Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Info page]

BEST CURRENT PRACTICE
Internet Engineering Task Force (IETF)                         J. DurandRequest for Comments: 7454                           Cisco Systems, Inc.BCP: 194                                                    I. PepelnjakCategory: Best Current Practice                                      NILISSN: 2070-1721                                               G. Doering                                                                SpaceNet                                                           February 2015BGP Operations and SecurityAbstract   The Border Gateway Protocol (BGP) is the protocol almost exclusively   used in the Internet to exchange routing information between network   domains.  Due to this central nature, it is important to understand   the security measures that can and should be deployed to prevent   accidental or intentional routing disturbances.   This document describes measures to protect the BGP sessions itself   such as Time to Live (TTL), the TCP Authentication Option (TCP-AO),   and control-plane filtering.  It also describes measures to better   control the flow of routing information, using prefix filtering and   automation of prefix filters, max-prefix filtering, Autonomous System   (AS) path filtering, route flap dampening, and BGP community   scrubbing.Status of This Memo   This memo documents an Internet Best Current Practice.   This document is a product of the Internet Engineering Task Force   (IETF).  It represents the consensus of the IETF community.  It has   received public review and has been approved for publication by the   Internet Engineering Steering Group (IESG).  Further information on   BCPs is available inSection 2 of RFC 5741.   Information about the current status of this document, any errata,   and how to provide feedback on it may be obtained athttp://www.rfc-editor.org/info/rfc7454.Durand, et al.            Best Current Practice                 [Page 1]

RFC 7454                        BGP OPSEC                  February 2015Copyright Notice   Copyright (c) 2015 IETF Trust and the persons identified as the   document authors.  All rights reserved.   This document is subject toBCP 78 and the IETF Trust's Legal   Provisions Relating to IETF Documents   (http://trustee.ietf.org/license-info) in effect on the date of   publication of this document.  Please review these documents   carefully, as they describe your rights and restrictions with respect   to this document.  Code Components extracted from this document must   include Simplified BSD License text as described in Section 4.e of   the Trust Legal Provisions and are provided without warranty as   described in the Simplified BSD License.Durand, et al.            Best Current Practice                 [Page 2]

RFC 7454                        BGP OPSEC                  February 2015Table of Contents1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .41.1.  Requirements Language . . . . . . . . . . . . . . . . . .42.  Scope of the Document . . . . . . . . . . . . . . . . . . . .43.  Definitions and Acronyms  . . . . . . . . . . . . . . . . . .44.  Protection of the BGP Speaker . . . . . . . . . . . . . . . .55.  Protection of BGP Sessions  . . . . . . . . . . . . . . . . .65.1.  Protection of TCP Sessions Used by BGP  . . . . . . . . .65.2.  BGP TTL Security (GTSM) . . . . . . . . . . . . . . . . .66.  Prefix Filtering  . . . . . . . . . . . . . . . . . . . . . .76.1.  Definition of Prefix Filters  . . . . . . . . . . . . . .76.1.1.  Special-Purpose Prefixes  . . . . . . . . . . . . . .76.1.2.  Unallocated Prefixes  . . . . . . . . . . . . . . . .86.1.3.  Prefixes That Are Too Specific  . . . . . . . . . . .12       6.1.4.  Filtering Prefixes Belonging to the Local AS and               Downstreams . . . . . . . . . . . . . . . . . . . . .126.1.5.  IXP LAN Prefixes  . . . . . . . . . . . . . . . . . .126.1.6.  The Default Route . . . . . . . . . . . . . . . . . .13     6.2.  Prefix Filtering Recommendations in Full Routing Networks  146.2.1.  Filters with Internet Peers . . . . . . . . . . . . .146.2.2.  Filters with Customers  . . . . . . . . . . . . . . .166.2.3.  Filters with Upstream Providers . . . . . . . . . . .166.3.  Prefix Filtering Recommendations for Leaf Networks  . . .176.3.1.  Inbound Filtering . . . . . . . . . . . . . . . . . .176.3.2.  Outbound Filtering  . . . . . . . . . . . . . . . . .177.  BGP Route Flap Dampening  . . . . . . . . . . . . . . . . . .178.  Maximum Prefixes on a Peering . . . . . . . . . . . . . . . .189.  AS Path Filtering . . . . . . . . . . . . . . . . . . . . . .1810. Next-Hop Filtering  . . . . . . . . . . . . . . . . . . . . .2011. BGP Community Scrubbing . . . . . . . . . . . . . . . . . . .2112. Security Considerations . . . . . . . . . . . . . . . . . . .2113. References  . . . . . . . . . . . . . . . . . . . . . . . . .2113.1.  Normative References . . . . . . . . . . . . . . . . . .2113.2.  Informative References . . . . . . . . . . . . . . . . .22Appendix A.  IXP LAN Prefix Filtering - Example . . . . . . . . .25   Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .25   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .26Durand, et al.            Best Current Practice                 [Page 3]

RFC 7454                        BGP OPSEC                  February 20151.  Introduction   The Border Gateway Protocol (BGP), specified inRFC 4271 [2], is the   protocol used in the Internet to exchange routing information between   network domains.  BGP does not directly include mechanisms that   control whether the routes exchanged conform to the various   guidelines defined by the Internet community.  This document intends   to both summarize common existing guidelines and help network   administrators apply coherent BGP policies.1.1.  Requirements Language   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this   document are to be interpreted as described inRFC 2119 [1].2.  Scope of the Document   The guidelines defined in this document are intended for generic   Internet BGP peerings.  The nature of the Internet is such that   Autonomous Systems can always agree on exceptions to a common   framework for relevant local needs, and therefore configure a BGP   session in a manner that may differ from the recommendations provided   in this document.  While this is perfectly acceptable, every   configured exception might have an impact on the entire inter-domain   routing environment, and network administrators SHOULD carefully   appraise this impact before implementation.3.  Definitions and Acronyms   o  ACL: Access Control List   o  ASN: Autonomous System Number   o  IRR: Internet Routing Registry   o  IXP: Internet Exchange Point   o  LIR: Local Internet Registry   o  PMTUD: Path MTU Discovery   o  RIR: Regional Internet Registry   o  Tier 1 transit provider: an IP transit provider that can reach any      network on the Internet without purchasing transit services.   o  uRPF: Unicast Reverse Path ForwardingDurand, et al.            Best Current Practice                 [Page 4]

RFC 7454                        BGP OPSEC                  February 2015   In addition to the list above, the following terms are used with a   specific meaning.   o  Downstream: any network that is downstream; it can be a provider      or a customer network.   o  Upstream: any network that is upstream.4.  Protection of the BGP Speaker   The BGP speaker needs to be protected from attempts to subvert the   BGP session.  This protection SHOULD be achieved by an Access Control   List (ACL) that would discard all packets directed to TCP port 179 on   the local device and sourced from an address not known or permitted   to become a BGP neighbor.  Experience has shown that the natural   protection TCP should offer is not always sufficient, as it is   sometimes run in control-plane software.  In the absence of ACLs, it   is possible to attack a BGP speaker by simply sending a high volume   of connection requests to it.   If supported, an ACL specific to the control plane of the router   SHOULD be used (receive-ACL, control-plane policing, etc.), to avoid   configuration of data-plane filters for packets transiting through   the router (and therefore not reaching the control plane).  If the   hardware cannot do that, interface ACLs can be used to block packets   addressed to the local router.   Some routers automatically program such an ACL upon BGP   configuration.  On other devices, this ACL should be configured and   maintained manually or using scripts.   In addition to strict filtering, rate-limiting MAY be configured for   accepted BGP traffic.  Rate-limiting BGP traffic consists in   permitting only a certain quantity of bits per second (or packets per   second) of BGP traffic to the control plane.  This protects the BGP   router control plane in case the amount of BGP traffic surpasses   platform capabilities.   Filtering and rate-limiting of control-plane traffic is a wider topic   than "just for BGP".  (If a network administrator brings down a   router by overloading one of the other protocols remotely, BGP is   harmed as well.)  For a more detailed recommendation on how to   protect the router's control plane, seeRFC 6192 [11].Durand, et al.            Best Current Practice                 [Page 5]

RFC 7454                        BGP OPSEC                  February 20155.  Protection of BGP Sessions   Current security issues of TCP-based protocols (therefore including   BGP) have been documented inRFC 6952 [14].  The following   subsections list the major points raised in this RFC and give the   best practices related to TCP session protection for BGP operation.5.1.  Protection of TCP Sessions Used by BGP   Attacks on TCP sessions used by BGP (aka BGP sessions), for example,   sending spoofed TCP RST packets, could bring down a BGP peering.   Following a successful ARP spoofing attack (or other similar man-in-   the-middle attack), the attacker might even be able to inject packets   into the TCP stream (routing attacks).   BGP sessions can be secured with a variety of mechanisms.  MD5   protection of the TCP session header, described inRFC 2385 [7], was   the first such mechanism.  It has been obsoleted by the TCP   Authentication Option (TCP-AO;RFC 5925 [4]), which offers stronger   protection.  While MD5 is still the most used mechanism due to its   availability in vendors' equipment, TCP-AO SHOULD be preferred when   implemented.   IPsec could also be used for session protection.  At the time of   publication, there is not enough experience of the impact of using   IPsec for BGP peerings, and further analysis is required to define   guidelines.   The drawback of TCP session protection is additional configuration   and management overhead for the maintenance of authentication   information (for example, MD5 passwords).  Protection of TCP sessions   used by BGP is thus NOT REQUIRED even when peerings are established   over shared networks where spoofing can be done (like IXPs), but   operators are RECOMMENDED to consider the trade-offs and to apply TCP   session protection where appropriate.   Furthermore, network administrators SHOULD block spoofed packets   (packets with a source IP address belonging to their IP address   space) at all edges of their network (seeRFC 2827 [8] andRFC 3704   [9]).  This protects the TCP session used by Internal BGP (IBGP) from   attackers outside the Autonomous System.5.2.  BGP TTL Security (GTSM)   BGP sessions can be made harder to spoof with the Generalized TTL   Security Mechanisms (GTSM aka TTL security), defined inRFC 5082 [3].   Instead of sending TCP packets with TTL value of 1, the BGP speakers   send the TCP packets with TTL value of 255, and the receiver checksDurand, et al.            Best Current Practice                 [Page 6]

RFC 7454                        BGP OPSEC                  February 2015   that the TTL value equals 255.  Since it's impossible to send an IP   packet with TTL of 255 to an IP host that is not directly connected,   BGP TTL security effectively prevents all spoofing attacks coming   from third parties not directly connected to the same subnet as the   BGP-speaking routers.  Network administrators SHOULD implement TTL   security on directly connected BGP peerings.   GTSM could also be applied to multi-hop BGP peering as well.  To   achieve this, TTL needs to be configured with a proper value   depending on the distance between BGP speakers (using the principle   described above).  Nevertheless, it is not as effective because   anyone inside the TTL diameter could spoof the TTL.   Like MD5 protection, TTL security has to be configured on both ends   of a BGP session.6.  Prefix Filtering   The main aspect of securing BGP resides in controlling the prefixes   that are received and advertised on the BGP peerings.  Prefixes   exchanged between BGP peers are controlled with inbound and outbound   filters that can match on IP prefixes (as described in this section),   AS paths (as described inSection 9) or any other attributes of a BGP   prefix (for example, BGP communities, as described inSection 11).6.1.  Definition of Prefix Filters   This section lists the most commonly used prefix filters.  The   following sections will clarify where these filters should be   applied.6.1.1.  Special-Purpose Prefixes6.1.1.1.  IPv4 Special-Purpose Prefixes   The IANA IPv4 Special-Purpose Address Registry [23] maintains the   list of IPv4 special-purpose prefixes and their routing scope, and it   SHOULD be used for prefix-filter configuration.  Prefixes with value   "False" in column "Global" SHOULD be discarded on Internet BGP   peerings.6.1.1.2.  IPv6 Special-Purpose Prefixes   The IANA IPv6 Special-Purpose Address Registry [24] maintains the   list of IPv6 special-purpose prefixes and their routing scope, and it   SHOULD be used for prefix-filter configuration.  Only prefixes with   value "False" in column "Global" SHOULD be discarded on Internet BGP   peerings.Durand, et al.            Best Current Practice                 [Page 7]

RFC 7454                        BGP OPSEC                  February 20156.1.2.  Unallocated Prefixes   IANA allocates prefixes to RIRs that in turn allocate prefixes to   LIRs (Local Internet Registries).  It is wise not to accept routing   table prefixes that are not allocated by IANA and/or RIRs.  This   section details the options for building a list of allocated prefixes   at every level.  It is important to understand that filtering   unallocated prefixes requires constant updates, as prefixes are   continually allocated.  Therefore, automation of such prefix filters   is key for the success of this approach.  Network administrators   SHOULD NOT consider solutions described in this section if they are   not capable of maintaining updated prefix filters: the damage would   probably be worse than the intended security policy.6.1.2.1.  IANA-Allocated Prefix Filters   IANA has allocated all the IPv4 available space.  Therefore, there is   no reason why network administrators would keep checking that   prefixes they receive from BGP peers are in the IANA-allocated IPv4   address space [25].  No specific filters need to be put in place by   administrators who want to make sure that IPv4 prefixes they receive   in BGP updates have been allocated by IANA.   For IPv6, given the size of the address space, it can be seen as wise   to accept only prefixes derived from those allocated by IANA.   Administrators can dynamically build this list from the IANA-   allocated IPv6 space [26].  As IANA keeps allocating prefixes to   RIRs, the aforementioned list should be checked regularly against   changes, and if they occur, prefix filters should be computed and   pushed on network devices.  The list could also be pulled directly by   routers when they implement such mechanisms.  As there is delay   between the time a RIR receives a new prefix and the moment it starts   allocating portions of it to its LIRs, there is no need for doing   this step quickly and frequently.  However, network administrators   SHOULD ensure that all IPv6 prefix filters are updated within a   maximum of one month after any change in the list of IPv6 prefixes   allocated by IANA.   If the process in place (whether manual or automatic) cannot   guarantee that the list is updated regularly, then it's better not to   configure any filters based on allocated networks.  The IPv4   experience has shown that many network operators implemented filters   for prefixes not allocated by IANA but did not update them on a   regular basis.  This created problems for the latest allocations, and   required extra work for RIRs that had to "de-bogonize" the newly   allocated prefixes.  (See [18] for information on de-bogonizing.)Durand, et al.            Best Current Practice                 [Page 8]

RFC 7454                        BGP OPSEC                  February 20156.1.2.2.  RIR-Allocated Prefix Filters   A more precise check can be performed when one would like to make   sure that prefixes they receive are being originated or transited by   Autonomous Systems (ASes) entitled to do so.  It has been observed in   the past that an AS could easily advertise someone else's prefix (or   more specific prefixes) and create black holes or security threats.   To partially mitigate this risk, administrators would need to make   sure BGP advertisements correspond to information located in the   existing registries.  At this stage, two options can be considered:   short- and long-term options.  They are described in the following   subsections.6.1.2.2.1.  Prefix Filters Created from Internet Routing Registries            (IRRs)   An Internet Routing Registry (IRR) is a database containing Internet   routing information, described using Routing Policy Specification   Language objects as described inRFC 4012 [10].  Network   administrators are given privileges to describe routing policies of   their own networks in the IRR, and that information is published,   usually publicly.  A majority of Regional Internet Registries do also   operate an IRR and can control whether registered routes conform to   the prefixes that are allocated or directly assigned.  However, it   should be noted that the list of such prefixes is not necessarily a   complete list, and as such the list of routes in an IRR is not the   same as the set of RIR-allocated prefixes.   It is possible to use the IRR information to build, for a given   neighbor AS, a list of originated or transited prefixes that one may   accept.  This can be done relatively easily using scripts and   existing tools capable of retrieving this information from the   registries.  This approach is exactly the same for both IPv4 and   IPv6.   The macro-algorithm for the script is as follows.  For the peer that   is considered, the distant network administrator has provided the AS   and may be able to provide an AS-SET object (aka AS-MACRO).  An   AS-SET is an object that contains AS numbers or other AS-SETs.  An   operator may create an AS-SET defining all the AS numbers of its   customers.  A Tier 1 transit provider might create an AS-SET   describing the AS-SET of connected operators, which in turn describe   the AS numbers of their customers.  Using recursion, it is possible   to retrieve from an AS-SET the complete list of AS numbers that the   peer is likely to announce.  For each of these AS numbers, it is also   easy to look in the corresponding IRR for all associated prefixes.   With these two mechanisms, a script can build, for a given peer, theDurand, et al.            Best Current Practice                 [Page 9]

RFC 7454                        BGP OPSEC                  February 2015   list of allowed prefixes and the AS number from which they should be   originated.  One could decide not use the origin information and only   build monolithic prefix filters from fetched data.   As prefixes, AS numbers, and AS-SETs may not all be under the same   RIR authority, it is difficult to choose for each object the   appropriate IRR to poll.  Some IRRs have been created and are not   restricted to a given region or authoritative RIR.  They allow RIRs   to publish information contained in their IRR in a common place.   They also make it possible for any subscriber (probably under   contract) to publish information too.  When doing requests inside   such an IRR, it is possible to specify the source of information in   order to have the most reliable data.  One could check a popular IRR   containing many sources (such as RADb [27], the Routing Assets   Database) and only select as sources some desired RIRs and trusted   major ISPs (Internet Service Providers).   As objects in IRRs may frequently vary over time, it is important   that prefix filters computed using this mechanism are refreshed   regularly.  Refreshing the filters on a daily basis SHOULD be   considered because routing changes must sometimes be done in an   emergency and registries may be updated at the very last moment.   Note that this approach significantly increases the complexity of the   router configurations, as it can quickly add tens of thousands of   configuration lines for some important peers.  To manage this   complexity, network administrators could use, for example, IRRToolSet   [30], a set of tools making it possible to simplify the creation of   automated filter configuration from policies stored in an IRR.   Last but not least, network administrators SHOULD publish and   maintain their resources properly in the IRR database maintained by   their RIR, when available.6.1.2.2.2.  SIDR - Secure Inter-Domain Routing   An infrastructure called SIDR (Secure Inter-Domain Routing),   described inRFC 6480 [12], has been designed to secure Internet   advertisements.  At the time of writing this document, many documents   have been published and a framework with a complete set of protocols   is proposed so that advertisements can be checked against signed   routing objects in RIRs.  There are basically two services that SIDR   offers:   o  Origin validation, described inRFC 6811 [5], seeks to make sure      that attributes associated with routes are correct.  (The major      point is the validation of the AS number originating a given      route.)  Origin validation is now operational (InternetDurand, et al.            Best Current Practice                [Page 10]

RFC 7454                        BGP OPSEC                  February 2015      registries, protocols, implementations on some routers), and in      theory it can be implemented knowing that the number of signed      resources is still low at the time of writing this document.   o  Path validation provided by BGPsec [29] seeks to make sure that no      one announces fake/wrong BGP paths that would attract traffic for      a given destination; seeRFC 7132 [16].  BGPsec is still an      ongoing work item at the time of writing this document and      therefore cannot be implemented.   Implementing SIDR mechanisms is expected to solve many of the BGP   routing security problems in the long term, but it may take time for   deployments to be made and objects to become signed.  Also, note that   the SIDR infrastructure is complementing (not replacing) the security   best practices listed in this document.  Therefore, network   administrators SHOULD implement any SIDR proposed mechanism (for   example, route origin validation) on top of the other existing   mechanisms even if they could sometimes appear to be targeting the   same goal.   If route origin validation is implemented, the reader SHOULD refer to   the rules described inRFC 7115 [15].  In short, each external route   received on a router SHOULD be checked against the Resource Public   Key Infrastructure (RPKI) data set:   o  If a corresponding ROA (Route Origin Authorization) is found and      is valid, then the prefix SHOULD be accepted.   o  If the ROA is found and is INVALID, then the prefix SHOULD be      discarded.   o  If a ROA is not found, then the prefix SHOULD be accepted, but the      corresponding route SHOULD be given a low preference.   In addition to this, network administrators SHOULD sign their routing   objects so their routes can be validated by other networks running   origin validation.   One should understand that the RPKI model brings new, interesting   challenges.  The paper "On the Risk of Misbehaving RPKI Authorities"   [31] explains how the RPKI model can impact the Internet if   authorities don't behave as they are supposed to.  Further analysis   is certainly required on RPKI, which carries part of BGP security.Durand, et al.            Best Current Practice                [Page 11]

RFC 7454                        BGP OPSEC                  February 20156.1.3.  Prefixes That Are Too Specific   Most ISPs will not accept advertisements beyond a certain level of   specificity (and in return, they do not announce prefixes they   consider to be too specific).  That acceptable specificity is decided   for each peering between the two BGP peers.  Some ISP communities   have tried to document acceptable specificity.  This document does   not make any judgement on what the best approach is, it just notes   that there are existing practices on the Internet and recommends that   the reader refer to them.  As an example, the RIPE community has   documented that, at the time of writing of this document, IPv4   prefixes longer than /24 and IPv6 prefixes longer than /48 are   generally neither announced nor accepted in the Internet [20] [21].   These values may change in the future.6.1.4.  Filtering Prefixes Belonging to the Local AS and Downstreams   A network SHOULD filter its own prefixes on peerings with all its   peers (inbound direction).  This prevents local traffic (from a local   source to a local destination) from leaking over an external peering,   in case someone else is announcing the prefix over the Internet.   This also protects the infrastructure that may directly suffer if the   backbone's prefix is suddenly preferred over the Internet.   In some cases, for example, multihoming scenarios, such filters   SHOULD NOT be applied, as this would break the desired redundancy.   To an extent, such filters can also be configured on a network for   the prefixes of its downstreams in order to protect them, too.  Such   filters must be defined with caution as they can break existing   redundancy mechanisms.  For example, when an operator has a   multihomed customer, it should keep accepting the customer prefix   from its peers and upstreams.  This will make it possible for the   customer to keep accessing its operator network (and other customers)   via the Internet even if the BGP peering between the customer and the   operator is down.6.1.5.  IXP LAN Prefixes6.1.5.1.  Network Security   When a network is present on an IXP and peers with other IXP members   over a common subnet (IXP LAN prefix), it SHOULD NOT accept more-   specific prefixes for the IXP LAN prefix from any of its external BGP   peers.  Accepting these routes may create a black hole for   connectivity to the IXP LAN.Durand, et al.            Best Current Practice                [Page 12]

RFC 7454                        BGP OPSEC                  February 2015   If the IXP LAN prefix is accepted as an "exact match", care needs to   be taken to prevent other routers in the network from sending IXP   traffic towards the externally learned IXP LAN prefix (recursive   route lookup pointing into the wrong direction).  This can be   achieved by preferring IGP routes over External BGP (EBGP), or by   using "BGP next-hop-self" on all routes learned on that IXP.   If the IXP LAN prefix is accepted at all, it SHOULD only be accepted   from the ASes that the IXP authorizes to announce it -- this will   usually be automatically achieved by filtering announcements using   the IRR database.6.1.5.2.  PMTUD and the Loose uRPF Problem   In order to have PMTUD working in the presence of loose uRPF, it is   necessary that all the networks that may source traffic that could   flow through the IXP (i.e., IXP members and their downstreams) have a   route for the IXP LAN prefix.  This is necessary as "packet too big"   ICMP messages sent by IXP members' routers may be sourced using an   address of the IXP LAN prefix.  In the presence of loose uRPF, this   ICMP packet is dropped if there is no route for the IXP LAN prefix or   a less specific route covering IXP LAN prefix.   In that case, any IXP member SHOULD make sure it has a route for the   IXP LAN prefix or a less specific prefix on all its routers and that   it announces the IXP LAN prefix or the less specific route (up to a   default route) to its downstreams.  The announcements done for this   purpose SHOULD pass IRR-generated filters described inSection 6.1.2.2.1 as well as "prefixes that are too specific" filters   described inSection 6.1.3.  The easiest way to implement this is for   the IXP itself to take care of the origination of its prefix and   advertise it to all IXP members through a BGP peering.  Most likely,   the BGP route servers would be used for this, and the IXP would send   its entire prefix, which would be equal to or less specific than the   IXP LAN prefix.Appendix A gives an example of guidelines regarding IXP LAN prefix.6.1.6.  The Default Route6.1.6.1.  IPv4   Typically, the 0.0.0.0/0 prefix is not intended to be accepted or   advertised except in specific customer/provider configurations;   general filtering outside of these is RECOMMENDED.Durand, et al.            Best Current Practice                [Page 13]

RFC 7454                        BGP OPSEC                  February 20156.1.6.2.  IPv6   Typically, the ::/0 prefix is not intended to be accepted or   advertised except in specific customer/provider configurations;   general filtering outside of these is RECOMMENDED.6.2.  Prefix Filtering Recommendations in Full Routing Networks   For networks that have the full Internet BGP table, some policies   should be applied on each BGP peer for received and advertised   routes.  It is RECOMMENDED that each Autonomous System configures   rules for advertised and received routes at all its borders, as this   will protect the network and its peer even in case of   misconfiguration.  The most commonly used filtering policy is   proposed in this section and uses prefix filters defined inSection 6.1.6.2.1.  Filters with Internet Peers6.2.1.1.  Inbound Filtering   There are basically two options -- the loose one where no check will   be done against RIR allocations and the strict one where it will be   verified that announcements strictly conform to what is declared in   routing registries.6.2.1.1.1.  Inbound Filtering Loose Option   In this case, the following prefixes received from a BGP peer will be   filtered:   o  prefixes that are not globally routable (Section 6.1.1)   o  prefixes not allocated by IANA (IPv6 only) (Section 6.1.2.1)   o  routes that are too specific (Section 6.1.3)   o  prefixes belonging to the local AS (Section 6.1.4)   o  IXP LAN prefixes (Section 6.1.5)   o  the default route (Section 6.1.6)6.2.1.1.2.  Inbound Filtering Strict Option   In this case, filters are applied to make sure advertisements   strictly conform to what is declared in routing registries   (Section 6.1.2.2).  Warning is given as registries are not alwaysDurand, et al.            Best Current Practice                [Page 14]

RFC 7454                        BGP OPSEC                  February 2015   accurate (prefixes missing, wrong information, etc.).  This varies   across the registries and regions of the Internet.  Before applying a   strict policy, the reader SHOULD check the impact on the filter and   make sure the solution is not worse than the problem.   Also, in case of script failure, each administrator may decide if all   routes are accepted or rejected depending on routing policy.  While   accepting the routes during that time frame could break the BGP   routing security, rejecting them might re-route too much traffic on   transit peers, and could cause more harm than what a loose policy   would have done.   In addition to this, network administrators could apply the following   filters beforehand in case the routing registry that's used as the   source of information by the script is not fully trusted:   o  prefixes that are not globally routable (Section 6.1.1)   o  routes that are too specific (Section 6.1.3)   o  prefixes belonging to the local AS (Section 6.1.4)   o  IXP LAN prefixes (Section 6.1.5)   o  the default route (Section 6.1.6)6.2.1.2.  Outbound Filtering   The configuration should ensure that only appropriate prefixes are   sent.  These can be, for example, prefixes belonging to both the   network in question and its downstreams.  This can be achieved by   using BGP communities, AS paths, or both.  Also, it may be desirable   to add the following filters before any policy to avoid unwanted   route announcements due to bad configuration:   o  Prefixes that are not globally routable (Section 6.1.1)   o  Routes that are too specific (Section 6.1.3)   o  IXP LAN prefixes (Section 6.1.5)   o  The default route (Section 6.1.6)   If it is possible to list the prefixes to be advertised, then just   configuring the list of allowed prefixes and denying the rest is   sufficient.Durand, et al.            Best Current Practice                [Page 15]

RFC 7454                        BGP OPSEC                  February 20156.2.2.  Filters with Customers6.2.2.1.  Inbound Filtering   The inbound policy with end customers is pretty straightforward: only   customer prefixes SHOULD be accepted, all others SHOULD be discarded.   The list of accepted prefixes can be manually specified, after having   verified that they are valid.  This validation can be done with the   appropriate IP address management authorities.   The same rules apply when the customer is a network connecting other   customers (for example, a Tier 1 transit provider connecting service   providers).  An exception is when the customer network applies strict   inbound/outbound prefix filtering, and there are too many prefixes   announced by that network to list them in the router configuration.   In that case, filters as inSection 6.2.1.1 can be applied.6.2.2.2.  Outbound Filtering   The outbound policy with customers may vary according to the routes   the customer wants to receive.  In the simplest possible scenario,   the customer may want to receive only the default route; this can be   done easily by applying a filter with the default route only.   In case the customer wants to receive the full routing (if it is   multihomed or if it wants to have a view of the Internet table), the   following filters can be applied on the BGP peering:   o  prefixes that are not globally routable (Section 6.1.1)   o  routes that are too specific (Section 6.1.3)   o  the default route (Section 6.1.6)   In some cases, the customer may desire to receive the default route   in addition to the full BGP table.  This can be done by the provider   simply by removing the filter for the default route.  As the default   route may not be present in the routing table, network administrators   may decide to originate it only for peerings where it has to be   advertised.6.2.3.  Filters with Upstream Providers6.2.3.1.  Inbound Filtering   If the full routing table is desired from the upstream, the prefix   filtering to apply is the same as the one for peersSection 6.2.1.1   with the exception of the default route.  Sometimes, the defaultDurand, et al.            Best Current Practice                [Page 16]

RFC 7454                        BGP OPSEC                  February 2015   route (in addition to the full BGP table) can be desired from an   upstream provider.  If the upstream provider is supposed to announce   only the default route, a simple filter will be applied to accept   only the default prefix and nothing else.6.2.3.2.  Outbound Filtering   The filters to be applied would most likely not differ much from the   ones applied for Internet peers (Section 6.2.1.2).  However,   different policies could be applied if a particular upstream should   not provide transit to all the prefixes.6.3.  Prefix Filtering Recommendations for Leaf Networks6.3.1.  Inbound Filtering   The leaf network will deploy the filters corresponding to the routes   it is requesting from its upstream.  If a default route is requested,   a simple inbound filter can be applied to accept only the default   route (Section 6.1.6).  If the leaf network is not capable of listing   the prefixes because there are too many (for example, if it requires   the full Internet routing table), then it should configure the   following filters to avoid receiving bad announcements from its   upstream:   o  prefixes not routable (Section 6.1.1)   o  routes that are too specific (Section 6.1.3)   o  prefixes belonging to local AS (Section 6.1.4)   o  the default route (Section 6.1.6) depending on whether or not the      route is requested6.3.2.  Outbound Filtering   A leaf network will most likely have a very straightforward policy:   it will only announce its local routes.  It can also configure the   prefix filters described inSection 6.2.1.2 to avoid announcing   invalid routes to its upstream provider.7.  BGP Route Flap Dampening   The BGP route flap dampening mechanism makes it possible to give   penalties to routes each time they change in the BGP routing table.   Initially, this mechanism was created to protect the entire Internet   from multiple events that impact a single network.  Studies have   shown that implementations of BGP route flap dampening could causeDurand, et al.            Best Current Practice                [Page 17]

RFC 7454                        BGP OPSEC                  February 2015   more harm than benefit; therefore, in the past, the RIPE community   has recommended against using BGP route flap dampening [19].  Later,   studies were conducted to propose new route flap dampening thresholds   in order to make the solution "usable"; seeRFC 7196 [6] and [22] (in   which RIPE reviewed its recommendations).  This document RECOMMENDS   following IETF and RIPE recommendations and using BGP route flap   dampening with the adjusted configured thresholds.8.  Maximum Prefixes on a Peering   It is RECOMMENDED to configure a limit on the number of routes to be   accepted from a peer.  The following rules are generally RECOMMENDED:   o  From peers, it is RECOMMENDED to have a limit lower than the      number of routes in the Internet.  This will shut down the BGP      peering if the peer suddenly advertises the full table.  Network      administrators can also configure different limits for each peer,      according to the number of routes they are supposed to advertise,      plus some headroom to permit growth.   o  From upstreams that provide full routing, it is RECOMMENDED to      have a limit higher than the number of routes in the Internet.  A      limit is still useful in order to protect the network (and in      particular, the routers' memory) if too many routes are sent by      the upstream.  The limit should be chosen according to the number      of routes that can actually be handled by routers.   It is important to regularly review the limits that are configured as   the Internet can quickly change over time.  Some vendors propose   mechanisms to have two thresholds: while the higher number specified   will shut down the peering, the first threshold will only trigger a   log and can be used to passively adjust limits based on observations   made on the network.9.  AS Path Filtering   This section lists the RECOMMENDED practices when processing BGP AS   paths.   o  Network administrators SHOULD accept from customers only 2-byte or      4-byte AS paths containing ASNs belonging to (or authorized to      transit through) the customer.  If network administrators cannot      build and generate filtering expressions to implement this, they      SHOULD consider accepting only path lengths relevant to the type      of customer they have (as in, if these customers are a leaf or      have customers of their own) and SHOULD try to discourage      excessive prepending in such paths.  This loose policy could beDurand, et al.            Best Current Practice                [Page 18]

RFC 7454                        BGP OPSEC                  February 2015      combined with filters for specific 2-byte or 4-byte AS paths that      must not be accepted if advertised by the customer, such as      upstream transit providers or peer ASNs.   o  Network administrators SHOULD NOT accept prefixes with private AS      numbers in the AS path unless the prefixes are from customers.  An      exception could occur when an upstream is offering some particular      service like black-hole origination based on a private AS number:      in that case, prefixes SHOULD be accepted.  Customers should be      informed by their upstream in order to put in place ad hoc policy      to use such services.   o  Network administrators SHOULD NOT accept prefixes when the first      AS number in the AS path is not the one of the peer's unless the      peering is done toward a BGP route server [17] (for example, on an      IXP) with transparent AS path handling.  In that case, this      verification needs to be deactivated, as the first AS number will      be the one of an IXP member, whereas the peer AS number will be      the one of the BGP route server.   o  Network administrators SHOULD NOT advertise prefixes with a      nonempty AS path unless they intend to provide transit for these      prefixes.   o  Network administrators SHOULD NOT advertise prefixes with upstream      AS numbers in the AS path to their peering AS unless they intend      to provide transit for these prefixes.   o  Private AS numbers are conventionally used in contexts that are      "private" and SHOULD NOT be used in advertisements to BGP peers      that are not party to such private arrangements, and they SHOULD      be stripped when received from BGP peers that are not party to      such private arrangements.   o  Network administrators SHOULD NOT override BGP's default behavior,      i.e., they should not accept their own AS number in the AS path.      When considering an exception, the impact (which may be severe on      routing) should be studied carefully.   AS path filtering should be further analyzed when ASN renumbering is   done.  Such an operation is common, and mechanisms exist to allow   smooth ASN migration [28].  The usual migration technique, local to a   router, consists in modifying the AS path so it is presented to a   peer with the previous ASN, as if no renumbering was done.  This   makes it possible to change the ASN of a router without reconfiguring   all EBGP peers at the same time (as that operation would require   synchronization with all peers attached to that router).  During this   renumbering operation, the rules described above may be adjusted.Durand, et al.            Best Current Practice                [Page 19]

RFC 7454                        BGP OPSEC                  February 201510.  Next-Hop Filtering   If peering on a shared network, like an IXP, BGP can advertise   prefixes with a third-party next hop, thus directing packets not to   the peer announcing the prefix but somewhere else.   This is a desirable property for BGP route-server setups [17], where   the route server will relay routing information but has neither the   capacity nor the desire to receive the actual data packets.  So, the   BGP route server will announce prefixes with a next-hop setting   pointing to the router that originally announced the prefix to the   route server.   In direct peerings between ISPs, this is undesirable, as one of the   peers could trick the other one into sending packets into a black   hole (unreachable next hop) or to an unsuspecting third party who   would then have to carry the traffic.  Especially for black-holing,   the root cause of the problem is hard to see without inspecting BGP   prefixes at the receiving router of the IXP.   Therefore, an inbound route policy SHOULD be applied on IXP peerings   in order to set the next hop for accepted prefixes to the BGP peer IP   address (belonging to the IXP LAN) that sent the prefix (which is   what "next-hop-self" would enforce on the sending side).   This policy SHOULD NOT be used on route-server peerings or on   peerings where network administrators intentionally permit the other   side to send third-party next hops.   This policy also SHOULD be adjusted if the best practice of Remote   Triggered Black Holing (aka RTBH as described inRFC 6666 [13]) is   implemented.  In that case, network administrators would apply a   well-known BGP next hop for routes they want to filter (if an   Internet threat is observed from/to this route, for example).  This   well-known next hop will be statically routed to a null interface.   In combination with a unicast RPF check, this will discard traffic   from and toward this prefix.  Peers can exchange information about   black holes using, for example, particular BGP communities.  Network   administrators could propagate black-hole information to their peers   using an agreed-upon BGP community: when receiving a route with that   community, a configured policy could change the next hop in order to   create the black hole.Durand, et al.            Best Current Practice                [Page 20]

RFC 7454                        BGP OPSEC                  February 201511.  BGP Community Scrubbing   Optionally, we can consider the following rules on BGP AS paths:   o  Network administrators SHOULD scrub inbound communities with their      number in the high-order bits, and allow only those communities      that customers/peers can use as a signaling mechanism   o  Networks administrators SHOULD NOT remove other communities      applied on received routes (communities not removed after      application of the previous statement).  In particular, they      SHOULD keep original communities when they apply a community.      Customers might need them to communicate with upstream providers.      In particular, network administrators SHOULD NOT (generally)      remove the no-export community, as it is usually announced by      their peer for a certain purpose.12.  Security Considerations   This document is entirely about BGP operational security.  It depicts   best practices that one should adopt to secure BGP infrastructure:   protecting BGP router and BGP sessions, adopting consistent BGP   prefix and AS path filters, and configuring other options to secure   the BGP network.   This document does not aim to describe existing BGP implementations,   their potential vulnerabilities, or ways they handle errors.  It does   not detail how protection could be enforced against attack techniques   using crafted packets.13.  References13.1.  Normative References   [1]   Bradner, S., "Key words for use in RFCs to Indicate Requirement         Levels",RFC 2119, March 1997,         <http://www.rfc-editor.org/info/rfc2119>.   [2]   Rekhter,, Y., Li,, T., and S. Hares,, "A Border Gateway         Protocol 4 (BGP-4)",RFC 4271, January 2006,         <http://www.rfc-editor.org/info/rfc4271>.   [3]   Gill, V., Heasley, J., Meyer, D., Savola,, P., and C.         Pignataro, "The Generalized TTL Security Mechanism (GTSM)",RFC5082, October 2007, <http://www.rfc-editor.org/info/rfc5082>.Durand, et al.            Best Current Practice                [Page 21]

RFC 7454                        BGP OPSEC                  February 2015   [4]   Touch, J., Mankin, A., and R. Bonica, "The TCP Authentication         Option",RFC 5925, June 2010,         <http://www.rfc-editor.org/info/rfc5925>.   [5]   Mohapatra, P., Scudder, J., Ward, D., Bush, R., and R.         Austein, "BGP Prefix Origin Validation",RFC 6811, January         2013, <http://www.rfc-editor.org/info/rfc6811>.   [6]   Pelsser, C., Bush, R., Patel, K., Mohapatra, P., and O.         Maennel, "Making Route Flap Damping Usable",RFC 7196, May         2014, <http://www.rfc-editor.org/info/rfc7196>.13.2.  Informative References   [7]   Heffernan, A., "Protection of BGP Sessions via the TCP MD5         Signature Option",RFC 2385, August 1998,         <http://www.rfc-editor.org/info/rfc2385>.   [8]   Ferguson, P. and D. Senie, "Network Ingress Filtering:         Defeating Denial of Service Attacks which employ IP Source         Address Spoofing",RFC 2827, May 2000,         <http://www.rfc-editor.org/info/rfc2827>.   [9]   Baker, F. and P. Savola, "Ingress Filtering for Multihomed         Networks",RFC 3704, March 2004,         <http://www.rfc-editor.org/info/rfc3704>.   [10]  Blunk, L., Damas, J., Parent, F., and A. Robachevsky, "Routing         Policy Specification Language next generation (RPSLng)",RFC4012, March 2005, <http://www.rfc-editor.org/info/rfc4012>.   [11]  Dugal, D., Pignataro, C., and R. Dunn, "Protecting the Router         Control Plane",RFC 6192, March 2011,         <http://www.rfc-editor.org/info/rfc6192>.   [12]  Lepinski, M. and S. Kent, "An Infrastructure to Support Secure         Internet Routing",RFC 6480, February 2012,         <http://www.rfc-editor.org/info/rfc6480>.   [13]  Hilliard, N. and D. Freedman, "A Discard Prefix for IPv6",RFC6666, August 2012, <http://www.rfc-editor.org/info/rfc6666>.   [14]  Jethanandani, M., Patel, K., and L. Zheng, "Analysis of BGP,         LDP, PCEP, and MSDP Issues According to the Keying and         Authentication for Routing Protocols (KARP) Design Guide",RFC6952, May 2013, <http://www.rfc-editor.org/info/rfc6952>.Durand, et al.            Best Current Practice                [Page 22]

RFC 7454                        BGP OPSEC                  February 2015   [15]  Bush, R., "Origin Validation Operation Based on the Resource         Public Key Infrastructure (RPKI)",RFC 7115, January 2014,         <http://www.rfc-editor.org/info/rfc7115>.   [16]  Kent, S. and A. Chi, "Threat Model for BGP Path Security",RFC7132, February 2014, <http://www.rfc-editor.org/info/rfc7132>.   [17]  Jasinska, E., Hilliard, N., Raszuk, R., and N. Bakker,         "Internet Exchange Route Server", Work in Progress,draft-ietf-idr-ix-bgp-route-server-06, December 2014.   [18]  Karrenberg, D., "RIPE-351 - De-Bogonising New Address Blocks",         October 2005.   [19]  Smith, P. and C. Panigl, "RIPE-378 - RIPE Routing Working Group         Recommendations On Route-flap Damping", May 2006.   [20]  Smith, P., Evans, R., and M. Hughes, "RIPE-399 - RIPE Routing         Working Group Recommendations on Route Aggregation", December         2006.   [21]  Smith, P. and R. Evans, "RIPE-532 - RIPE Routing Working Group         Recommendations on IPv6 Route Aggregation", November 2011.   [22]  Smith, P., Bush, R., Kuhne, M., Pelsser, C., Maennel, O.,         Patel, K., Mohapatra, P., and R. Evans, "RIPE-580 - RIPE         Routing Working Group Recommendations On Route-flap Damping",         January 2013.   [23]  IANA, "IANA IPv4 Special-Purpose Address Registry",         <http://www.iana.org/assignments/iana-ipv4-special-registry>.   [24]  IANA, "IANA IPv6 Special-Purpose Address Registry",         <http://www.iana.org/assignments/iana-ipv6-special-registry>.   [25]  IANA, "IANA IPv4 Address Space Registry",         <http://www.iana.org/assignments/ipv4-address-space>.   [26]  IANA, "Internet Protocol Version 6 Address Space",         <http://www.iana.org/assignments/ipv6-address-space>.   [27]  Merit Network Inc., "Merit RADb", <http://www.radb.net>.   [28]  George, W. and S. Amante, "Autonomous System (AS) Migration         Features and Their Effects on the BGP AS_PATH Attribute", Work         in Progress,draft-ga-idr-as-migration-03, January 2014.Durand, et al.            Best Current Practice                [Page 23]

RFC 7454                        BGP OPSEC                  February 2015   [29]  Bellovin, S., Bush, R., and D. Ward, "Security Requirements for         BGP Path Validation",RFC 7353, August 2014,         <http://www.rfc-editor.org/info/rfc7353>.   [30]  "IRRToolSet project page", <http://irrtoolset.isc.org>.   [31]  Cooper, D., Heilman, E., Brogle, K., Reyzin, L., and S.         Goldberg, "On the Risk of Misbehaving RPKI Authorities",         <http://www.cs.bu.edu/~goldbe/papers/hotRPKI.pdf>.Durand, et al.            Best Current Practice                [Page 24]

RFC 7454                        BGP OPSEC                  February 2015Appendix A.  IXP LAN Prefix Filtering - Example   An IXP in the RIPE region is allocated an IPv4 /22 prefix by RIPE NCC   (X.Y.0.0/22 in this example) and uses a /23 of this /22 for the IXP   LAN (let say X.Y.0.0/23).  This IXP LAN prefix is the one used by IXP   members to configure EBGP peerings.  The IXP could also be allocated   an AS number (AS64496 in our example).   Any IXP member SHOULD make sure it filters prefixes more specific   than X.Y.0.0/23 from all its EBGP peers.  If it received X.Y.0.0/24   or X.Y.1.0/24 this could seriously impact its routing.   The IXP SHOULD originate X.Y.0.0/22 and advertise it to its members   through an EBGP peering (most likely from its BGP route servers,   configured with AS64496).   The IXP members SHOULD accept the IXP prefix only if it passes the   IRR generated filters (seeSection 6.1.2.2.1)   IXP members SHOULD then advertise X.Y.0.0/22 prefix to their   downstreams.  This announce would pass IRR based filters as it is   originated by the IXP.Acknowledgements   The authors would like to thank the following people for their   comments and support: Marc Blanchet, Ron Bonica, Randy Bush, David   Freedman, Wesley George, Daniel Ginsburg, David Groves, Mike Hugues,   Joel Jaeggli, Tim Kleefass, Warren Kumari, Jacques Latour, Lionel   Morand, Jerome Nicolle, Hagen Paul Pfeifer, Thomas Pinaud, Carlos   Pignataro, Jean Rebiffe, Donald Smith, Kotikalapudi Sriram, Matjaz   Straus, Tony Tauber, Gunter Van de Velde, Sebastian Wiesinger, and   Matsuzaki Yoshinobu.   The authors would like to thank once again Gunter Van de Velde for   presenting the document at several IETF meetings in various working   groups, indeed helping dissemination of this document and gathering   of precious feedback.Durand, et al.            Best Current Practice                [Page 25]

RFC 7454                        BGP OPSEC                  February 2015Authors' Addresses   Jerome Durand   Cisco Systems, Inc.   11 rue Camille Desmoulins   Issy-les-Moulineaux  92782 CEDEX   France   EMail: jerduran@cisco.com   Ivan Pepelnjak   NIL Data Communications   Tivolska 48   Ljubljana  1000   Slovenia   EMail: ip@ipspace.net   Gert Doering   SpaceNet AG   Joseph-Dollinger-Bogen 14   Muenchen  D-80807   Germany   EMail: gert@space.netDurand, et al.            Best Current Practice                [Page 26]

[8]ページ先頭

©2009-2025 Movatter.jp