Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Errata] [Info page]

PROPOSED STANDARD
Errata Exist
Internet Engineering Task Force (IETF)                          P. DuttaRequest for Comments: 7361                                      F. BalusCategory: Standards Track                                 Alcatel-LucentISSN: 2070-1721                                                O. Stokes                                                        Extreme Networks                                                            G. Calvignac                                                                  Orange                                                                D. Fedyk                                                         Hewlett-Packard                                                          September 2014LDP Extensions for Optimized MAC Address Withdrawalin a Hierarchical Virtual Private LAN Service (H-VPLS)AbstractRFC 4762 describes a mechanism to remove or unlearn Media Access   Control (MAC) addresses that have been dynamically learned in a   Virtual Private LAN Service (VPLS) instance for faster convergence on   topology changes.  The procedure also removes MAC addresses in the   VPLS that do not require relearning due to such topology changes.   This document defines an enhancement to the MAC address withdraw   procedure with an empty MAC list (RFC 4762); this enhancement enables   a Provider Edge (PE) device to remove only the MAC addresses that   need to be relearned.  Additional extensions toRFC 4762 MAC withdraw   procedures are specified to provide an optimized MAC flushing for the   Provider Backbone Bridging (PBB) VPLS specified inRFC 7041.Status of This Memo   This is an Internet Standards Track document.   This document is a product of the Internet Engineering Task Force   (IETF).  It represents the consensus of the IETF community.  It has   received public review and has been approved for publication by the   Internet Engineering Steering Group (IESG).  Further information on   Internet Standards is available inSection 2 of RFC 5741.   Information about the current status of this document, any errata,   and how to provide feedback on it may be obtained athttp://www.rfc-editor.org/info/rfc7361.Dutta, et al.                Standards Track                    [Page 1]

RFC 7361           Optimized MAC Withdrawal in H-VPLS     September 2014Copyright Notice   Copyright (c) 2014 IETF Trust and the persons identified as the   document authors.  All rights reserved.   This document is subject toBCP 78 and the IETF Trust's Legal   Provisions Relating to IETF Documents   (http://trustee.ietf.org/license-info) in effect on the date of   publication of this document.  Please review these documents   carefully, as they describe your rights and restrictions with respect   to this document.  Code Components extracted from this document must   include Simplified BSD License text as described in Section 4.e of   the Trust Legal Provisions and are provided without warranty as   described in the Simplified BSD License.Dutta, et al.                Standards Track                    [Page 2]

RFC 7361           Optimized MAC Withdrawal in H-VPLS     September 2014Table of Contents1. Introduction ....................................................42. Terminology .....................................................62.1. Requirements Language ......................................63. Overview ........................................................63.1. MAC Flushing on Activation of Backup Spoke PW ..............83.1.1. MAC Flushing Initiated by PE-rs .....................83.1.2. MAC Flushing Initiated by MTU-s .....................83.2. MAC Flushing on Failure ....................................93.3. MAC Flushing in PBB-VPLS ..................................104. Problem Description ............................................104.1. MAC Flushing Optimization in VPLS Resiliency ..............104.1.1. MAC Flushing Optimization for Regular H-VPLS .......11           4.1.2. MAC Flushing Optimization for Native Ethernet                  Access .............................................134.2. Black-Holing Issue in PBB-VPLS ............................135. Solution Description ...........................................145.1. MAC Flushing Optimization for VPLS Resiliency .............145.1.1. MAC Flush Parameters TLV ...........................15           5.1.2. Application of the MAC Flush TLV in                  Optimized MAC Flushing .............................165.1.3. MAC Flush TLV Processing Rules for Regular VPLS ....175.1.4. Optimized MAC Flush Procedures .....................185.2. LDP MAC Flush Extensions for PBB-VPLS .....................195.2.1. MAC Flush TLV Processing Rules for PBB-VPLS ........205.2.2. Applicability of the MAC Flush Parameters TLV ......226. Operational Considerations .....................................237. IANA Considerations ............................................247.1. New LDP TLV ...............................................247.2. New Registry for MAC Flush Flags ..........................248. Security Considerations ........................................249. Contributing Author ............................................2510. Acknowledgements ..............................................2511. References ....................................................2511.1. Normative References .....................................2511.2. Informative References ...................................25Dutta, et al.                Standards Track                    [Page 3]

RFC 7361           Optimized MAC Withdrawal in H-VPLS     September 20141.  Introduction   A method of Virtual Private LAN Service (VPLS), also known as   Transparent LAN Services (TLS), is described in [RFC4762].  A VPLS is   created using a collection of one or more point-to-point pseudowires   (PWs) [RFC4664] configured in a flat, full-mesh topology.  The mesh   topology provides a LAN segment or broadcast domain that is fully   capable of learning and forwarding on Ethernet Media Access Control   (MAC) addresses at the Provider Edge (PE) devices.   This VPLS full-mesh core configuration can be augmented with   additional non-meshed spoke nodes to provide a Hierarchical VPLS   (H-VPLS) service [RFC4762].  Throughout this document, this   configuration is referred to as "regular" H-VPLS.   [RFC7041] describes how Provider Backbone Bridging (PBB) can be   integrated with VPLS to allow for useful PBB capabilities while   continuing to avoid the use of the Multiple Spanning Tree Protocol   (MSTP) in the backbone.  The combined solution, referred to as   "PBB-VPLS", results in better scalability in terms of number of   service instances, PWs, and C-MAC (Customer MAC) addresses that need   to be handled in the VPLS PEs, depending on the location of the   I-component in the PBB-VPLS topology.   A MAC address withdrawal mechanism for VPLS is described in [RFC4762]   to remove or unlearn MAC addresses for faster convergence on topology   changes in resilient H-VPLS topologies.  Note that the H-VPLS   topology discussed in [RFC4762] describes the two-tier hierarchy in   VPLS as the basic building block of H-VPLS, but it is possible to   have a multi-tier hierarchy in an H-VPLS.Dutta, et al.                Standards Track                    [Page 4]

RFC 7361           Optimized MAC Withdrawal in H-VPLS     September 2014   Figure 1 is reproduced from [RFC4762] and illustrates dual-homing   in H-VPLS.                                                            PE2-rs                                                          +--------+                                                          |        |                                                          |   --   |                                                          |  /  \  |      CE-1                                                |  \S /  |        \                                                 |   --   |         \                                                +--------+          \  MTU-s                          PE1-rs        /   |          +--------+                      +--------+     /    |          |        |                      |        |    /     |          |   --   |   Primary PW         |   --   |---/      |          |  /  \  |- - - - - - - - - - - |  /  \  |          |          |  \S /  |                      |  \S /  |          |          |   --   |                      |   --   |---\      |          +--------+                      +--------+    \     |            /      \                                     \    |           /        \                                     +--------+          /          \                                    |        |         CE-2         \                                   |  --    |                       \     Secondary PW                 | /  \   |                        - - - - - - - - - - - - - - - - - | \S /   |                                                          |  --    |                                                          +--------+                                                            PE3-rs                Figure 1: An Example of a Dual-Homed MTU-s   An example usage of the MAC flushing mechanism is the dual-homed   H-VPLS where an edge device called the Multi-Tenant Unit switch   (MTU-s) [RFC4762] is connected to two PE devices via a primary spoke   PW and backup spoke PW, respectively.  Such redundancy is designed to   protect against the failure of the primary spoke PW or primary PE   device.  There could be multiple methods of dual-homing in H-VPLS   that are not described in [RFC4762].  For example, note the following   statement fromSection 10.2.1 of [RFC4762].      How a spoke is designated primary or secondary is outside the      scope of this document.  For example, a spanning tree instance      running between only the MTU-s and the two PE-rs nodes is one      possible method.  Another method could be configuration.   This document intends to clarify several H-VPLS dual-homing models   that are deployed in practice and various use cases of LDP-based MAC   flushing in these models.Dutta, et al.                Standards Track                    [Page 5]

RFC 7361           Optimized MAC Withdrawal in H-VPLS     September 20142.  Terminology   This document uses the terminology defined in [RFC7041], [RFC5036],   [RFC4447], and [RFC4762].   Throughout this document, "Virtual Private LAN Service" (VPLS) refers   to the emulated bridged LAN service offered to a customer.  "H-VPLS"   refers to the hierarchical connectivity or layout of the MTU-s and   the Provider Edge routing- and switching-capable (PE-rs) devices   offering the VPLS [RFC4762].   The terms "spoke node" and "MTU-s" in H-VPLS are used   interchangeably.   "Spoke PW" refers to the Pseudowire (PW) that provides connectivity   between MTU-s and PE-rs nodes.   "Mesh PW" refers to the PW that provides connectivity between PE-rs   nodes in a VPLS full-mesh core.   "MAC flush message" refers to a Label Distribution Protocol (LDP)   address withdraw message without a MAC List TLV.   A MAC flush message "in the context of a PW" refers to the message   that has been received over the LDP session that is used to set up   the PW used to provide connectivity in VPLS.  The MAC flush message   carries the context of the PW in terms of the Forwarding Equivalence   Class (FEC) TLV associated with the PW [RFC4762] [RFC4447].   In general, "MAC flushing" refers to the method of initiating and   processing MAC flush messages across a VPLS instance.2.1.  Requirements Language   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this   document are to be interpreted as described in [RFC2119].3.  Overview   When the MTU-s switches over to the backup PW, the requirement is to   flush the MAC addresses learned in the corresponding Virtual Switch   Instance (VSI) in peer PE devices participating in the full mesh, to   avoid the black-holing of frames to those addresses.  This is   accomplished by sending an LDP address withdraw message -- a new   message defined in this document -- from the PE that is no longerDutta, et al.                Standards Track                    [Page 6]

RFC 7361           Optimized MAC Withdrawal in H-VPLS     September 2014   connected to the MTU-s with the primary PW.  The new message contains   a list of MAC addresses to be removed and is sent to all other PEs   over the corresponding LDP sessions.   In order to minimize the impact on LDP convergence time and   scalability when a MAC List TLV contains a large number of MAC   addresses, many implementations use an LDP address withdraw message   with an empty MAC list.  When a PE-rs switch in the full mesh of   H-VPLS receives this message, it also flushes MAC addresses that are   not affected due to the topology change, thus leading to unnecessary   flooding and relearning.  Throughout this document, the term "MAC   flush message" is used to specify an LDP address withdraw message   with an empty MAC list as described in [RFC4762].  The solutions   described in this document are applicable only to LDP address   withdraw messages with empty MAC lists.   In a VPLS topology, the core PWs remain active and learning happens   on the PE-rs nodes.  However, when the VPLS topology changes, the   PE-rs must relearn using MAC address withdrawal or flushing.  As per   the MAC address withdrawal processing rules in [RFC4762], a PE   device, on receiving a MAC flush message, removes all MAC addresses   associated with the specified VPLS instance (as indicated in the FEC   TLV) except the MAC addresses learned over the PW associated with   this signaling session over which the message was received.   Throughout this document, we use the terminology "positive" MAC   flushing or "flush-all-but-mine" for this type of MAC flush message   and its actions.   This document introduces an optimized "negative" MAC flush message,   described inSection 3.2, that can be configured to improve the   response to topology changes in a number of Ethernet topologies where   the Service Level Agreement (SLA) is dependent on minimal disruption   and fast restoration of affected traffic.  This new message is used   in the case of Provider Backbone Bridging (PBB) topologies to   restrict the flushing to a set of service instances (I-SIDs).  It is   also important to note that the MAC flush message described in   [RFC4762], which is called "a positive MAC flush message" in this   document, MUST always be handled for Backbone MACs (B-MACs) in cases   where the core nodes change or fail.  In dual-homed or multi-homed   edge topologies, the procedures in this document augment [RFC4762]   messages and provide less disruption for those cases.Dutta, et al.                Standards Track                    [Page 7]

RFC 7361           Optimized MAC Withdrawal in H-VPLS     September 20143.1.  MAC Flushing on Activation of Backup Spoke PW   This section describes scenarios where MAC flush withdrawal is   initiated on activation of a backup PW in H-VPLS.3.1.1.  MAC Flushing Initiated by PE-rs   [RFC4762] specifies that on failure of the primary PW it is PE3-rs   (Figure 1) that initiates MAC flushing towards the core.  However,   note that PE3-rs can initiate MAC flushing only when PE3-rs is   dual-homing "aware" -- that is, there is some redundancy management   protocol running between the MTU-s and its host PE-rs devices.  The   scope of this document is applicable to several dual-homing or   multi-homing protocols.  This document illustrates that multi-homing   can be improved with negative MAC flushing.  One example is BGP-based   multi-homing in LDP-based VPLS, which uses the procedures defined in   [VPLS-MH].  In this method of dual-homing, PE3-rs would neither   forward any traffic to the MTU-s nor receive any traffic from the   MTU-s while PE1-rs is acting as a primary (or designated forwarder).3.1.2.  MAC Flushing Initiated by MTU-s   When dual-homing is achieved by manual configuration in the MTU-s,   the hosting PE-rs devices are dual-homing "agnostic", and PE3-rs   cannot initiate MAC flush messages.  PE3-rs can send or receive   traffic over the backup PW, since the dual-homing control is with the   MTU-s only.  When the backup PW is made active by the MTU-s, the   MTU-s triggers a MAC flush message.  The message is sent over the LDP   session associated with the newly activated PW.  On receiving the MAC   flush message from the MTU-s, PE3-rs (the PE-rs device with a   now-active PW) would flush all the MAC addresses it has learned,   except the ones learned over the newly activated spoke PW.  PE3-rs   further initiates a MAC flush message to all other PE devices in the   core.  Note that a forced switchover to the backup PW can also be   invoked by the MTU-s due to maintenance or administrative activities   on the former primary spoke PW.   The method of MAC flushing initiated by the MTU-s is modeled after   Topology Change Notification (TCN) in the Rapid Spanning Tree   Protocol (RSTP) [IEEE.802.1Q-2011].  When a bridge switches from a   failed link to the backup link, the bridge sends out a TCN message   over the newly activated link.  Upon receiving this message, the   upstream bridge flushes its entire list of MAC addresses, except the   ones received over this link.  The upstream bridge then sends the TCN   message out of its other ports in that spanning tree instance.  The   message is further relayed along the spanning tree by the other   bridges.Dutta, et al.                Standards Track                    [Page 8]

RFC 7361           Optimized MAC Withdrawal in H-VPLS     September 2014   The MAC flushing information is propagated in the control plane.  The   control-plane message propagation is associated with the data path   and hence follows propagation rules similar to those used for   forwarding in the LDP data plane.  For example, PE-rs nodes follow   the data-plane "split-horizon" forwarding rules in H-VPLS (refer toSection 4.4 of [RFC4762]).  Therefore, a MAC flush message is   propagated in the context of mesh PW(s) when it is received in the   context of a spoke PW.  When a PE-rs node receives a MAC flush   message in the context of a mesh PW, then it is not propagated to   other mesh PWs.3.2.  MAC Flushing on Failure   MAC flushing on failure, or "negative" MAC flushing, is introduced in   this document.  Negative MAC flushing is an improvement on the   current practice of sending a MAC flush message with an empty MAC   list as described inSection 3.1.1.  We use the term "negative" MAC   flushing or "flush-all-from-me" for this kind of flushing action as   opposed to the "positive" MAC flush action in [RFC4762].  In negative   MAC flushing, the MAC flushing is initiated by PE1-rs (Figure 1) on   detection of failure of the primary spoke PW.  The MAC flush message   is sent to all participating PE-rs devices in the VPLS full mesh.   PE1-rs should initiate MAC flushing only if PE1-rs is dual-homing   aware.  (If PE1-rs is dual-homing agnostic, the policy is to not   initiate MAC flushing on failure, since that could cause unnecessary   flushing in the case of a single-homed MTU-s.)  The specific dual-   homing protocols for this scenario are outside the scope of this   document, but the operator can choose to use the optimized MAC   flushing described in this document or the [RFC4762] procedures.   The procedure for negative MAC flushing is beneficial and results in   less disruption than the [RFC4762] procedures, including when the   MTU-s is dual-homed with a variety of Ethernet technologies, not just   LDP.  The negative MAC flush message is a more targeted MAC flush,   and the other PE-rs nodes will flush only the specified MACs.  This   targeted MAC flush cannot be achieved with the MAC address withdraw   message defined in [RFC4762].  Negative MAC flushing typically   results in a smaller set of MACs to be flushed and results in less   disruption for these topologies.   Note that in the case of negative MAC flushing the list SHOULD be   only the MACs for the affected MTU-s.  If the list is empty, then the   negative MAC flush procedures will result in flushing and relearning   all attached MTU-s devices for the originating PE-rs.Dutta, et al.                Standards Track                    [Page 9]

RFC 7361           Optimized MAC Withdrawal in H-VPLS     September 20143.3.  MAC Flushing in PBB-VPLS   [RFC7041] describes how PBB can be integrated with VPLS to allow for   useful PBB capabilities while continuing to avoid the use of MSTP in   the backbone.  The combined solution, referred to as "PBB-VPLS",   results in better scalability in terms of the number of service   instances, PWs, and C-MACs that need to be handled in the VPLS PE-rs   devices.  This document describes extensions to LDP MAC flushing   procedures described in [RFC4762] that are required to build   desirable capabilities for the PBB-VPLS solution.   The solution proposed in this document is generic and is applicable   when Multi-Segment Pseudowires (MS-PWs) [RFC6073] are used in   interconnecting PE devices in H-VPLS.  There could be other H-VPLS   models not defined in this document where the solution may be   applicable.4.  Problem Description   This section describes the problems in detail with respect to various   MAC flushing actions described inSection 3.4.1.  MAC Flushing Optimization in VPLS Resiliency   This section describes the optimizations required in MAC flushing   procedures when H-VPLS resiliency is provided by primary and backup   spoke PWs.Dutta, et al.                Standards Track                   [Page 10]

RFC 7361           Optimized MAC Withdrawal in H-VPLS     September 20144.1.1.  MAC Flushing Optimization for Regular H-VPLS   Figure 2 shows a dual-homed H-VPLS scenario for a VPLS instance,   where the problem with the existing MAC flushing method is as   explained inSection 3.                                 PE1-rs                       PE3-rs                               +--------+                  +--------+                               |        |                  |        |                               |   --   |                  |   --   |   Customer Site 1             |  /  \  |------------------|  /  \  |->Z   X->CE-1               /-----|  \s /  |                  |  \s /  |       \     primary spoke PW  |   --   |           /------|   --   |        \             /        +--------+          /       +--------+         \    (MTU-s)/              |    \        /             |          +--------+/               |     \      /              |          |        |                |      \    /               |          |   --   |                |       \  /                |          |  /  \  |                |      H-VPLS Full-Mesh Core|          |  \s /  |                |       / \                 |          |   --   |                |      /   \                |         /+--------+\               |     /     \               |        /     backup spoke PW       |    /       \              |       /              \        +--------+         \--------+--------+   Y->CE-2             \       |        |                  |        |   Customer Site 2      \------|  --    |                  |  --    |                               | /  \   |------------------| /  \   |->                               | \s /   |                  | \s /   |                               |  --    |                  |  --    |                               +--------+                  +--------+                                 PE2-rs                      PE4-rs          Figure 2: Dual-Homed MTU-s in Two-Tier Hierarchy H-VPLS   In Figure 2, the MTU-s is dual-homed to PE1-rs and PE2-rs.  Only the   primary spoke PW is active at the MTU-s; thus, PE1-rs is acting as   the active device (designated forwarder) to reach the full mesh in   the VPLS instance.  The MAC addresses of nodes located at access   sites (behind CE-1 and CE-2) are learned at PE1-rs over the primary   spoke PW.  Let's say X represents a set of such MAC addresses located   behind CE-1.  MAC Z represents one of a possible set of other   destination MACs.  As packets flow from X to other MACs in the VPLS   network, PE2-rs, PE3-rs, and PE4-rs learn about X on their respective   mesh PWs terminating at PE1-rs.  When the MTU-s switches to the   backup spoke PW and activates it, PE2-rs becomes the active device   (designated forwarder) to reach the full-mesh core for the MTU-s.   Traffic entering the H-VPLS from CE-1 and CE-2 is diverted by the   MTU-s to the spoke PW to PE2-rs.  Traffic destined from PE2-rs,Dutta, et al.                Standards Track                   [Page 11]

RFC 7361           Optimized MAC Withdrawal in H-VPLS     September 2014   PE3-rs, and PE4-rs to X will be black-holed until the MAC address   aging timer expires (the default is 5 minutes) or a packet flows from   X to other addresses through PE2-rs.   For example, if a packet flows from MAC Z to MAC X after the backup   spoke PW is active, packets from MAC Z travel from PE3-rs to PE1-rs   and are dropped.  However, if a packet with MAC X as source and MAC Z   as destination arrives at PE2-rs, PE2-rs will now learn that MAC X is   on the backup spoke PW and will forward to MAC Z.  At this point,   traffic from PE3-rs to MAC X will go to PE2-rs, since PE3-rs has also   learned about MAC X.  Therefore, a mechanism is required to make this   learning more timely in cases where traffic is not bidirectional.   To avoid traffic black-holing, the MAC addresses that have been   learned in the upstream VPLS full mesh through PE1-rs must be   relearned or removed from the MAC Forwarding Information Bases (FIBs)   in the VSIs at PE2-rs, PE3-rs, and PE4-rs.  If PE1-rs and PE2-rs are   dual-homing agnostic, then on activation of the standby PW from the   MTU-s, a MAC flush message will be sent by the MTU-s to PE2-rs that   will flush all the MAC addresses learned in the VPLS instance at   PE2-rs from all other PWs except the PW connected to the MTU-s.   PE2-rs further relays the MAC flush messages to all other PE-rs   devices in the full mesh.  The same processing rule applies for all   those PE-rs devices: all the MAC addresses are flushed except the   ones learned on the PW connected to PE2-rs.  For example, at PE3-rs   all of the MAC addresses learned from the PWs connected to PE1-rs and   PE4-rs are flushed and relearned subsequently.  Before the relearning   happens, flooding of unknown destination MAC addresses takes place   throughout the network.  As the number of PE-rs devices in the full   mesh increases, the number of unaffected MAC addresses flushed in a   VPLS instance also increases, thus leading to unnecessary flooding   and relearning.  With a large number of VPLS instances provisioned in   the H-VPLS network topology, the amount of unnecessary flooding and   relearning increases.  An optimization, described below, is required   that will flush only the MAC addresses learned from the respective   PWs between PE1-rs and other PE devices in the full mesh, to minimize   the relearning and flooding in the network.  In the example above,   only the MAC addresses in sets X and Y (shown in Figure 2) need to be   flushed across the core.   The same case is applicable when PE1-rs and PE2-rs are dual-homing   aware and participate in a designated forwarder election.  When   PE2-rs becomes the active device for the MTU-s, then PE2-rs MAY   initiate MAC flushing towards the core.  The receiving action of the   MAC flush message in other PE-rs devices is the same as in MAC   flushing initiated by the MTU-s.  This is the behavior specified in   [RFC4762].Dutta, et al.                Standards Track                   [Page 12]

RFC 7361           Optimized MAC Withdrawal in H-VPLS     September 20144.1.2.  MAC Flushing Optimization for Native Ethernet Access   The analysis inSection 4.1.1 applies also to the native Ethernet   access into a VPLS.  In such a scenario, one active endpoint and one   or more standby endpoints terminate into two or more VPLS or H-VPLS   PE-rs devices.  Examples of this dual-homed access are ITU-T   [ITU.G8032] access rings or any proprietary multi-chassis Link   Aggregation Group (LAG) emulations.  Upon failure of the active   native Ethernet endpoint on PE1-rs, an optimized MAC flush message is   required to be initiated by PE1-rs to ensure that on PE2-rs, PE3-rs,   and PE4-rs only the MAC addresses learned from the respective PWs   connected to PE1-rs are being flushed.4.2.  Black-Holing Issue in PBB-VPLS   In a PBB-VPLS deployment, a B-component VPLS (B-VPLS) may be used as   infrastructure to support one or more I-component instances.  The   B-VPLS control plane (LDP Signaling) and learning of Backbone MACs   (B-MACs) replace the I-component control plane and learning of   Customer MACs (C-MACs) throughout the MPLS core.  This raises an   additional challenge related to black-hole avoidance in the   I-component domain as described in this section.  Figure 3 describes   the case of a Customer Edge (CE) device (node A) dual-homed to two   I-component instances located on two PBB-VPLS PEs (PE1-rs and   PE2-rs).                              IP/MPLS Core                            +--------------+                            |PE2-rs        |                           +----+          |                           |PBB |          |                           |VPLS|   +-+    |                           |(B2)|---|P|    |                      Stby/+----+  /+-+\   |PE3-rs                         / +----+ /     \+----+                   +---+/  |PBB |/  +-+  |PBB |   +---+          C-MAC X--|CE |---|VPLS|---|P|--|VPLS|---|CE |--C-MAC Y                   |   |Act|(B1)|   +-+  |    |   |   |                   +---+   +----+        +----+   +---+                     A      |PE1-rs        |        B                            |              |                            +--------------+        Figure 3: PBB Black-Holing Issue - CE Dual-Homing Use Case   The link between PE1-rs and CE-A is active (marked with A), while the   link between CE-A and PE2-rs is in standby/blocked status.  In the   network diagram, C-MAC X is one of the MAC addresses located behindDutta, et al.                Standards Track                   [Page 13]

RFC 7361           Optimized MAC Withdrawal in H-VPLS     September 2014   CE-A in the customer domain, C-MAC Y is behind CE-B, and the B-VPLS   instances on PE1-rs are associated with B-MAC B1 and PE2-rs with   B-MAC B2.   As the packets flow from C-MAC X to C-MAC Y through PE1-rs with   B-MAC B1, the remote PE-rs devices participating in the B-VPLS with   the same I-SID (for example, PE3-rs) will learn the C-MAC X   associated with B-MAC B1 on PE1-rs.  Under a failure condition of the   link between CE-A and PE1-rs and on activation of the link to PE2-rs,   the remote PE-rs devices (for example, PE3-rs) will forward the   traffic destined for C-MAC X to B-MAC B1, resulting in PE1-rs black-   holing that traffic until the aging timer expires or a packet flows   from X to Y through PE2-rs (B-MAC B2).  This may take a long time   (the default aging timer is 5 minutes) and may affect a large number   of flows across multiple I-components.   A possible solution to this issue is to use the existing LDP MAC   flushing method as specified in [RFC4762] to flush the B-MAC   associated with the PE-rs in the B-VPLS domain where the failure   occurred.  This will automatically flush the C-MAC-to-B-MAC   association in the remote PE-rs devices.  This solution has the   disadvantage of producing a lot of unnecessary MAC flushing in the   B-VPLS domain as there was no failure or topology change affecting   the Backbone domain.   A better solution -- one that would propagate the I-component events   through the backbone infrastructure (B-VPLS) -- is required in order   to flush only the C-MAC-to-B-MAC associations in the remote PBB-VPLS-   capable PE-rs devices.  Since there are no I-component control-plane   exchanges across the PBB backbone, extensions to the B-VPLS control   plane are required to propagate the I-component MAC flushing events   across the B-VPLS.5.  Solution Description   This section describes the solution for the problem space described   inSection 4.5.1.  MAC Flushing Optimization for VPLS Resiliency   The basic principle of the optimized MAC flush mechanism is explained   with reference to Figure 2.  The optimization is achieved by   initiating MAC flushing on failure as described inSection 3.2.   PE1-rs would initiate MAC flushing towards the core on detection of   failure of the primary spoke PW between the MTU-s and PE1-rs (or   status change from active to standby [RFC6718]).  This method is   referred to as "MAC flushing on failure" throughout this document.Dutta, et al.                Standards Track                   [Page 14]

RFC 7361           Optimized MAC Withdrawal in H-VPLS     September 2014   The MAC flush message would indicate to receiving PE-rs devices to   flush all MACs learned over the PW in the context of the VPLS for   which the MAC flush message is received.  Each PE-rs device in the   full mesh that receives the message identifies the VPLS instance and   its respective PW that terminates in PE1-rs from the FEC TLV received   in the message and/or LDP session.  Thus, the PE-rs device flushes   only the MAC addresses learned from that PW connected to PE1-rs,   minimizing the required relearning and the flooding throughout the   VPLS domain.   This section defines a generic MAC Flush Parameters TLV for LDP   [RFC5036].  Throughout this document, the MAC Flush Parameters TLV is   also referred to as the "MAC Flush TLV".  A MAC Flush TLV carries   information on the desired action at the PE-rs device receiving the   message and is used for optimized MAC flushing in VPLS.  The MAC   Flush TLV can also be used for the [RFC4762] style of MAC flushing as   explained inSection 3.5.1.1.  MAC Flush Parameters TLV   The MAC Flush Parameters TLV is described below:     0                   1                   2                   3     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |1|1|  MAC Flush TLV (0x0406)   |           Length              |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |     Flags     | Sub-TLV Type  |         Sub-TLV Length        |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |                Sub-TLV Variable-Length Value                  |    |                             "                                 |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The U-bit and F-bit [RFC5036] are set to forward if unknown so that   potential intermediate VPLS PE-rs devices unaware of the new TLV can   just propagate it transparently.  In the case of a B-VPLS network   that has PBB-VPLS in the core with no I-components attached, this   message can still be useful to edge B-VPLS devices that do have the   I-components with the I-SIDs and understand the message.  The MAC   Flush Parameters TLV type is 0x0406, as assigned by IANA.  The   encoding of the TLV follows the standard LDP TLV encoding described   in [RFC5036].   The TLV value field contains a 1-byte Flag field used as described   below.  Further, the TLV value MAY carry one or more sub-TLVs.  Any   sub-TLV definition for the above TLV MUST address the actions in   combination with other existing sub-TLVs.Dutta, et al.                Standards Track                   [Page 15]

RFC 7361           Optimized MAC Withdrawal in H-VPLS     September 2014   The detailed format for the Flags bit vector is described below:       0 1 2 3 4 5 6 7      +-+-+-+-+-+-+-+-+      |C|N|    MBZ    | (MBZ = MUST Be Zero)      +-+-+-+-+-+-+-+-+      The 1-byte Flag field is mandatory.  The following flags are      defined:      C-flag: Used to indicate the context of the PBB-VPLS component in         which MAC flushing is required.  For PBB-VPLS, there are two         contexts of MAC flushing -- the Backbone VPLS (B-component         VPLS) and the Customer VPLS (I-component VPLS).  The C-flag         MUST be ZERO (C = 0) when a MAC flush action for the B-VPLS is         required and MUST be set (C = 1) when the MAC flush action for         the I-component is required.  In the regular H-VPLS case, the         C-flag MUST be ZERO (C = 0) to indicate that the flush applies         to the current VPLS context.      N-flag: Used to indicate whether a positive (N = 0,         flush-all-but-mine) or negative (N = 1, flush-all-from-me) MAC         flush action is required.  The source (mine/me) is defined as         the PW associated with either the LDP session on which the LDP         MAC withdraw was received or the B-MAC(s) listed in the B-MAC         Sub-TLV.  For the optimized MAC flush procedure described in         this section, the flag MUST be set (N = 1).      Detailed usage in the context of PBB-VPLS is explained inSection 5.2.      MBZ flags: The rest of the flags SHOULD be set to zero on         transmission and ignored on reception.      The MAC Flush TLV SHOULD be placed after the existing TLVs in the      [RFC4762] MAC flush message.5.1.2.  Application of the MAC Flush TLV in Optimized MAC Flushing   When optimized MAC flushing is supported, the MAC Flush TLV MUST be   sent in an existing LDP address withdraw message with an empty MAC   list but from the core PE-rs on detection of failure of its   local/primary spoke PW.  The N-bit in the TLV MUST be set to 1 to   indicate flush-all-from-me.  If the optimized MAC flush procedure is   used in a Backbone VPLS or regular VPLS/H-VPLS context, the C-bit   MUST be ZERO (C = 0).  If it is used in an I-component context, the   C-bit MUST be set (C = 1).  SeeSection 5.2 for details of its usage   in the context of PBB-VPLS.Dutta, et al.                Standards Track                   [Page 16]

RFC 7361           Optimized MAC Withdrawal in H-VPLS     September 2014   Note that the assumption is that the MAC Flush TLV is understood by   all devices before it is turned on in any network.  SeeSection 6   ("Operational Considerations").   When optimized MAC flushing is not supported, the MAC withdraw   procedures defined in [RFC4762], where either the MTU-s or PE2-rs   sends the MAC withdraw message, SHOULD be used.  This includes the   case where the network is being changed to support optimized MAC   flushing but not all devices are capable of understanding optimized   MAC flush messages.   In the case of B-VPLS devices, the optimized MAC flush message SHOULD   be supported.5.1.3.  MAC Flush TLV Processing Rules for Regular VPLS   This section describes the processing rules of the MAC Flush TLV that   MUST be followed in the context of optimized MAC flush procedures   in VPLS.   When optimized MAC flushing is supported, a multi-homing PE-rs   initiates a MAC flush message towards the other related VPLS PE-rs   devices when it detects a transition (failure or a change to standby)   in its active spoke PW.  In such a case the MAC Flush TLV MUST be   sent with N = 1.  A PE-rs device receiving the MAC Flush TLV SHOULD   follow the same processing rules as those described in this section.   Note that if a Multi-Segment Pseudowire (MS-PW) is used in VPLS, then   a MAC flush message is processed only at the PW Terminating Provider   Edge (T-PE) nodes, since PW Switching Provider Edge S-PE(s) traversed   by the MS-PW propagates the MAC flush messages without any action.   In this section, a PE-rs device signifies only a T-PE in the MS-PW   case.   When a PE-rs device receives a MAC Flush TLV with N = 1, it SHOULD   flush all the MAC addresses learned from the PW in the VPLS in the   context on which the MAC flush message is received.  It is assumed   that when these procedures are used all nodes support the MAC flush   message.  SeeSection 6 ("Operational Considerations") for details.   When optimized MAC flushing is not supported, a MAC Flush TLV is   received with N = 0 in the MAC flush message; in such a case, the   receiving PE-rs SHOULD flush the MAC addresses learned from all PWs   in the VPLS instance, except the ones learned over the PW on which   the message is received.Dutta, et al.                Standards Track                   [Page 17]

RFC 7361           Optimized MAC Withdrawal in H-VPLS     September 2014   Regardless of whether optimized MAC flushing is supported, if a PE-rs   device receives a MAC flush message with a MAC Flush TLV option   (N = 0 or N = 1) and a valid MAC address list, it SHOULD ignore the   option and deal with MAC addresses explicitly as per [RFC4762].5.1.4.  Optimized MAC Flush Procedures   This section expands on the optimized MAC flush procedure in the   scenario shown in Figure 2.   When optimized MAC flushing is being used, a PE-rs that is dual-   homing aware SHOULD send MAC address messages with a MAC Flush TLV   and N = 1, provided the other PEs understand the new messages.  Upon   receipt of the MAC flush message, PE2-rs identifies the VPLS instance   that requires MAC flushing from the FEC element in the FEC TLV.  On   receiving N = 1, PE2-rs removes all MAC addresses learned from that   PW over which the message is received.  The same action is performed   by PE3-rs and PE4-rs.   Figure 4 shows another redundant H-VPLS topology to protect against   failure of the MTU-s device.  In this case, since there is more than   a single MTU-S, a protocol such as provider RSTP [IEEE.802.1Q-2011]   may be used as the selection algorithm for active and backup PWs in   order to maintain the connectivity between MTU-s devices and PE-rs   devices at the edge.  It is assumed that PE-rs devices can detect   failure on PWs in either direction through OAM mechanisms (for   instance, Virtual Circuit Connectivity Verification (VCCV)   procedures).              MTU-1================PE1-rs==============PE3-rs                ||                  || \             /||                ||  Redundancy      ||  \           / ||                ||  Provider RSTP   ||   Full Mesh .  ||                ||                  ||  /           \ ||                ||                  || /             \||              MTU-2----------------PE2-rs==============PE4-rs                     Backup PW                  Figure 4: Redundancy with Provider RSTP   MTU-1, MTU-2, PE1-rs, and PE2-rs participate in provider RSTP.   Configuration using RSTP ensures that the PW between MTU-1 and PE1-rs   is active and the PW between MTU-2 and PE2-rs is blocked (made   backup) at the MTU-2 end.  When the active PW failure is detected by   RSTP, it activates the PW between MTU-2 and PE2-rs.  When PE1-rs   detects the failing PW to MTU-1, it MAY trigger MAC flushing into the   full mesh with a MAC Flush TLV that carries N = 1.  Other PE-rsDutta, et al.                Standards Track                   [Page 18]

RFC 7361           Optimized MAC Withdrawal in H-VPLS     September 2014   devices in the full mesh that receive the MAC flush message identify   their respective PWs terminating on PE1-rs and flush all the MAC   addresses learned from it.   [RFC4762] describes a multi-domain VPLS service where fully meshed   VPLS networks (domains) are connected together by a single spoke PW   per VPLS service between the VPLS "border" PE-rs devices.  To provide   redundancy against failure of the inter-domain spoke, full mesh of   inter-domain spokes can be set up between border PE-rs devices, and   provider RSTP may be used for selection of the active inter-domain   spoke.  In the case of inter-domain spoke PW failure, MAC withdrawal   initiated by PE-rs MAY be used for optimized MAC flush procedures   within individual domains.   Further, the procedures are applicable to any native Ethernet access   topologies multi-homed to two or more VPLS PE-rs devices.  The text   in this section applies for the native Ethernet case where   active/standby PWs are replaced with the active/standby Ethernet   endpoints.  An optimized MAC flush message can be generated by the   VPLS PE-rs that detects the failure in the primary Ethernet access.5.2.  LDP MAC Flush Extensions for PBB-VPLS   The use of an address withdraw message with a MAC List TLV is   proposed in [RFC4762] as a way to expedite removal of MAC addresses   as the result of a topology change (e.g., failure of a primary link   of a VPLS PE-rs device and, implicitly, the activation of an   alternate link in a dual-homing use case).  These existing procedures   apply individually to B-VPLS and I-component domains.   When it comes to reflecting topology changes in access networks   connected to I-components across the B-VPLS domain, certain additions   should be considered, as described below.   MAC switching in PBB is based on the mapping of Customer MACs   (C-MACs) to one or more Backbone MACs (B-MACs).  A topology change in   the access (I-component domain) should just invoke the flushing of   C-MAC entries in the PBB PEs' FIB(s) associated with the   I-component(s) impacted by the failure.  There is a need to indicate   the PBB PE (B-MAC source) that originated the MAC flush message to   selectively flush only the MACs that are affected.   These goals can be achieved by including the MAC Flush Parameters TLV   in the LDP address withdraw message to indicate the particular   domain(s) requiring MAC flushing.  On the other end, the receiving   PEs SHOULD use the information from the new TLV to flush only the   related FIB entry/entries in the I-component instance(s).Dutta, et al.                Standards Track                   [Page 19]

RFC 7361           Optimized MAC Withdrawal in H-VPLS     September 2014   At least one of the following sub-TLVs MUST be included in the MAC   Flush Parameters TLV if the C-flag is set to 1:   o  PBB B-MAC List Sub-TLV:      Type: 0x0407      Length: Value length in octets.  At least one B-MAC address MUST      be present in the list.      Value: One or a list of 48-bit B-MAC addresses.  These are the      source B-MAC addresses associated with the B-VPLS instance that      originated the MAC withdraw message.  It will be used to identify      the C-MAC(s) mapped to the B-MAC(s) listed in the sub-TLV.   o  PBB I-SID List Sub-TLV:      Type: 0x0408      Length: Value length in octets.  Zero indicates an empty I-SID      list.  An empty I-SID list means that the flushing applies to all      the I-SIDs mapped to the B-VPLS indicated by the FEC TLV.      Value: One or a list of 24-bit I-SIDs that represent the      I-component FIB(s) where the MAC flushing needs to take place.5.2.1.  MAC Flush TLV Processing Rules for PBB-VPLS   The following steps describe the details of the processing rules for   the MAC Flush TLV in the context of PBB-VPLS.  In general, these   procedures are similar to the VPLS case but are tailored to PBB,   which may have a large number of MAC addresses.  In PBB, there are   two sets of MAC addresses: Backbone (outer) MACs (B-MACs) and   Customer (inner) MACs (C-MACs).  C-MACs are associated to remote   B-MACs by learning.  There are also I-SIDs in PBB; I-SIDs are similar   to VLANs for the purposes of the discussion in this section.  In   order to achieve behavior that is similar to the Regular VPLS case,   there are some differences in the interpretation of the optimized MAC   flush message.   1. Positive flush of C-MACs.  This is equivalent to [RFC4762] MAC      flushing in a PBB context.  In this case, the N-bit is set to 0;      the C-bit is set to 1, and C-MACs are to be flushed.  However,      since C-MACs are related to B-MACs in an I-SID context, further      refinement of the flushing scope is possible.Dutta, et al.                Standards Track                   [Page 20]

RFC 7361           Optimized MAC Withdrawal in H-VPLS     September 2014      - If an I-SID needs to be flushed (all C-MACs within that I-SID),        then I-SIDs are listed in the appropriate TLV.  If all I-SIDs        are to have the C-MACs flushed, then the I-SID TLV can be empty.        It is typical to flush a single I-SID only, since each I-SID is        associated with one or more interfaces (typically one, in the        case of dual-homing).  In the PBB case, flushing the I-SID is        equivalent to the empty MAC list discussed in [RFC4762].      - If only a set of B-MAC-to-C-MAC associations needs to be        flushed, then a B-MAC list can be included to further refine the        list.  This can be the case if an I-SID component has more than        one interface and a B-MAC is used to refine the granularity.        Since this is a positive MAC flush message, the intended        behavior is to flush all C-MACs except those that are associated        with B-MACs in the list.        Positive flush of B-MACs is also useful for propagating flush        from other protocols such as RSTP.   2. Negative flush of C-MACs.  This is equivalent to optimized MAC      flushing.  In this case, the N-bit is set to 1; the C-bit is set      to 1, and a list of B-MACs is provided so that the respective      C-MACs can be flushed.      - The I-SID list SHOULD be specified.  If it is absent, then all        I-SIDs require that the C-MACs be flushed.      - A set of B-MACs SHOULD be listed, since B-MAC-to-C-MAC        associations need to be flushed and listing B-MACs scopes the        flush to just those B-MACs.  Again, this is typical usage,        because a PBB VPLS I-component interface will have one        associated I-SID and typically one (but possibly more than one)        B-MAC, each with multiple remotely learned C-MACs.  The B-MAC        list is included to further refine the list for the remote        receiver.  Since this is a negative MAC flush message, the        intended behavior is to flush all remote C-MACs that are        associated with any B-MACs in the list (in other words, from the        affected interface).   The processing rules on reception of the MAC flush message are:   - On Backbone Core Bridges (BCBs), if the C-bit is set to 1, then the     PBB-VPLS SHOULD NOT flush their B-MAC FIBs.  The B-VPLS control     plane SHOULD propagate the MAC flush message following the data-     plane split-horizon rules to the established B-VPLS topology.Dutta, et al.                Standards Track                   [Page 21]

RFC 7361           Optimized MAC Withdrawal in H-VPLS     September 2014   - On Backbone Edge Bridges (BEBs), the following actions apply:      - The PBB I-SID list is used to determine the particular I-SID        FIBs (I-component) that need to be considered for flushing        action.  If the PBB I-SID List Sub-TLV is not included in a        received message, then all the I-SID FIBs associated with the        receiving B-VPLS SHOULD be considered for flushing action.      - The PBB B-MAC list is used to identify from the I-SID FIBs in        the previous step to selectively flush B-MAC-to-C-MAC        associations, depending on the N-flag specified below.  If the        PBB B-MAC List Sub-TLV is not included in a received message,        then all B-MAC-to-C-MAC associations in all I-SID FIBs        (I-component) as specified by the I-SID List are considered for        required flushing action, again depending on the N-flag        specified below.      - Next, depending on the N-flag value, the following actions        apply:        - N = 0: all the C-MACs in the selected I-SID FIBs SHOULD be          flushed, with the exception of the resultant C-MAC list from          the B-MAC list mentioned in the message ("flush all but the          C-MACs associated with the B-MAC(s) in the B-MAC List Sub-TLV          from the FIBs associated with the I-SID list").        - N = 1: all the resultant C-MACs SHOULD be flushed ("flush all          the C-MACs associated with the B-MAC(s) in the B-MAC List          Sub-TLV from the FIBs associated with the I-SID list").5.2.2.  Applicability of the MAC Flush Parameters TLV   If the MAC Flush Parameters TLV is received by a Backbone Edge Bridge   (BEB) in a PBB-VPLS that does not understand the TLV, then an   undesirable MAC flushing action may result.  It is RECOMMENDED that   all PE-rs devices participating in PBB-VPLS support the MAC Flush   Parameters TLV.  If this is not possible, the MAC Flush Parameters   TLV SHOULD be disabled, as mentioned inSection 6 ("Operational   Considerations").   "Mac Flush TLV" and its formal name -- "MAC Flush Parameters TLV" --   are synonymous.  The MAC Flush TLV is applicable to the regular VPLS   context as well, as explained inSection 3.1.1.  To achieve negative   MAC flushing (flush-all-from-me) in a regular VPLS context, the MAC   Flush Parameters TLV SHOULD be encoded with C = 0 and N = 1 withoutDutta, et al.                Standards Track                   [Page 22]

RFC 7361           Optimized MAC Withdrawal in H-VPLS     September 2014   inclusion of any Sub-TLVs.  A negative MAC flush message is highly   desirable in scenarios where VPLS access redundancy is provided by   Ethernet ring protection as specified in the ITU-T G.8032 [ITU.G8032]   specification.6.  Operational Considerations   As mentioned earlier, if the MAC Flush Parameters TLV is not   understood by a receiver, then an undesirable MAC flushing action   would result.  To avoid this, one possible solution is to develop an   LDP-based capability negotiation mechanism to negotiate support of   various MAC flushing capabilities between PE-rs devices in a VPLS   instance.  A negotiation mechanism was discussed previously and was   considered outside the scope of this document.  Negotiation is not   required to deploy this optimized MAC flushing as described in this   document.   VPLS may be used with or without the optimization.  If an operator   wants the optimization for VPLS, it is the operator's responsibility   to make sure that the VPLS devices that are capable of supporting the   optimization are properly configured.  From an operational   standpoint, it is RECOMMENDED that implementations of the solution   provide administrative control to select the desired MAC flushing   action towards a PE-rs device in the VPLS.  Thus, in the topology   described in Figure 2, an implementation could support PE1-rs,   sending optimized MAC flush messages towards the PE-rs devices that   support the solution and the PE2-rs device initiating the [RFC4762]   style of MAC flush messages towards the PE-rs devices that do not   support the optimized solution during upgrades.  The PE-rs that   supports the MAC Flush Parameters TLV MUST support theRFC 4762 MAC   flushing procedures, since this document only augments them.   In the case of PBB-VPLS, this operation is the only method supported   for specifying I-SIDs, and the optimization is assumed to be   supported or should be turned off, reverting to flushing using   [RFC4762] at the Backbone MAC level.Dutta, et al.                Standards Track                   [Page 23]

RFC 7361           Optimized MAC Withdrawal in H-VPLS     September 20147.  IANA Considerations7.1.  New LDP TLV   IANA maintains a registry called "Label Distribution Protocol (LDP)   Parameters" with a sub-registry called "TLV Type Name Space".   IANA has allocated three new code points as follows:       Value | Description               | Reference  | Notes      -------+---------------------------+------------+-----------      0x0406 | MAC Flush Parameters TLV  | [RFC7361]  |      0x0407 | PBB B-MAC List Sub-TLV    | [RFC7361]  |      0x0408 | PBB I-SID List Sub-TLV    | [RFC7361]  |7.2.  New Registry for MAC Flush Flags   IANA has created a new sub-registry under "Label Distribution   Protocol (LDP) Parameters" called "MAC Flush Flags".   IANA has populated the registry as follows:   Bit Number | Hex  | Abbreviation | Description           | Reference   -----------+------+--------------+-----------------------+-----------     0        | 0x80 | C            | Context               | [RFC7361]     1        | 0x40 | N            | Negative MAC flushing | [RFC7361]     2-7      |      |              | Unassigned            |   Other new bits are to be assigned by Standards Action [RFC5226].8.  Security Considerations   Control-plane aspects:      LDP security (authentication) methods as described in [RFC5036]      are applicable here.  Further, this document implements security      considerations as discussed in [RFC4447] and [RFC4762].  The      extensions defined here optimize the MAC flushing action, and so      the risk of security attacks is reduced.  However, in the event      that the configuration of support for the new TLV can be spoofed,      sub-optimal behavior will be seen.   Data-plane aspects:      This specification does not have any impact on the VPLS forwarding      plane but can improve MAC flushing behavior.Dutta, et al.                Standards Track                   [Page 24]

RFC 7361           Optimized MAC Withdrawal in H-VPLS     September 20149.  Contributing Author   The authors would like to thank Marc Lasserre, who made a major   contribution to the development of this document.      Marc Lasserre      Alcatel-Lucent      EMail: marc.lasserre@alcatel-lucent.com10.  Acknowledgements   The authors would like to thank the following people who have   provided valuable comments, feedback, and review on the topics   discussed in this document: Dimitri Papadimitriou, Jorge Rabadan,   Prashanth Ishwar, Vipin Jain, John Rigby, Ali Sajassi, Wim   Henderickx, Paul Kwok, Maarten Vissers, Daniel Cohn, Nabil Bitar,   Giles Heron, Adrian Farrel, Ben Niven-Jenkins, Robert Sparks, Susan   Hares, and Stephen Farrell.11.  References11.1.  Normative References   [RFC2119]   Bradner, S., "Key words for use in RFCs to Indicate               Requirement Levels",BCP 14,RFC 2119, March 1997.   [RFC4447]   Martini, L., Ed., Rosen, E., El-Aawar, N., Smith, T., and               G. Heron, "Pseudowire Setup and Maintenance Using the               Label Distribution Protocol (LDP)",RFC 4447, April 2006.   [RFC4762]   Lasserre, M., Ed., and V. Kompella, Ed., "Virtual Private               LAN Service (VPLS) Using Label Distribution Protocol               (LDP) Signaling",RFC 4762, January 2007.   [RFC5036]   Andersson, L., Ed., Minei, I., Ed., and B. Thomas, Ed.,               "LDP Specification",RFC 5036, October 2007.11.2.  Informative References   [IEEE.802.1Q-2011]               IEEE, "IEEE Standard for Local and metropolitan area               networks -- Media Access Control (MAC) Bridges and               Virtual Bridged Local Area Networks", IEEE Std 802.1Q,               2011.   [ITU.G8032] International Telecommunication Union, "Ethernet ring               protection switching", ITU-T Recommendation G.8032,               February 2012.Dutta, et al.                Standards Track                   [Page 25]

RFC 7361           Optimized MAC Withdrawal in H-VPLS     September 2014   [RFC4664]   Andersson, L., Ed., and E. Rosen, Ed., "Framework for               Layer 2 Virtual Private Networks (L2VPNs)",RFC 4664,               September 2006.   [RFC5226]   Narten, T. and H. Alvestrand, "Guidelines for Writing an               IANA Considerations Section in RFCs",BCP 26,RFC 5226,               May 2008.   [RFC6073]   Martini, L., Metz, C., Nadeau, T., Bocci, M., and M.               Aissaoui, "Segmented Pseudowire",RFC 6073, January 2011.   [RFC6718]   Muley, P., Aissaoui, M., and M. Bocci, "Pseudowire               Redundancy",RFC 6718, August 2012.   [RFC7041]   Balus, F., Ed., Sajassi, A., Ed., and N. Bitar, Ed.,               "Extensions to the Virtual Private LAN Service (VPLS)               Provider Edge (PE) Model for Provider Backbone Bridging",RFC 7041, November 2013.   [VPLS-MH]   Kothari, B., Kompella, K., Henderickx, W., Balus, F.,               Uttaro, J., Palislamovic, S., and W. Lin, "BGP based               Multi-homing in Virtual Private LAN Service", Work in               Progress, July 2014.Dutta, et al.                Standards Track                   [Page 26]

RFC 7361           Optimized MAC Withdrawal in H-VPLS     September 2014Authors' Addresses   Pranjal Kumar Dutta   Alcatel-Lucent   701 E Middlefield Road   Mountain View, CA  94043   USA   EMail: pranjal.dutta@alcatel-lucent.com   Florin Balus   Alcatel-Lucent   701 E Middlefield Road   Mountain View, CA  94043   USA   EMail: florin.balus@alcatel-lucent.com   Olen Stokes   Extreme Networks   2121 RDU Center Drive   Suite 300   Morrisville, NC  27650   USA   EMail: ostokes@extremenetworks.com   Geraldine Calvignac   Orange   2, avenue Pierre-Marzin   Lannion Cedex,  22307   France   EMail: geraldine.calvignac@orange.com   Don Fedyk   Hewlett-Packard Company   USA   EMail: don.fedyk@hp.comDutta, et al.                Standards Track                   [Page 27]

[8]ページ先頭

©2009-2025 Movatter.jp