RTP stream is still paused, B   decides that it is no longer interested in receiving the RTP stream   and signals PAUSE by sending a TMMBR 0.  As a result of that, the   bounding set now contains both A and B, and A sends out a new TMMBN   reflecting that.  After a while, at time t5, the local considerations   that caused A to pause the RTP stream no longer apply, causing it to   remove itself from the bounding set and to send a new TMMBN   indicating this.  At time t6, B decides that it is now interested in   receiving the RTP stream again and signals RESUME by sending a TMMBR   containing a bitrate value greater than 0, causing A to resume   sending RTP data.Burman, et al.               Standards Track                   [Page 43]

RFC 7728                    RTP Stream Pause               February 2016         +---------------+                       +---------------+         |  RTP Sender   |                       | RTP Receiver  |         +---------------+                       +---------------+                :           t1: RTP data                :                | ------------------------------------> |                |                   t2: PAUSE(7), lost  |                |                   <---X-------------- |                |                                       |                |           t3: RTP data                |                | ------------------------------------> |                :                                       :                |   < Time-out, still receiving data >  |                |           t4: PAUSE(7)                |                | <------------------------------------ |                |          < RTP data paused >          |                |           t5: PAUSED(7)               |                | ------------------------------------> |                :          < Some time passes >         :                |                   t6: RESUME(7), lost |                |                   <---X-------------- |                |           t7: RESUME(7)               |                | <------------------------------------ |                |           t8: RTP data                |                | ------------------------------------> |                |           t9: RESUME(7)               |                | <------------------------------------ |                :                                       :         Figure 15: Pause and Resume Operation with Messages Lost   Figure 15 describes what happens if a PAUSE message from an RTP   stream receiver does not reach the RTP stream sender.  After sending   a PAUSE message, the RTP stream receiver waits for a time-out to   detect if the RTP stream sender has paused the data transmission or   has sent a PAUSED indication according to the rules discussed inSection 6.3.  As the PAUSE message is lost on the way (at time t2),   RTP data continues to reach to the RTP stream receiver.  When the   timer expires, the RTP stream receiver schedules a retransmission of   the PAUSE message, which is sent at time t4.  If the PAUSE message   now reaches the RTP stream sender, it pauses the RTP stream and   replies with PAUSED.   At time t6, the RTP stream receiver wishes to resume the stream again   and sends a RESUME, which is lost.  This does not cause any severe   effect, since there is no requirement to wait until further RESUME   requests are sent, and another RESUME is sent already at time t7,   which now reaches the RTP stream sender that consequently resumes the   stream at time t8.  The time interval between t6 and t7 can vary butBurman, et al.               Standards Track                   [Page 44]

RFC 7728                    RTP Stream Pause               February 2016   may, for example, be one RTCP feedback transmission interval as   determined by the AVPF rules.   The RTP stream receiver did not realize that the RTP stream was   resumed in time to stop yet another scheduled RESUME from being sent   at time t9.  This is, however, harmless since RESUME contains a past   PauseID and will be ignored by the RTP stream sender.  It will also   not cause the RTP stream to be resumed even if the stream was paused   again based on a PAUSE from some other receiver before receiving the   RESUME, since the current PauseID was updated compared to the one in   the stray RESUME, which contains a past PauseID and will be ignored   by the RTP stream sender.            +---------------+                 +---------------+            |  RTP Sender   |                 | RTP Receiver  |            +---------------+                 +---------------+                   :           t1: RTP data          :                   | ------------------------------> |                   |           t2: PAUSE(11)         |                   | <------------------------------ |                   |                                 |                   |    < Cannot pause RTP data >    |                   |           t3: REFUSED(11)       |                   | ------------------------------> |                   |                                 |                   |           t4: RTP data          |                   | ------------------------------> |                   :                                 :           Figure 16: Pause Request is Refused in Point to Point   In Figure 16, the receiver requests to pause the sender, which   refuses to pause due to some consideration local to the sender and   responds with a REFUSED message.10.3.  Point to Multipoint Using Mixer   An RTP Mixer is an intermediate node connecting different transport-   level clouds.  The Mixer receives streams from different RTP sources,   selects or combines them based on the application's needs, and   forwards the generated stream(s) to the destination.  The Mixer   typically puts its own SSRC(s) in RTP data packets instead of the   original source(s).   The Mixer keeps track of all the streams delivered to the Mixer and   how they are currently used.  In this example, Mixer (M) selects the   video stream to deliver to the RTP stream receiver (R) based on the   voice activity of the RTP stream senders (S1 and S2).  The videoBurman, et al.               Standards Track                   [Page 45]

RFC 7728                    RTP Stream Pause               February 2016   stream will be delivered to R using M's SSRC and with a CSRC   indicating the original source.   Note that PauseID is not of any significance for the example and is   therefore omitted in the description.     +-----+            +-----+            +-----+            +-----+     |  R  |            |  M  |            | S1  |            | S2  |     +-----+            +-----+            +-----+            +-----+        :                  :   t1:RTP(S1)     :                  :        |   t2:RTP(M:S1)   |<-----------------|                  |        |<-----------------|                  |                  |        |                  |   t3:RTP(S2)     |                  |        |                  |<------------------------------------|        |                  |   t4: PAUSE(S2)  |                  |        |                  |------------------------------------>|        |                  |                  |  t5: PAUSED(S2)  |        |                  |<------------------------------------|        |                  |                  | <S2:No RTP to M> |        |                  |   t6: RESUME(S2) |                  |        |                  |------------------------------------>|        |                  |                  |  t7: RTP to M    |        |                  |<------------------------------------|        |   t8:RTP(M:S2)   |                  |                  |        |<-----------------|                  |                  |        |                  |   t9:PAUSE(S1)   |                  |        |                  |----------------->|                  |        |                  |   t10:PAUSED(S1) |                  |        |                  |<-----------------|                  |        |                  | <S1:No RTP to M> |                  |        :                  :                  :                  :     Figure 17: Pause and Resume Operation for a Voice-Activated Mixer   The session starts at t1 with S1 being the most active speaker and   thus being selected as the single video stream to be delivered to R   (t2) using M's SSRC but with S1 as the CSRC (indicated after the   colon in the figure).  Then S2 joins the session at t3 and starts   delivering an RTP stream to M.  As S2 has less voice activity then   S1, M decides to pause S2 at t4 by sending S2 a PAUSE request.  At   t5, S2 acknowledges with PAUSED and at the same instant stops   delivering RTP to M.  At t6, the user at S2 starts speaking and   becomes the most active speaker and M decides to switch the video   stream to S2 and therefore quickly sends a RESUME request to S2.  At   t7, S2 has received the RESUME request and acts on it by resuming RTP   stream delivery to M.  When the RTP stream from t7 arrives at M, it   switches this RTP stream into its SSRC (M) at t8 and changes the CSRC   to S2.  As S1 now becomes unused, M issues a PAUSE request to S1 atBurman, et al.               Standards Track                   [Page 46]

RFC 7728                    RTP Stream Pause               February 2016   t9, which is acknowledged at t10 with PAUSED, and the RTP stream from   S1 stops being delivered.10.4.  Point to Multipoint Using Translator   A transport Relay in an RTP session forwards the message from one   peer to all the others.  Unlike Mixer, the Relay does not mix the   streams or change the SSRC of the messages or RTP media.  These   examples are to show that the messages defined in this specification   can be safely used also in a transport Relay case.  The parentheses   in the figures contains (Target SSRC, PauseID) information for the   messages defined in this specification.          +-------------+     +-------------+     +-------------+          |  Sender(S)  |     |    Relay    |     | Receiver(R) |          +-------------+     +-------------+     +-------------+                 : t1: RTP(S)        :                   :                 |------------------>|                   |                 |                   | t2: RTP (S)       |                 |                   |------------------>|                 |                   | t3: PAUSE(S,3)    |                 |                   |<------------------|                 | t4:PAUSE(S,3)     |                   |                 |<------------------|                   |                 : <Sender waiting for possible RESUME>  :                 |          < RTP data paused >          |                 | t5: PAUSED(S,3)   |                   |                 |------------------>|                   |                 |                   | t6: PAUSED(S,3)   |                 |                   |------------------>|                 :                   :                   :                 |                   | t7: RESUME(S,3)   |                 |                   |<------------------|                 | t8: RESUME(S,3)   |                   |                 |<------------------|                   |                 | t9: RTP (S)       |                   |                 |------------------>|                   |                 |                   | t10: RTP (S)      |                 |                   |------------------>|                 :                   :                   :   Figure 18: Pause and Resume Operation between Two Participants Using                                  a Relay   Figure 18 describes how a Relay can help the receiver (R) in pausing   and resuming the sender (S).  S sends RTP data to R through the   Relay, which just forwards the data without modifying the SSRCs.  R   sends a PAUSE request to S which, in this example, knows that thereBurman, et al.               Standards Track                   [Page 47]

RFC 7728                    RTP Stream Pause               February 2016   may be more receivers of the stream and waits a non-zero hold-off   period to see if there is any other receiver that wants to receive   the data, and when no disapproving RESUME messages are received, it   pauses itself and replies with PAUSED.  Similarly R resumes S by   sending a RESUME request through the Relay.  Since this describes   only a single pause and resume operation for a single RTP stream   sender, all messages use a single PauseID; in this example, it's   three.     +-----+            +-----+            +-----+            +-----+     |  S  |            | Rel |            | R1  |            | R2  |     +-----+            +-----+            +-----+            +-----+        : t1:RTP(S)        :                  :                  :        |----------------->|                  |                  |        |                  | t2:RTP(S)        |                  |        |                  |----------------->------------------>|        |                  | t3:PAUSE(S,7)    |                  |        |                  |<-----------------|                  |        | t4:PAUSE(S,7)    |                  |                  |        |<-----------------|------------------------------------>|        |                  |                  |   t5:RESUME(S,7) |        |                  |<------------------------------------|        | t6:RESUME(S,7)   |                  |                  |        |<-----------------|----------------->|                  |        |                  | <RTP stream continues to R1 and R2> |        |                  |                  |   t7: PAUSE(S,8) |        |                  |<------------------------------------|        | t8:PAUSE(S,8)    |                  |                  |        |<-----------------|----------------->|                  |        :                  :                  :                  :        | < Pauses RTP stream >               |                  |        | t9:PAUSED(S,8)   |                  |                  |        |----------------->|                  |                  |        |                  | t10:PAUSED(S,8)  |                  |        |                  |----------------->------------------>|        :                  :                  :                  :        |                  | t11:RESUME(S,8)  |                  |        |                  |<-----------------|                  |        | t12:RESUME(S,8)  |                  |                  |        |<-----------------|------------------------------------>|        | t13:RTP(S)       |                  |                  |        |----------------->|                  |                  |        |                  | t14:RTP(S)       |                  |        |                  |----------------->------------------>|        :                  :                  :                  :     Figure 19: Pause and Resume Operation between One Sender and Two                          Receivers through RelayBurman, et al.               Standards Track                   [Page 48]

RFC 7728                    RTP Stream Pause               February 2016   Figure 19 explains the pause and resume operations when a transport   Relay (Rel) is involved between a sender (S) and two receivers (R1   and R2) in an RTP session.  Each message exchange is represented by   the time it happens.  At time t1, S starts sending an RTP stream to   Rel, which forwards it to R1 and R2.  R1 and R2 receives RTP data   from Rel at t2.  At this point, both R1 and R2 will send RTCP   Receiver Reports to S informing that they received S's stream.   After some time (at t3), R1 chooses to pause the stream.  On   receiving the PAUSE request from R1 at t4, S knows that there is at   least one receiver that may still want to receive the data and uses a   non-zero hold-off period to wait for possible RESUME messages.  R2   did also receive the PAUSE request at time t4 and since it still   wants to receive the stream, it sends a RESUME for it at time t5,   which is forwarded to sender S by Rel.  S sees the RESUME at time t6   and continues to send data to Rel, which forwards it to both R1 and   R2.  At t7, R2 chooses to pause the stream by sending a PAUSE request   with an updated PauseID.  S still knows that there is more than one   receiver (R1 and R2) that may want the stream and again waits a non-   zero hold-off period, after which, and not having received any   disapproving RESUME messages, it concludes that the stream must be   paused.  S now stops sending the stream and replies with PAUSED to R1   and R2.  When any of the receivers (R1 or R2) choose to resume the   stream from S, in this example R1, it sends a RESUME request to S   (also seen by R2).  S immediately resumes the stream.   Consider also an RTP session that includes one or more receivers,   paused sender(s), and a Relay.  Further assume that a new participant   joins the session, which is not aware of the paused sender(s).  On   receiving knowledge about the newly joined participant, e.g., any RTP   traffic or RTCP report (i.e., either SR or RR) from the newly joined   participant, the paused sender(s) immediately sends PAUSED   indications for the paused streams since there is now a receiver in   the session that did not pause the sender(s) and may want to receive   the streams.  Having this information, the newly joined participant   has the same possibility as any other participant to resume the   paused streams.Burman, et al.               Standards Track                   [Page 49]

RFC 7728                    RTP Stream Pause               February 201611.  IANA Considerations   Per this specification, IANA has made the following registrations:   1.  A new value for media stream pause/resume has been registered in       the "FMT Values for RTPFB Payload Types" registry located at the       time of publication at: <http://www.iana.org/assignments/rtp-parameters>       Value:  9       Name:  PAUSE-RESUME       Long Name:  Media Pause/Resume       Reference:RFC 7728   2.  A new value "pause" to be registered with IANA in the "Codec       Control Messages" registry located at the time of publication at:       <http://www.iana.org/assignments/sdp-parameters>       Value Name:  pause       Long Name:  Media Pause/Resume       Usable with:  ccm       Reference:RFC 772812.  Security Considerations   This document extends CCM [RFC5104] and defines new messages, i.e.,   PAUSE, RESUME, PAUSED, and REFUSED.  The exchange of these new   messages has some security implications, which need to be addressed   by the user.   The messages defined in this specification can have a substantial   impact on the perceived media quality if used in a malicious way.   First of all, there is the risk for Denial of Service (DoS) on any   RTP session that uses the PAUSE-RESUME functionality.  By injecting   one or more PAUSE requests into the RTP session, an attacker can   potentially prevent any media from flowing, especially when the hold-   off period is zero.  The injection of PAUSE messages is quite simple,   requiring knowledge of the SSRC and the PauseID.  This information is   visible to an on-path attacker unless RTCP messages are encrypted.   Even off-path attacks are possible as signaling messages often carry   the SSRC value, while the 16-bit PauseID has to be guessed or tried.   The way of protecting the RTP session from these injections is toBurman, et al.               Standards Track                   [Page 50]

RFC 7728                    RTP Stream Pause               February 2016   perform source authentication combined with message integrity to   prevent other than intended session participants from sending these   messages.  The security solution should provide replay protection.   Otherwise, if a session is long lived enough for the PauseID value to   wrap, an attacker could replay old messages at the appropriate time   to influence the media sender state.  There exist several different   choices for securing RTP sessions to prevent this type of attack.   The Secure Real-time Transport Protocol (SRTP) is the most common,   but also other methods exist as discussed in "Options for Securing   RTP Sessions" [RFC7201].   Most of the methods for securing RTP, however, do not provide source   authentication of each individual participant in a multiparty use   case.  In case one of the session participants is malicious, it can   wreck significant havoc within the RTP session and similarly cause a   DoS on the RTP session from within.  That damage can also be   attempted to be obfuscated by having the attacker impersonate other   endpoints within the session.  These attacks can be mitigated by   using a solution that provides true source authentication of all   participants' RTCP packets.  However, that has other implications.   For multiparty sessions including a middlebox, that middlebox is   RECOMMENDED to perform checks on all forwarded RTCP packets so that   each participant only uses its set of SSRCs to prevent the attacker   from utilizing another participant's SSRCs.  An attacker that can   send a PAUSE request that does not reach any participants other than   the media sender can cause a stream to be paused without providing   opportunity for opposition.  This is mitigated in multiparty   topologies that ensure that requests are seen by all or most of the   RTP session participants, enabling these participants to send a   RESUME.  In topologies with middleboxes that consume and process   PAUSE requests, the middlebox can also mitigate such behavior as it   will commonly not generate or forward a PAUSE message if it knows of   another participant having use for the media stream.   The above text has been focused on using the PAUSE message as the   tool for malicious impact on the RTP session.  That is because of the   greater impact from denying users access to RTP media streams.  In   contrast, if an attacker attempts to use RESUME in a malicious   purpose, it will result in the media streams being delivered.   However, such an attack basically prevents the use of the pause and   resume functionality.  Thus, it potentially forces a reduction of the   media quality due to limitation in available resources, like   bandwidth that must be shared.   The session establishment signaling is also a potential venue of   attack, as that can be used to prevent the enabling of pause and   resume functionality by modifying the signaling messages.  The above   mitigation of attacks based on source authentication also requiresBurman, et al.               Standards Track                   [Page 51]

RFC 7728                    RTP Stream Pause               February 2016   the signaling system to securely handle identities and assert that   only the intended identities are allowed into the RTP session and   provided with the relevant security contexts.13.  References13.1.  Normative References   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate              Requirement Levels",BCP 14,RFC 2119,              DOI 10.17487/RFC2119, March 1997,              <http://www.rfc-editor.org/info/rfc2119>.   [RFC3264]  Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model              with Session Description Protocol (SDP)",RFC 3264,              DOI 10.17487/RFC3264, June 2002,              <http://www.rfc-editor.org/info/rfc3264>.   [RFC3550]  Schulzrinne, H., Casner, S., Frederick, R., and V.              Jacobson, "RTP: A Transport Protocol for Real-Time              Applications", STD 64,RFC 3550, DOI 10.17487/RFC3550,              July 2003, <http://www.rfc-editor.org/info/rfc3550>.   [RFC4566]  Handley, M., Jacobson, V., and C. Perkins, "SDP: Session              Description Protocol",RFC 4566, DOI 10.17487/RFC4566,              July 2006, <http://www.rfc-editor.org/info/rfc4566>.   [RFC4585]  Ott, J., Wenger, S., Sato, N., Burmeister, C., and J. Rey,              "Extended RTP Profile for Real-time Transport Control              Protocol (RTCP)-Based Feedback (RTP/AVPF)",RFC 4585,              DOI 10.17487/RFC4585, July 2006,              <http://www.rfc-editor.org/info/rfc4585>.   [RFC5104]  Wenger, S., Chandra, U., Westerlund, M., and B. Burman,              "Codec Control Messages in the RTP Audio-Visual Profile              with Feedback (AVPF)",RFC 5104, DOI 10.17487/RFC5104,              February 2008, <http://www.rfc-editor.org/info/rfc5104>.   [RFC5234]  Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax              Specifications: ABNF", STD 68,RFC 5234,              DOI 10.17487/RFC5234, January 2008,              <http://www.rfc-editor.org/info/rfc5234>.   [RFC5245]  Rosenberg, J., "Interactive Connectivity Establishment              (ICE): A Protocol for Network Address Translator (NAT)              Traversal for Offer/Answer Protocols",RFC 5245,              DOI 10.17487/RFC5245, April 2010,              <http://www.rfc-editor.org/info/rfc5245>.Burman, et al.               Standards Track                   [Page 52]

RFC 7728                    RTP Stream Pause               February 2016   [RFC6263]  Marjou, X. and A. Sollaud, "Application Mechanism for              Keeping Alive the NAT Mappings Associated with RTP / RTP              Control Protocol (RTCP) Flows",RFC 6263,              DOI 10.17487/RFC6263, June 2011,              <http://www.rfc-editor.org/info/rfc6263>.13.2.  Informative References   [MULTI-STREAM-OPT]              Lennox, J., Westerlund, M., Wu, W., and C. Perkins,              "Sending Multiple Media Streams in a Single RTP Session:              Grouping RTCP Reception Statistics and Other Feedback",              Work in Progress,draft-ietf-avtcore-rtp-multi-stream-optimisation-11, December 2015.   [RFC2326]  Schulzrinne, H., Rao, A., and R. Lanphier, "Real Time              Streaming Protocol (RTSP)",RFC 2326,              DOI 10.17487/RFC2326, April 1998,              <http://www.rfc-editor.org/info/rfc2326>.   [RFC2974]  Handley, M., Perkins, C., and E. Whelan, "Session              Announcement Protocol",RFC 2974, DOI 10.17487/RFC2974,              October 2000, <http://www.rfc-editor.org/info/rfc2974>.   [RFC3261]  Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,              A., Peterson, J., Sparks, R., Handley, M., and E.              Schooler, "SIP: Session Initiation Protocol",RFC 3261,              DOI 10.17487/RFC3261, June 2002,              <http://www.rfc-editor.org/info/rfc3261>.   [RFC3611]  Friedman, T., Ed., Caceres, R., Ed., and A. Clark, Ed.,              "RTP Control Protocol Extended Reports (RTCP XR)",RFC 3611, DOI 10.17487/RFC3611, November 2003,              <http://www.rfc-editor.org/info/rfc3611>.   [RFC6190]  Wenger, S., Wang, Y., Schierl, T., and A. Eleftheriadis,              "RTP Payload Format for Scalable Video Coding",RFC 6190,              DOI 10.17487/RFC6190, May 2011,              <http://www.rfc-editor.org/info/rfc6190>.   [RFC7201]  Westerlund, M. and C. Perkins, "Options for Securing RTP              Sessions",RFC 7201, DOI 10.17487/RFC7201, April 2014,              <http://www.rfc-editor.org/info/rfc7201>.   [RFC7478]  Holmberg, C., Hakansson, S., and G. Eriksson, "Web Real-              Time Communication Use Cases and Requirements",RFC 7478,              DOI 10.17487/RFC7478, March 2015,              <http://www.rfc-editor.org/info/rfc7478>.Burman, et al.               Standards Track                   [Page 53]

RFC 7728                    RTP Stream Pause               February 2016   [RFC7656]  Lennox, J., Gross, K., Nandakumar, S., Salgueiro, G., and              B. Burman, Ed., "A Taxonomy of Semantics and Mechanisms              for Real-Time Transport Protocol (RTP) Sources",RFC 7656,              DOI 10.17487/RFC7656, November 2015,              <http://www.rfc-editor.org/info/rfc7656>.   [RFC7667]  Westerlund, M. and S. Wenger, "RTP Topologies",RFC 7667,              DOI 10.17487/RFC7667, November 2015,              <http://www.rfc-editor.org/info/rfc7667>.   [SDP-SIMULCAST]              Burman, B., Westerlund, M., Nandakumar, S., and M. Zanaty,              "Using Simulcast in SDP and RTP Sessions", Work in              Progress,draft-ietf-mmusic-sdp-simulcast-04, February              2016.Acknowledgments   Daniel Grondal made valuable contributions during the initial   versions of this document.  The authors would also like to thank Emil   Ivov, Christian Groves, David Mandelberg, Meral Shirazipour, Spencer   Dawkins, Bernard Aboba, and Ben Campbell, who provided valuable   review comments.Contributors   Daniel Grondal contributed in the creation and writing of early   versions of this specification.  Christian Groves contributed   significantly to the SDP "config" pause attribute and its use in   offer/answer.Burman, et al.               Standards Track                   [Page 54]

RFC 7728                    RTP Stream Pause               February 2016Authors' Addresses   Bo Burman   Ericsson   Kistavagen 25   SE - 164 80 Kista   Sweden   Email: bo.burman@ericsson.com   Azam Akram   Ericsson   Farogatan 6   SE - 164 80 Kista   Sweden   Phone: +46107142658   Email: akram.muhammadazam@gmail.com   URI:   www.ericsson.com   Roni Even   Huawei Technologies   Tel Aviv   Israel   Email: roni.even@mail01.huawei.com   Magnus Westerlund   Ericsson   Farogatan 6   SE - 164 80 Kista   Sweden   Phone: +46107148287   Email: magnus.westerlund@ericsson.comBurman, et al.               Standards Track                   [Page 55]

[8]ページ先頭

©2009-2025 Movatter.jp