Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Info page]

INFORMATIONAL
Internet Engineering Task Force (IETF)                          C. ByrneRequest for Comments: 7278                                  T-Mobile USACategory: Informational                                         D. DrownISSN: 2070-1721                                                A. Vizdal                                                     Deutsche Telekom AG                                                               June 2014Extending an IPv6 /64 Prefix from aThird Generation Partnership Project (3GPP)Mobile Interface to a LAN LinkAbstract   This document describes requirements for extending an IPv6 /64 prefix   from a User Equipment Third Generation Partnership Project (3GPP)   radio interface to a LAN link and describes two implementation   examples.Status of This Memo   This document is not an Internet Standards Track specification; it is   published for informational purposes.   This document is a product of the Internet Engineering Task Force   (IETF).  It represents the consensus of the IETF community.  It has   received public review and has been approved for publication by the   Internet Engineering Steering Group (IESG).  Not all documents   approved by the IESG are a candidate for any level of Internet   Standard; seeSection 2 of RFC 5741.   Information about the current status of this document, any errata,   and how to provide feedback on it may be obtained athttp://www.rfc-editor.org/info/rfc7278.Byrne, et al.                 Informational                     [Page 1]

RFC 7278              Extending an IPv6 /64 Prefix             June 2014Copyright Notice   Copyright (c) 2014 IETF Trust and the persons identified as the   document authors.  All rights reserved.   This document is subject toBCP 78 and the IETF Trust's Legal   Provisions Relating to IETF Documents   (http://trustee.ietf.org/license-info) in effect on the date of   publication of this document.  Please review these documents   carefully, as they describe your rights and restrictions with respect   to this document.  Code Components extracted from this document must   include Simplified BSD License text as described in Section 4.e of   the Trust Legal Provisions and are provided without warranty as   described in the Simplified BSD License.Table of Contents1. Introduction ....................................................3   2. The Challenge of Providing IPv6 Addresses to a LAN Link via a      3GPP UE .........................................................4   3. Requirements for Extending the 3GPP Interface /64 IPv6      Prefix to a LAN Link ............................................4   4. Example Methods for Extending the 3GPP Interface /64      IPv6 Prefix to a LAN Link .......................................54.1. General Behavior for All Example Scenarios .................5      4.2. Example Scenario 1: Global Address Only Assigned to           LAN Link ...................................................5      4.3. Example Scenario 2: A Single Global Address Assigned to a           3GPP Radio and LAN Link ....................................75. Security Considerations .........................................86. Acknowledgments .................................................87. Informative References ..........................................8Byrne, et al.                 Informational                     [Page 2]

RFC 7278              Extending an IPv6 /64 Prefix             June 20141.  Introduction   3GPP mobile cellular networks such as Global System for Mobile   Communications (GSM), Universal Mobile Telecommunications System   (UMTS), and Long Term Evolution (LTE) have architectural support for   IPv6 [RFC6459], but only 3GPP Release-10 and onwards of the 3GPP   specification [TS.23401] supports DHCPv6 Prefix Delegation [RFC3633]   for delegating IPv6 prefixes to a single LAN link.   To facilitate the use of IPv6 in a LAN prior to the deployment of   DHCPv6 Prefix Delegation in 3GPP networks and in User Equipment (UE),   this document describes requirements and provides examples on how the   3GPP UE radio interface assigned global /64 prefix may be extended   from the 3GPP radio interface to a LAN link.   There are two scenarios where this might be done.  The first is where   the 3GPP node sets up and manages its own LAN (e.g., an IEEE 802.11   Service Set Identifier (SSID)) and provides single-homed service to   hosts that connect to this LAN.  A second scenario is where the 3GPP   node connects to an existing LAN and acts as a router in order to   provide redundant or multi-homed IPv6 service.   This document is intended to address the first scenario; it is not   applicable to the second scenario, because the operational   complexities of the second scenario are not addressed.   This can be achieved by receiving the Router Advertisement (RA)   [RFC4861] announced globally unique /64 IPv6 prefix from the 3GPP   radio interface by the UE and then advertising the same IPv6 prefix   to the LAN link with RA.  For all of the cases in the scope of this   document, the UE may be any device that functions as an IPv6 router   between the 3GPP network and a LAN.   This document describes requirements for achieving an IPv6 prefix   extension from a 3GPP radio interface to a LAN link including two   practical implementation examples:   1) The 3GPP UE only has a global-scope address on the LAN link.   2) The 3GPP UE maintains the same consistent 128-bit global-scope      IPv6 anycast address [RFC4291] on the 3GPP radio interface and the      LAN link.  The LAN link is configured as a /64 and the 3GPP radio      interface is configured as a /128.Section 4 describes the characteristics of each of the two example   approaches.Byrne, et al.                 Informational                     [Page 3]

RFC 7278              Extending an IPv6 /64 Prefix             June 20141.2.  Special Language   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this   document are to be interpreted as described inRFC 2119 [RFC2119].   Note that this document is not a Standard, and conformance with it is   not required in order to claim conformance with IETF Standards for   IPv6.   This document uses the normative keywords only for precision.2.  The Challenge of Providing IPv6 Addresses to a LAN Link via a    3GPP UE   As described in [RFC6459], 3GPP networks assign a /64 global-scope   prefix to each UE using RA.  DHCPv6 Prefix Delegation is an optional   part of 3GPP Release-10 and is not covered by any earlier releases.   Neighbor Discovery Proxy (ND Proxy) [RFC4389] functionality has been   suggested as an option for extending the assigned /64 from the 3GPP   radio interface to the LAN link, but ND Proxy is an Experimental   protocol and has some limitations with loop avoidance.   DHCPv6 is the best way to delegate a prefix to a LAN link.  The   methods described in this document SHOULD only be applied when   deploying DHCPv6 Prefix Delegation is not achievable in the 3GPP   network and the UE.  The methods described in this document are at   various stages of implementation and deployment planning.  The goal   of this memo is to document the available methods that may be used   prior to DHCPv6 deployment.3.  Requirements for Extending the 3GPP Interface /64 IPv6 Prefix to a    LAN Link   R-1: The 3GPP network provided /64 prefix MUST be made available on      the LAN link.      LAN attached devices shall be able to use the 3GPP network      assigned IPv6 prefix (e.g. using IPv6 Stateless Address      Autoconfiguration - SLAAC [RFC4862]).   R-2: The UE MUST defend all of its IPv6 addresses on the LAN link.      In case a LAN attached node will, for example, autoconfigure the      same global IPv6 address as used on the 3GPP interface, the UE      must fail the Duplicate Address Detection (DAD) [RFC4862] process      run by the LAN node.Byrne, et al.                 Informational                     [Page 4]

RFC 7278              Extending an IPv6 /64 Prefix             June 2014   R-3: The LAN link configuration MUST be tightly coupled with the 3GPP      link state.   R-4: The UE MUST decrement the time to live (TTL) when passing      packets between IPv6 links across the UE.4.  Example Methods for Extending the 3GPP Interface /64 IPv6 Prefix to    a LAN Link4.1.  General Behavior for All Example Scenarios    As [RFC6459] describes, the 3GPP-network-assigned /64 is completely    dedicated to the UE and the gateway does not consume any of the /64    addresses.  The gateway routes the entire /64 to the UE and does not    perform ND or Neighbor Unreachability Detection (NUD) [RFC4861].    Communication between the UE and the gateway is only done using    link-local addresses and the link is point-to-point.  This allows    for the UE to reliably manipulate the /64 from the 3GPP radio    interface without negatively impacting the point-to-point 3GPP radio    link interface.  The LAN link RA configuration must be tightly    coupled with the 3GPP link state.  If the 3GPP link goes down or    changes the IPv6 prefix, that state should be reflected in the LAN    link IPv6 configuration.  Just as in a standard IPv6 router, the    packet TTL will be decremented when passing packets between IPv6    links across the UE.  The UE is employing the weak host model    [RFC1122].  The RA function on the UE is exclusively run on the LAN    link.    The LAN-link-originated RA message carries a copy of the following    3GPP radio-link-received RA message option fields:   o  MTU (if not provided by the 3GPP network, the UE will provide its      3GPP link MTU size)   o  Prefix Information4.2.  Example Scenario 1: Global Address Only Assigned to LAN Link   For this case, the UE receives the RA from the 3GPP network but does   not use a global address on the 3GPP interface.  The 3GPP-interface-   received RA /64 prefix information is used to configure the Neighbor   Discovery Protocol (NDP) on the LAN.  The UE assigns itself an IPv6   address on the LAN link from the 3GPP-interface-received RA.  The LAN   link uses RA to announce the prefix to the LAN.  The UE LAN link   interface defends its LAN IPv6 address with DAD.  The UE shall not   run SLAAC to assign a global address on the 3GPP radio interface   while routing is enabled.Byrne, et al.                 Informational                     [Page 5]

RFC 7278              Extending an IPv6 /64 Prefix             June 2014   This method allows the UE to originate and terminate IPv6   communications as a host while acting as an IPv6 router.  The   movement of the IPv6 prefix from the 3GPP radio interface to the LAN   link may result in long-lived data connections being terminated   during the transition from a host-only mode to router-and-host mode.   Connections that are likely to be affected are ones that have been   specifically bound to the 3GPP radio interface.  This method is   appropriate if the UE or software on the UE cannot support multiple   interfaces with the same anycast IPv6 address and the UE requires   global connectivity while acting as a router.   Below is the general procedure for this scenario:   1.  The user activates router functionality for a LAN on the UE.   2.  The UE checks to make sure the 3GPP interface is active and has       an IPv6 address.  If the interface does not have an IPv6 address,       an attempt will be made to acquire one; otherwise, the procedure       will terminate.   3.  In this example, the UE finds the 3GPP interface is active and       has the IPv6 address 2001:db8:ac10:f002:1234:4567:0:9 assigned.   4.  The UE moves the address 2001:db8:ac10:f002:1234:4567:0:9 as a       /64 from the 3GPP interfaces to the LAN link interface, disables       the IPv6 SLAAC feature on the 3GPP radio interface to avoid       address autoconfiguration, and begins announcing the prefix       2001:db8:ac10:f002::/64 via RA to the LAN.  For this example, the       LAN has 2001:db8:ac10:f002:1234:4567:0:9/64 and the 3GPP radio       only has a link-local address.   5.  The UE directly processes all packets destined to itself at       2001:db8:ac10:f002:1234:4567:0:9.   6.  The UE, acting as a router running NDP on the LAN, will route       packets to and from the LAN.  IPv6 packets passing between       interfaces will have the TTL decremented.   7.  On the LAN link interface, there is no chance of address conflict       since the address is defended using DAD.  The 3GPP radio       interface only has a link-local address.Byrne, et al.                 Informational                     [Page 6]

RFC 7278              Extending an IPv6 /64 Prefix             June 20144.3.  Example Scenario 2: A Single Global Address Assigned to a      3GPP Radio and LAN Link   In this method, the UE assigns itself one address from the 3GPP-   network RA-announced /64.  This one address is configured as anycast   [RFC4291] on both the 3GPP radio link as a /128 and on the LAN link   as a /64.  This allows the UE to maintain long-lived data connections   since the 3GPP radio interface address does not change when the   router function is activated.  This method may cause complications   for certain software that may not support multiple interfaces with   the same anycast IPv6 address, or are sensitive to prefix length   changes.  This method also creates complications for ensuring   uniqueness for Privacy Extensions [RFC4941].  When Privacy Extensions   are in use, all temporary addresses will be copied from the 3GPP   radio interface to the LAN link.  The preferred and valid lifetimes   will be synchronized, such that the temporary anycast addresses on   both interfaces expire simultaneously.   There might also be more complex scenarios in which the prefix length   is not changed and privacy extensions are supported by having the   subnet span multiple interfaces, as ND Proxy does [RFC4389].  Further   elaboration is out of scope of the present document.   Below is the general procedure for this scenario:   1.  The user activates router functionality for a LAN on the UE.   2.  The UE checks to make sure the 3GPP interface is active and has       an IPv6 address.  If the interface does not have an IPv6 address,       an attempt will be made to acquire one; otherwise, the procedure       will terminate.   3.  In this example, the UE finds the 3GPP interface is active and       has the IPv6 address 2001:db8:ac10:f002:1234:4567:0:9 assigned.   4.  The UE moves the address 2001:db8:ac10:f002:1234:4567:0:9 as an       anycast /64 from the 3GPP interface to the LAN interface and       begins announcing the prefix 2001:db8:ac10:f002::/64 via RA to       the LAN.  The 3GPP interface maintains the same IPv6 anycast       address with a /128.  For this example, the LAN has       2001:db8:ac10:f002:1234:4567:0:9/64 and the 3GPP radio interface       has 2001:db8:ac10:f002:1234:4567:0:9/128.   5.  The UE directly processes all packets destined to itself at       2001:db8:ac10:f002:1234:4567:0:9.Byrne, et al.                 Informational                     [Page 7]

RFC 7278              Extending an IPv6 /64 Prefix             June 2014   6.  On the LAN interface, there is no chance of address conflict       since the address is defended using DAD.  The 3GPP radio       interface only has a /128 and no other systems on the 3GPP radio       point-to-point link may use the global /64.5.  Security Considerations   Since the UE will be switched from an IPv6 host mode to an IPv6   router-and-host mode, basic IPv6 Customer Premises Equipment (CPE)   security functions [RFC6092] SHOULD be applied.   Despite the use of temporary IPv6 addresses, the mobile-network-   provided /64 prefix is common to all the LAN-attached devices   potentially concerning privacy.  An IPv6 prefix provided by a nomadic   device (e.g., a smartphone) is not a long-lived one due to   re-attaches caused by a device reload, traveling through loosely   covered areas, etc.  The network will provide a new IPv6 prefix after   a successful re-attach.   3GPP-mobile-network-capable CPEs (e.g., a router) are likely to keep   the mobile network data connection up for a longer time.  Some mobile   networks may be re-setting the mobile network connection regularly   (e.g., every 24 hours), others may not.  Privacy-concerned users   shall take appropriate measures to not keep their IPv6 prefixes long   lived.6.  Acknowledgments   Many thanks for review and discussion from Dave Thaler, Sylvain   Decremps, Mark Smith, Dmitry Anipko, Masanobu Kawashima, Teemu   Savolainen, Mikael Abrahamsson, Eric Vyncke, Alexandru Petrescu,   Jouni Korhonen, Lorenzo Colitti, Julien Laganier, Owen DeLong, Holger   Metschulat, Yaron Sheffer, and Victor Kuarsingh.  Special thanks to   Ann Cerveny for her language review.7.  Informative References   [RFC1122]  Braden, R., Ed., "Requirements for Internet Hosts -              Communication Layers", STD 3,RFC 1122, October 1989.   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate              Requirement Levels",BCP 14,RFC 2119, March 1997.   [RFC3633]  Troan, O. and R. Droms, "IPv6 Prefix Options for Dynamic              Host Configuration Protocol (DHCP) version 6",RFC 3633,              December 2003.Byrne, et al.                 Informational                     [Page 8]

RFC 7278              Extending an IPv6 /64 Prefix             June 2014   [RFC4291]  Hinden, R. and S. Deering, "IP Version 6 Addressing              Architecture",RFC 4291, February 2006.   [RFC4389]  Thaler, D., Talwar, M., and C. Patel, "Neighbor Discovery              Proxies (ND Proxy)",RFC 4389, April 2006.   [RFC4861]  Narten, T., Nordmark, E., Simpson, W., and H. Soliman,              "Neighbor Discovery for IP version 6 (IPv6)",RFC 4861,              September 2007.   [RFC4862]  Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless              Address Autoconfiguration",RFC 4862, September 2007.   [RFC4941]  Narten, T., Draves, R., and S. Krishnan, "Privacy              Extensions for Stateless Address Autoconfiguration in              IPv6",RFC 4941, September 2007.   [RFC6092]  Woodyatt, J., Ed., "Recommended Simple Security              Capabilities in Customer Premises Equipment (CPE) for              Providing Residential IPv6 Internet Service",RFC 6092,              January 2011.   [RFC6459]  Korhonen, J., Ed., Soininen, J., Patil, B., Savolainen,              T., Bajko, G., and K. Iisakkila, "IPv6 in 3rd Generation              Partnership Project (3GPP) Evolved Packet System (EPS)",RFC 6459, January 2012.   [TS.23401] 3GPP, "General Packet Radio Service (GPRS) enhancements              for Evolved Universal Terrestrial Radio Access Network              (E-UTRAN) access", 3GPP TS 23.401 10.0.0, June 2010.Byrne, et al.                 Informational                     [Page 9]

RFC 7278              Extending an IPv6 /64 Prefix             June 2014Authors' Addresses   Cameron Byrne   T-Mobile USA   Bellevue, Washington, USA   EMail: Cameron.Byrne@T-Mobile.com   Dan Drown   EMail: Dan@Drown.org   Ales Vizdal   Deutsche Telekom AG   Tomickova 2144/1   Prague, 149 00   Czech Republic   EMail: Ales.Vizdal@T-Mobile.czByrne, et al.                 Informational                    [Page 10]

[8]ページ先頭

©2009-2025 Movatter.jp