Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Errata] [Info page]

BEST CURRENT PRACTICE
Errata Exist
Internet Engineering Task Force (IETF)                        B. BriscoeRequest for Comments: 7141                                            BTBCP: 41                                                        J. MannerUpdates:2309,2914                                     Aalto UniversityCategory: Best Current Practice                            February 2014ISSN: 2070-1721Byte and Packet Congestion NotificationAbstract   This document provides recommendations of best current practice for   dropping or marking packets using any active queue management (AQM)   algorithm, including Random Early Detection (RED), BLUE, Pre-   Congestion Notification (PCN), and newer schemes such as CoDel   (Controlled Delay) and PIE (Proportional Integral controller   Enhanced).  We give three strong recommendations: (1) packet size   should be taken into account when transports detect and respond to   congestion indications, (2) packet size should not be taken into   account when network equipment creates congestion signals (marking,   dropping), and therefore (3) in the specific case of RED, the byte-   mode packet drop variant that drops fewer small packets should not be   used.  This memo updatesRFC 2309 to deprecate deliberate   preferential treatment of small packets in AQM algorithms.Status of This Memo   This memo documents an Internet Best Current Practice.   This document is a product of the Internet Engineering Task Force   (IETF).  It represents the consensus of the IETF community.  It has   received public review and has been approved for publication by the   Internet Engineering Steering Group (IESG).  Further information on   BCPs is available inSection 2 of RFC 5741.   Information about the current status of this document, any errata,   and how to provide feedback on it may be obtained athttp://www.rfc-editor.org/info/rfc7141.Briscoe & Manner          Best Current Practice                 [Page 1]

RFC 7141         Byte and Packet Congestion Notification   February 2014Copyright Notice   Copyright (c) 2014 IETF Trust and the persons identified as the   document authors.  All rights reserved.   This document is subject toBCP 78 and the IETF Trust's Legal   Provisions Relating to IETF Documents   (http://trustee.ietf.org/license-info) in effect on the date of   publication of this document.  Please review these documents   carefully, as they describe your rights and restrictions with respect   to this document.  Code Components extracted from this document must   include Simplified BSD License text as described in Section 4.e of   the Trust Legal Provisions and are provided without warranty as   described in the Simplified BSD License.Briscoe & Manner          Best Current Practice                 [Page 2]

RFC 7141         Byte and Packet Congestion Notification   February 2014Table of Contents1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .41.1.  Terminology and Scoping . . . . . . . . . . . . . . . . .61.2.  Example Comparing Packet-Mode Drop and Byte-Mode Drop . .72.  Recommendations . . . . . . . . . . . . . . . . . . . . . . .92.1.  Recommendation on Queue Measurement . . . . . . . . . . .92.2.  Recommendation on Encoding Congestion Notification  . . .102.3.  Recommendation on Responding to Congestion  . . . . . . .11     2.4.  Recommendation on Handling Congestion Indications When           Splitting or Merging Packets  . . . . . . . . . . . . . .123.  Motivating Arguments  . . . . . . . . . . . . . . . . . . . .13     3.1.  Avoiding Perverse Incentives to (Ab)use Smaller Packets .  133.2.  Small != Control  . . . . . . . . . . . . . . . . . . . .143.3.  Transport-Independent Network . . . . . . . . . . . . . .143.4.  Partial Deployment of AQM . . . . . . . . . . . . . . . .163.5.  Implementation Efficiency . . . . . . . . . . . . . . . .174.  A Survey and Critique of Past Advice  . . . . . . . . . . . .174.1.  Congestion Measurement Advice . . . . . . . . . . . . . .184.1.1.  Fixed-Size Packet Buffers . . . . . . . . . . . . . .184.1.2.  Congestion Measurement without a Queue  . . . . . . .194.2.  Congestion Notification Advice  . . . . . . . . . . . . .204.2.1.  Network Bias When Encoding  . . . . . . . . . . . . .204.2.2.  Transport Bias When Decoding  . . . . . . . . . . . .22       4.2.3.  Making Transports Robust against Control Packet               Losses  . . . . . . . . . . . . . . . . . . . . . . .23       4.2.4.  Congestion Notification: Summary of Conflicting               Advice  . . . . . . . . . . . . . . . . . . . . . . .245.  Outstanding Issues and Next Steps . . . . . . . . . . . . . .255.1.  Bit-congestible Network . . . . . . . . . . . . . . . . .255.2.  Bit- and Packet-Congestible Network . . . . . . . . . . .266.  Security Considerations . . . . . . . . . . . . . . . . . . .267.  Conclusions . . . . . . . . . . . . . . . . . . . . . . . . .278.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .289.  References  . . . . . . . . . . . . . . . . . . . . . . . . .289.1.  Normative References  . . . . . . . . . . . . . . . . . .289.2.  Informative References  . . . . . . . . . . . . . . . . .29Appendix A.  Survey of RED Implementation Status  . . . . . . . .33Appendix B.  Sufficiency of Packet-Mode Drop  . . . . . . . . . .34B.1.  Packet-Size (In)Dependence in Transports  . . . . . . . .35B.2.  Bit-Congestible and Packet-Congestible Indications  . . .38Appendix C.  Byte-Mode Drop Complicates Policing Congestion                Response . . . . . . . . . . . . . . . . . . . . . .39Briscoe & Manner          Best Current Practice                 [Page 3]

RFC 7141         Byte and Packet Congestion Notification   February 20141.  Introduction   This document provides recommendations of best current practice for   how we should correctly scale congestion control functions with   respect to packet size for the long term.  It also recognises that   expediency may be necessary to deal with existing widely deployed   protocols that don't live up to the long-term goal.   When signalling congestion, the problem of how (and whether) to take   packet sizes into account has exercised the minds of researchers and   practitioners for as long as active queue management (AQM) has been   discussed.  Indeed, one reason AQM was originally introduced was to   reduce the lock-out effects that small packets can have on large   packets in tail-drop queues.  This memo aims to state the principles   we should be using and to outline how these principles will affect   future protocol design, taking into account pre-existing deployments.   The question of whether to take into account packet size arises at   three stages in the congestion notification process:   Measuring congestion:  When a congested resource measures locally how      congested it is, should it measure its queue length in time,      bytes, or packets?   Encoding congestion notification into the wire protocol:  When a      congested network resource signals its level of congestion, should      the probability that it drops/marks each packet depend on the size      of the particular packet in question?   Decoding congestion notification from the wire protocol:  When a      transport interprets the notification in order to decide how much      to respond to congestion, should it take into account the size of      each missing or marked packet?   Consensus has emerged over the years concerning the first stage,   whichSection 2.1 records in the RFC Series.  In summary: If   possible, it is best to measure congestion by time in the queue;   otherwise, the choice between bytes and packets solely depends on   whether the resource is congested by bytes or packets.   The controversy is mainly around the last two stages: whether to   allow for the size of the specific packet notifying congestion i)   when the network encodes or ii) when the transport decodes the   congestion notification.   Currently, the RFC series is silent on this matter other than a paper   trail of advice referenced from [RFC2309], which conditionally   recommends byte-mode (packet-size dependent) drop [pktByteEmail].Briscoe & Manner          Best Current Practice                 [Page 4]

RFC 7141         Byte and Packet Congestion Notification   February 2014   Reducing the number of small packets dropped certainly has some   tempting advantages: i) it drops fewer control packets, which tend to   be small and ii) it makes TCP's bit rate less dependent on packet   size.  However, there are ways of addressing these issues at the   transport layer, rather than reverse engineering network forwarding   to fix the problems.   This memo updates [RFC2309] to deprecate deliberate preferential   treatment of packets in AQM algorithms solely because of their size.   It recommends that (1) packet size should be taken into account when   transports detect and respond to congestion indications, (2) not when   network equipment creates them.  This memo also adds to the   congestion control principles enumerated inBCP 41 [RFC2914].   In the particular case of Random Early Detection (RED), this means   that the byte-mode packet drop variant should not be used to drop   fewer small packets, because that creates a perverse incentive for   transports to use tiny segments, consequently also opening up a DoS   vulnerability.  Fortunately, all the RED implementers who responded   to our admittedly limited survey (Section 4.2.4) have not followed   the earlier advice to use byte-mode drop, so the position this memo   argues for seems to already exist in implementations.   However, at the transport layer, TCP congestion control is a widely   deployed protocol that doesn't scale with packet size (i.e., its   reduction in rate does not take into account the size of a lost   packet).  To date, this hasn't been a significant problem because   most TCP implementations have been used with similar packet sizes.   But, as we design new congestion control mechanisms, this memo   recommends that we build in scaling with packet size rather than   assuming that we should follow TCP's example.   This memo continues as follows.  First, it discusses terminology and   scoping.Section 2 gives concrete formal recommendations, followed   by motivating arguments inSection 3.  We then critically survey the   advice given previously in the RFC Series and the research literature   (Section 4), referring to an assessment of whether or not this advice   has been followed in production networks (Appendix A).  To wrap up,   outstanding issues are discussed that will need resolution both to   inform future protocol designs and to handle legacy AQM deployments   (Section 5).  Then security issues are collected together inSection 6 before conclusions are drawn inSection 7.  The interested   reader can find discussion of more detailed issues on the theme of   byte vs. packet in the appendices.   This memo intentionally includes a non-negligible amount of material   on the subject.  For the busy reader,Section 2 summarises the   recommendations for the Internet community.Briscoe & Manner          Best Current Practice                 [Page 5]

RFC 7141         Byte and Packet Congestion Notification   February 20141.1.  Terminology and Scoping   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this   document are to be interpreted as described in [RFC2119].   This memo applies to the design of all AQM algorithms, for example,   Random Early Detection (RED) [RFC2309], BLUE [BLUE02], Pre-Congestion   Notification (PCN) [RFC5670], Controlled Delay (CoDel) [CoDel], and   the Proportional Integral controller Enhanced (PIE) [PIE].   Throughout, RED is used as a concrete example because it is a widely   known and deployed AQM algorithm.  There is no intention to imply   that the advice is any less applicable to the other algorithms, nor   that RED is preferred.   Congestion Notification:  Congestion notification is a changing      signal that aims to communicate the probability that the network      resource(s) will not be able to forward the level of traffic load      offered (or that there is an impending risk that they will not be      able to).      The 'impending risk' qualifier is added, because AQM systems set a      virtual limit smaller than the actual limit to the resource, then      notify the transport when this virtual limit is exceeded in order      to avoid uncontrolled congestion of the actual capacity.      Congestion notification communicates a real number bounded by the      range [ 0 , 1 ].  This ties in with the most well-understood      measure of congestion notification: drop probability.   Explicit and Implicit Notification:  The byte vs. packet dilemma      concerns congestion notification irrespective of whether it is      signalled implicitly by drop or explicitly using ECN [RFC3168] or      PCN [RFC5670].  Throughout this document, unless clear from the      context, the term 'marking' will be used to mean notifying      congestion explicitly, while 'congestion notification' will be      used to mean notifying congestion either implicitly by drop or      explicitly by marking.   Bit-congestible vs. Packet-congestible:  If the load on a resource      depends on the rate at which packets arrive, it is called 'packet-      congestible'.  If the load depends on the rate at which bits      arrive, it is called 'bit-congestible'.Briscoe & Manner          Best Current Practice                 [Page 6]

RFC 7141         Byte and Packet Congestion Notification   February 2014      Examples of packet-congestible resources are route look-up engines      and firewalls, because load depends on how many packet headers      they have to process.  Examples of bit-congestible resources are      transmission links, radio power, and most buffer memory, because      the load depends on how many bits they have to transmit or store.      Some machine architectures use fixed-size packet buffers, so      buffer memory in these cases is packet-congestible (seeSection 4.1.1).      The path through a machine will typically encounter both packet-      congestible and bit-congestible resources.  However, currently, a      design goal of network processing equipment such as routers and      firewalls is to size the packet-processing engine(s) relative to      the lines in order to keep packet processing uncongested, even      under worst-case packet rates with runs of minimum-size packets.      Therefore, packet congestion is currently rare (seeSection 3.3 of      [RFC6077]), but there is no guarantee that it will not become more      common in the future.      Note that information is generally processed or transmitted with a      minimum granularity greater than a bit (e.g., octets).  The      appropriate granularity for the resource in question should be      used, but for the sake of brevity we will talk in terms of bytes      in this memo.   Coarser Granularity:  Resources may be congestible at higher levels      of granularity than bits or packets, for instance stateful      firewalls are flow-congestible and call-servers are session-      congestible.  This memo focuses on congestion of connectionless      resources, but the same principles may be applicable for      congestion notification protocols controlling per-flow and per-      session processing or state.   RED Terminology:  In RED, whether to use packets or bytes when      measuring queues is called, respectively, 'packet-mode queue      measurement' or 'byte-mode queue measurement'.  And whether the      probability of dropping a particular packet is independent or      dependent on its size is called, respectively, 'packet-mode drop'      or 'byte-mode drop'.  The terms 'byte-mode' and 'packet-mode'      should not be used without specifying whether they apply to queue      measurement or to drop.1.2.  Example Comparing Packet-Mode Drop and Byte-Mode Drop   Taking RED as a well-known example algorithm, a central question   addressed by this document is whether to recommend RED's packet-mode   drop variant and to deprecate byte-mode drop.  Table 1 compares how   packet-mode and byte-mode drop affect two flows of different sizeBriscoe & Manner          Best Current Practice                 [Page 7]

RFC 7141         Byte and Packet Congestion Notification   February 2014   packets.  For each it gives the expected number of packets and of   bits dropped in one second.  Each example flow runs at the same bit   rate of 48 Mbps, but one is broken up into small 60 byte packets and   the other into large 1,500 byte packets.   To keep up the same bit rate, in one second there are about 25 times   more small packets because they are 25 times smaller.  As can be seen   from the table, the packet rate is 100,000 small packets versus 4,000   large packets per second (pps).     Parameter            Formula         Small packets Large packets     -------------------- --------------- ------------- -------------     Packet size          s/8                      60 B       1,500 B     Packet size          s                       480 b      12,000 b     Bit rate             x                     48 Mbps       48 Mbps     Packet rate          u = x/s              100 kpps        4 kpps     Packet-mode Drop     Pkt-loss probability p                        0.1%          0.1%     Pkt-loss rate        p*u                   100 pps         4 pps     Bit-loss rate        p*u*s                 48 kbps       48 kbps     Byte-mode Drop       MTU, M=12,000 b     Pkt-loss probability b = p*s/M              0.004%          0.1%     Pkt-loss rate        b*u                     4 pps         4 pps     Bit-loss rate        b*u*s               1.92 kbps       48 kbps         Table 1: Example Comparing Packet-Mode and Byte-Mode Drop   For packet-mode drop, we illustrate the effect of a drop probability   of 0.1%, which the algorithm applies to all packets irrespective of   size.  Because there are 25 times more small packets in one second,   it naturally drops 25 times more small packets, that is, 100 small   packets but only 4 large packets.  But if we count how many bits it   drops, there are 48,000 bits in 100 small packets and 48,000 bits in   4 large packets -- the same number of bits of small packets as large.      The packet-mode drop algorithm drops any bit with the same      probability whether the bit is in a small or a large packet.   For byte-mode drop, again we use an example drop probability of 0.1%,   but only for maximum size packets (assuming the link maximum   transmission unit (MTU) is 1,500 B or 12,000 b).  The byte-mode   algorithm reduces the drop probability of smaller packets   proportional to their size, making the probability that it drops a   small packet 25 times smaller at 0.004%.  But there are 25 times more   small packets, so dropping them with 25 times lower probability   results in dropping the same number of packets: 4 drops in bothBriscoe & Manner          Best Current Practice                 [Page 8]

RFC 7141         Byte and Packet Congestion Notification   February 2014   cases.  The 4 small dropped packets contain 25 times less bits than   the 4 large dropped packets: 1,920 compared to 48,000.      The byte-mode drop algorithm drops any bit with a probability      proportionate to the size of the packet it is in.2.  Recommendations   This section gives recommendations related to network equipment in   Sections2.1 and2.2, and we discuss the implications on transport   protocols in Sections2.3 and2.4.2.1.  Recommendation on Queue Measurement   Ideally, an AQM would measure the service time of the queue to   measure congestion of a resource.  However service time can only be   measured as packets leave the queue, where it is not always expedient   to implement a full AQM algorithm.  To predict the service time as   packets join the queue, an AQM algorithm needs to measure the length   of the queue.   In this case, if the resource is bit-congestible, the AQM   implementation SHOULD measure the length of the queue in bytes and,   if the resource is packet-congestible, the implementation SHOULD   measure the length of the queue in packets.  Subject to the   exceptions below, no other choice makes sense, because the number of   packets waiting in the queue isn't relevant if the resource gets   congested by bytes and vice versa.  For example, the length of the   queue into a transmission line would be measured in bytes, while the   length of the queue into a firewall would be measured in packets.   To avoid the pathological effects of tail drop, the AQM can then   transform this service time or queue length into the probability of   dropping or marking a packet (e.g., RED's piecewise linear function   between thresholds).   What this advice means for RED as a specific example:   1.  A RED implementation SHOULD use byte-mode queue measurement for       measuring the congestion of bit-congestible resources and packet-       mode queue measurement for packet-congestible resources.   2.  An implementation SHOULD NOT make it possible to configure the       way a queue measures itself, because whether a queue is bit-       congestible or packet-congestible is an inherent property of the       queue.Briscoe & Manner          Best Current Practice                 [Page 9]

RFC 7141         Byte and Packet Congestion Notification   February 2014   Exceptions to these recommendations might be necessary, for instance   where a packet-congestible resource has to be configured as a proxy   bottleneck for a bit-congestible resource in an adjacent box that   does not support AQM.   The recommended approach in less straightforward scenarios, such as   fixed-size packet buffers, resources without a queue, and buffers   comprising a mix of packet and bit-congestible resources, is   discussed inSection 4.1.  For instance,Section 4.1.1 explains that   the queue into a line should be measured in bytes even if the queue   consists of fixed-size packet buffers, because the root cause of any   congestion is bytes arriving too fast for the line -- packets filling   buffers are merely a symptom of the underlying congestion of the   line.2.2.  Recommendation on Encoding Congestion Notification   When encoding congestion notification (e.g., by drop, ECN, or PCN),   the probability that network equipment drops or marks a particular   packet to notify congestion SHOULD NOT depend on the size of the   packet in question.  As the example inSection 1.2 illustrates, to   drop any bit with probability 0.1%, it is only necessary to drop   every packet with probability 0.1% without regard to the size of each   packet.   This approach ensures the network layer offers sufficient congestion   information for all known and future transport protocols and also   ensures no perverse incentives are created that would encourage   transports to use inappropriately small packet sizes.   What this advice means for RED as a specific example:   1.  The RED AQM algorithm SHOULD NOT use byte-mode drop, i.e., it       ought to use packet-mode drop.  Byte-mode drop is more complex,       it creates the perverse incentive to fragment segments into tiny       pieces and it is vulnerable to floods of small packets.   2.  If a vendor has implemented byte-mode drop, and an operator has       turned it on, it is RECOMMENDED that the operator use packet-mode       drop instead, after establishing if there are any implications on       the relative performance of applications using different packet       sizes.  The unlikely possibility of some application-specific       legacy use of byte-mode drop is the only reason that all the       above recommendations on encoding congestion notification are not       phrased more strongly.Briscoe & Manner          Best Current Practice                [Page 10]

RFC 7141         Byte and Packet Congestion Notification   February 2014       RED as a whole SHOULD NOT be switched off.  Without RED, a tail-       drop queue biases against large packets and is vulnerable to       floods of small packets.   Note well that RED's byte-mode queue drop is completely orthogonal to   byte-mode queue measurement and should not be confused with it.  If a   RED implementation has a byte-mode but does not specify what sort of   byte-mode, it is most probably byte-mode queue measurement, which is   fine.  However, if in doubt, the vendor should be consulted.   A survey (Appendix A) showed that there appears to be little, if any,   installed base of the byte-mode drop variant of RED.  This suggests   that deprecating byte-mode drop will have little, if any, incremental   deployment impact.2.3.  Recommendation on Responding to Congestion   When a transport detects that a packet has been lost or congestion   marked, it SHOULD consider the strength of the congestion indication   as proportionate to the size in octets (bytes) of the missing or   marked packet.   In other words, when a packet indicates congestion (by being lost or   marked), it can be considered conceptually as if there is a   congestion indication on every octet of the packet, not just one   indication per packet.   To be clear, the above recommendation solely describes how a   transport should interpret the meaning of a congestion indication, as   a long term goal.  It makes no recommendation on whether a transport   should act differently based on this interpretation.  It merely aids   interoperability between transports, if they choose to make their   actions depend on the strength of congestion indications.   This definition will be useful as the IETF transport area continues   its programme of:   o  updating host-based congestion control protocols to take packet      size into account, and   o  making transports less sensitive to losing control packets like      SYNs and pure ACKs.Briscoe & Manner          Best Current Practice                [Page 11]

RFC 7141         Byte and Packet Congestion Notification   February 2014   What this advice means for the case of TCP:   1.  If two TCP flows with different packet sizes are required to run       at equal bit rates under the same path conditions, this SHOULD be       done by altering TCP (Section 4.2.2), not network equipment (the       latter affects other transports besides TCP).   2.  If it is desired to improve TCP performance by reducing the       chance that a SYN or a pure ACK will be dropped, this SHOULD be       done by modifying TCP (Section 4.2.3), not network equipment.   To be clear, we are not recommending at all that TCPs under   equivalent conditions should aim for equal bit rates.  We are merely   saying that anyone trying to do such a thing should modify their TCP   algorithm, not the network.   These recommendations are phrased as 'SHOULD' rather than 'MUST',   because there may be cases where expediency dictates that   compatibility with pre-existing versions of a transport protocol make   the recommendations impractical.2.4.  Recommendation on Handling Congestion Indications When Splitting      or Merging Packets   Packets carrying congestion indications may be split or merged in   some circumstances (e.g., at an RTP / RTP Control Protocol (RTCP)   transcoder or during IP fragment reassembly).  Splitting and merging   only make sense in the context of ECN, not loss.   The general rule to follow is that the number of octets in packets   with congestion indications SHOULD be equivalent before and after   merging or splitting.  This is based on the principle used above;   that an indication of congestion on a packet can be considered as an   indication of congestion on each octet of the packet.   The above rule is not phrased with the word 'MUST' to allow the   following exception.  There are cases in which pre-existing protocols   were not designed to conserve congestion-marked octets (e.g., IP   fragment reassembly [RFC3168] or loss statistics in RTCP receiver   reports [RFC3550] before ECN was added [RFC6679]).  When any such   protocol is updated, it SHOULD comply with the above rule to conserve   marked octets.  However, the rule may be relaxed if it would   otherwise become too complex to interoperate with pre-existing   implementations of the protocol.   One can think of a splitting or merging process as if all the   incoming congestion-marked octets increment a counter and all the   outgoing marked octets decrement the same counter.  In order toBriscoe & Manner          Best Current Practice                [Page 12]

RFC 7141         Byte and Packet Congestion Notification   February 2014   ensure that congestion indications remain timely, even the smallest   positive remainder in the conceptual counter should trigger the next   outgoing packet to be marked (causing the counter to go negative).3.  Motivating Arguments   This section is informative.  It justifies the recommendations made   in the previous section.3.1.  Avoiding Perverse Incentives to (Ab)use Smaller Packets   Increasingly, it is being recognised that a protocol design must take   care not to cause unintended consequences by giving the parties in   the protocol exchange perverse incentives [Evol_cc] [RFC3426].  Given   there are many good reasons why larger path maximum transmission   units (PMTUs) would help solve a number of scaling issues, we do not   want to create any bias against large packets that is greater than   their true cost.   Imagine a scenario where the same bit rate of packets will contribute   the same to bit congestion of a link irrespective of whether it is   sent as fewer larger packets or more smaller packets.  A protocol   design that caused larger packets to be more likely to be dropped   than smaller ones would be dangerous in both of the following cases:   Malicious transports:  A queue that gives an advantage to small      packets can be used to amplify the force of a flooding attack.  By      sending a flood of small packets, the attacker can get the queue      to discard more large-packet traffic, allowing more attack traffic      to get through to cause further damage.  Such a queue allows      attack traffic to have a disproportionately large effect on      regular traffic without the attacker having to do much work.   Non-malicious transports:  Even if an application designer is not      actually malicious, if over time it is noticed that small packets      tend to go faster, designers will act in their own interest and      use smaller packets.  Queues that give advantage to small packets      create an evolutionary pressure for applications or transports to      send at the same bit rate but break their data stream down into      tiny segments to reduce their drop rate.  Encouraging a high      volume of tiny packets might in turn unnecessarily overload a      completely unrelated part of the system, perhaps more limited by      header processing than bandwidth.   Imagine that two unresponsive flows arrive at a bit-congestible   transmission link each with the same bit rate, say 1 Mbps, but one   consists of 1,500 B and the other 60 B packets, which are 25x   smaller.  Consider a scenario where gentle RED [gentle_RED] is used,Briscoe & Manner          Best Current Practice                [Page 13]

RFC 7141         Byte and Packet Congestion Notification   February 2014   along with the variant of RED we advise against, i.e., where the RED   algorithm is configured to adjust the drop probability of packets in   proportion to each packet's size (byte-mode packet drop).  In this   case, RED aims to drop 25x more of the larger packets than the   smaller ones.  Thus, for example, if RED drops 25% of the larger   packets, it will aim to drop 1% of the smaller packets (but, in   practice, it may drop more as congestion increases; seeAppendix B.4   of [RFC4828]).  Even though both flows arrive with the same bit rate,   the bit rate the RED queue aims to pass to the line will be 750 kbps   for the flow of larger packets but 990 kbps for the smaller packets   (because of rate variations, it will actually be a little less than   this target).   Note that, although the byte-mode drop variant of RED amplifies   small-packet attacks, tail-drop queues amplify small-packet attacks   even more (see Security Considerations inSection 6).  Wherever   possible, neither should be used.3.2.  Small != Control   Dropping fewer control packets considerably improves performance.  It   is tempting to drop small packets with lower probability in order to   improve performance, because many control packets tend to be smaller   (TCP SYNs and ACKs, DNS queries and responses, SIP messages, HTTP   GETs, etc).  However, we must not give control packets preference   purely by virtue of their smallness, otherwise it is too easy for any   data source to get the same preferential treatment simply by sending   data in smaller packets.  Again, we should not create perverse   incentives to favour small packets rather than to favour control   packets, which is what we intend.   Just because many control packets are small does not mean all small   packets are control packets.   So, rather than fix these problems in the network, we argue that the   transport should be made more robust against losses of control   packets (seeSection 4.2.3).3.3.  Transport-Independent Network   TCP congestion control ensures that flows competing for the same   resource each maintain the same number of segments in flight,   irrespective of segment size.  So under similar conditions, flows   with different segment sizes will get different bit rates.   To counter this effect, it seems tempting not to follow our   recommendation, and instead for the network to bias congestion   notification by packet size in order to equalise the bit rates ofBriscoe & Manner          Best Current Practice                [Page 14]

RFC 7141         Byte and Packet Congestion Notification   February 2014   flows with different packet sizes.  However, in order to do this, the   queuing algorithm has to make assumptions about the transport, which   become embedded in the network.  Specifically:   o  The queuing algorithm has to assume how aggressively the transport      will respond to congestion (seeSection 4.2.4).  If the network      assumes the transport responds as aggressively as TCP NewReno, it      will be wrong for Compound TCP and differently wrong for Cubic      TCP, etc.  To achieve equal bit rates, each transport then has to      guess what assumption the network made, and work out how to      replace this assumed aggressiveness with its own aggressiveness.   o  Also, if the network biases congestion notification by packet      size, it has to assume a baseline packet size -- all proposed      algorithms use the local MTU (for example, see the byte-mode loss      probability formula in Table 1).  Then if the non-Reno transports      mentioned above are trying to reverse engineer what the network      assumed, they also have to guess the MTU of the congested link.   Even though reducing the drop probability of small packets (e.g.,   RED's byte-mode drop) helps ensure TCP flows with different packet   sizes will achieve similar bit rates, we argue that this correction   should be made to any future transport protocols based on TCP, not to   the network in order to fix one transport, no matter how predominant   it is.  Effectively, favouring small packets is reverse engineering   of network equipment around one particular transport protocol (TCP),   contrary to the excellent advice in [RFC3426], which asks designers   to question "Why are you proposing a solution at this layer of the   protocol stack, rather than at another layer?"   In contrast, if the network never takes packet size into account, the   transport can be certain it will never need to guess any assumptions   that the network has made.  And the network passes two pieces of   information to the transport that are sufficient in all cases: i)   congestion notification on the packet and ii) the size of the packet.   Both are available for the transport to combine (by taking packet   size into account when responding to congestion) or not.Appendix B   checks that these two pieces of information are sufficient for all   relevant scenarios.   When the network does not take packet size into account, it allows   transport protocols to choose whether or not to take packet size into   account.  However, if the network were to bias congestion   notification by packet size, transport protocols would have no   choice; those that did not take into account packet size themselves   would unwittingly become dependent on packet size, and those that   already took packet size into account would end up taking it into   account twice.Briscoe & Manner          Best Current Practice                [Page 15]

RFC 7141         Byte and Packet Congestion Notification   February 20143.4.  Partial Deployment of AQM   In overview, the argument in this section runs as follows:   o  Because the network does not and cannot always drop packets in      proportion to their size, it shouldn't be given the task of making      drop signals depend on packet size at all.   o  Transports on the other hand don't always want to make their rate      response proportional to the size of dropped packets, but if they      want to, they always can.   The argument is similar to the end-to-end argument that says "Don't   do X in the network if end systems can do X by themselves, and they   want to be able to choose whether to do X anyway".  Actually the   following argument is stronger; in addition it says "Don't give the   network task X that could be done by the end systems, if X is not   deployed on all network nodes, and end systems won't be able to tell   whether their network is doing X, or whether they need to do X   themselves."  In this case, the X in question is "making the response   to congestion depend on packet size".   We will now re-run this argument reviewing each step in more depth.   The argument applies solely to drop, not to ECN marking.   A queue drops packets for either of two reasons: a) to signal to host   congestion controls that they should reduce the load and b) because   there is no buffer left to store the packets.  Active queue   management tries to use drops as a signal for hosts to slow down   (case a) so that drops due to buffer exhaustion (case b) should not   be necessary.   AQM is not universally deployed in every queue in the Internet; many   cheap Ethernet bridges, software firewalls, NATs on consumer devices,   etc implement simple tail-drop buffers.  Even if AQM were universal,   it has to be able to cope with buffer exhaustion (by switching to a   behaviour like tail drop), in order to cope with unresponsive or   excessive transports.  For these reasons networks will sometimes be   dropping packets as a last resort (case b) rather than under AQM   control (case a).   When buffers are exhausted (case b), they don't naturally drop   packets in proportion to their size.  The network can only reduce the   probability of dropping smaller packets if it has enough space to   store them somewhere while it waits for a larger packet that it can   drop.  If the buffer is exhausted, it does not have this choice.   Admittedly tail drop does naturally drop somewhat fewer small   packets, but exactly how few depends more on the mix of sizes thanBriscoe & Manner          Best Current Practice                [Page 16]

RFC 7141         Byte and Packet Congestion Notification   February 2014   the size of the packet in question.  Nonetheless, in general, if we   wanted networks to do size-dependent drop, we would need universal   deployment of (packet-size dependent) AQM code, which is currently   unrealistic.   A host transport cannot know whether any particular drop was a   deliberate signal from an AQM or a sign of a queue shedding packets   due to buffer exhaustion.  Therefore, because the network cannot   universally do size-dependent drop, it should not do it all.   Whereas universality is desirable in the network, diversity is   desirable between different transport-layer protocols -- some, like   standards track TCP congestion control [RFC5681], may not choose to   make their rate response proportionate to the size of each dropped   packet, while others will (e.g., TCP-Friendly Rate Control for Small   Packets (TFRC-SP) [RFC4828]).3.5.  Implementation Efficiency   Biasing against large packets typically requires an extra multiply   and divide in the network (see the example byte-mode drop formula in   Table 1).  Taking packet size into account at the transport rather   than in the network ensures that neither the network nor the   transport needs to do a multiply operation -- multiplication by   packet size is effectively achieved as a repeated add when the   transport adds to its count of marked bytes as each congestion event   is fed to it.  Also, the work to do the biasing is spread over many   hosts, rather than concentrated in just the congested network   element.  These aren't principled reasons in themselves, but they are   a happy consequence of the other principled reasons.4.  A Survey and Critique of Past Advice   This section is informative, not normative.   The original 1993 paper on RED [RED93] proposed two options for the   RED active queue management algorithm: packet mode and byte mode.   Packet mode measured the queue length in packets and dropped (or   marked) individual packets with a probability independent of their   size.  Byte mode measured the queue length in bytes and marked an   individual packet with probability in proportion to its size   (relative to the maximum packet size).  In the paper's outline of   further work, it was stated that no recommendation had been made on   whether the queue size should be measured in bytes or packets, but   noted that the difference could be significant.Briscoe & Manner          Best Current Practice                [Page 17]

RFC 7141         Byte and Packet Congestion Notification   February 2014   When RED was recommended for general deployment in 1998 [RFC2309],   the two modes were mentioned implying the choice between them was a   question of performance, referring to a 1997 email [pktByteEmail] for   advice on tuning.  A later addendum to this email introduced the   insight that there are in fact two orthogonal choices:   o  whether to measure queue length in bytes or packets (Section 4.1),      and   o  whether the drop probability of an individual packet should depend      on its own size (Section 4.2).   The rest of this section is structured accordingly.4.1.  Congestion Measurement Advice   The choice of which metric to use to measure queue length was left   open inRFC 2309.  It is now well understood that queues for bit-   congestible resources should be measured in bytes, and queues for   packet-congestible resources should be measured in packets   [pktByteEmail].   Congestion in some legacy bit-congestible buffers is only measured in   packets not bytes.  In such cases, the operator has to take into   account a typical mix of packet sizes when setting the thresholds.   Any AQM algorithm on such a buffer will be oversensitive to high   proportions of small packets, e.g., a DoS attack, and under-sensitive   to high proportions of large packets.  However, there is no need to   make allowances for the possibility of such a legacy in future   protocol design.  This is safe because any under-sensitivity during   unusual traffic mixes cannot lead to congestion collapse given that   the buffer will eventually revert to tail drop, which discards   proportionately more large packets.4.1.1.  Fixed-Size Packet Buffers   The question of whether to measure queues in bytes or packets seems   to be well understood.  However, measuring congestion is confusing   when the resource is bit-congestible but the queue into the resource   is packet-congestible.  This section outlines the approach to take.   Some, mostly older, queuing hardware allocates fixed-size buffers in   which to store each packet in the queue.  This hardware forwards   packets to the line in one of two ways:   o  With some hardware, any fixed-size buffers not completely filled      by a packet are padded when transmitted to the wire.  This case      should clearly be treated as packet-congestible, because bothBriscoe & Manner          Best Current Practice                [Page 18]

RFC 7141         Byte and Packet Congestion Notification   February 2014      queuing and transmission are in fixed MTU-size units.  Therefore,      the queue length in packets is a good model of congestion of the      link.   o  More commonly, hardware with fixed-size packet buffers transmits      packets to the line without padding.  This implies a hybrid      forwarding system with transmission congestion dependent on the      size of packets but queue congestion dependent on the number of      packets, irrespective of their size.      Nonetheless, there would be no queue at all unless the line had      become congested -- the root cause of any congestion is too many      bytes arriving for the line.  Therefore, the AQM should measure      the queue length as the sum of all the packet sizes in bytes that      are queued up waiting to be serviced by the line, irrespective of      whether each packet is held in a fixed-size buffer.   In the (unlikely) first case where use of padding means the queue   should be measured in packets, further confusion is likely because   the fixed buffers are rarely all one size.  Typically, pools of   different-sized buffers are provided (Cisco uses the term 'buffer   carving' for the process of dividing up memory into these pools   [IOSArch]).  Usually, if the pool of small buffers is exhausted,   arriving small packets can borrow space in the pool of large buffers,   but not vice versa.  However, there is no need to consider all this   complexity, because the root cause of any congestion is still line   overload -- buffer consumption is only the symptom.  Therefore, the   length of the queue should be measured as the sum of the bytes in the   queue that will be transmitted to the line, including any padding.   In the (unusual) case of transmission with padding, this means the   sum of the sizes of the small buffers queued plus the sum of the   sizes of the large buffers queued.   We will return to borrowing of fixed-size buffers when we discuss   biasing the drop/marking probability of a specific packet because of   its size inSection 4.2.1.  But here, we can repeat the simple rule   for how to measure the length of queues of fixed buffers: no matter   how complicated the buffering scheme is, ultimately a transmission   line is nearly always bit-congestible so the number of bytes queued   up waiting for the line measures how congested the line is, and it is   rarely important to measure how congested the buffering system is.4.1.2.  Congestion Measurement without a Queue   AQM algorithms are nearly always described assuming there is a queue   for a congested resource and the algorithm can use the queue length   to determine the probability that it will drop or mark each packet.   But not all congested resources lead to queues.  For instance, power-Briscoe & Manner          Best Current Practice                [Page 19]

RFC 7141         Byte and Packet Congestion Notification   February 2014   limited resources are usually bit-congestible if energy is primarily   required for transmission rather than header processing, but it is   rare for a link protocol to build a queue as it approaches maximum   power.   Nonetheless, AQM algorithms do not require a queue in order to work.   For instance, spectrum congestion can be modelled by signal quality   using the target bit-energy-to-noise-density ratio.  And, to model   radio power exhaustion, transmission-power levels can be measured and   compared to the maximum power available.  [ECNFixedWireless] proposes   a practical and theoretically sound way to combine congestion   notification for different bit-congestible resources at different   layers along an end-to-end path, whether wireless or wired, and   whether with or without queues.   In wireless protocols that use request to send / clear to send   (RTS / CTS) control, such as some variants of IEEE802.11, it is   reasonable to base an AQM on the time spent waiting for transmission   opportunities (TXOPs) even though the wireless spectrum is usually   regarded as congested by bits (for a given coding scheme).  This is   because requests for TXOPs queue up as the spectrum gets congested by   all the bits being transferred.  So the time that TXOPs are queued   directly reflects bit congestion of the spectrum.4.2.  Congestion Notification Advice4.2.1.  Network Bias When Encoding4.2.1.1.  Advice on Packet-Size Bias in RED   The previously mentioned email [pktByteEmail] referred to by   [RFC2309] advised that most scarce resources in the Internet were   bit-congestible, which is still believed to be true (Section 1.1).   But it went on to offer advice that is updated by this memo.  It said   that drop probability should depend on the size of the packet being   considered for drop if the resource is bit-congestible, but not if it   is packet-congestible.  The argument continued that if packet drops   were inflated by packet size (byte-mode dropping), "a flow's fraction   of the packet drops is then a good indication of that flow's fraction   of the link bandwidth in bits per second".  This was consistent with   a referenced policing mechanism being worked on at the time for   detecting unusually high bandwidth flows, eventually published in   1999 [pBox].  However, the problem could and should have been solved   by making the policing mechanism count the volume of bytes randomly   dropped, not the number of packets.Briscoe & Manner          Best Current Practice                [Page 20]

RFC 7141         Byte and Packet Congestion Notification   February 2014   A few months beforeRFC 2309 was published, an addendum was added to   the above archived email referenced from the RFC, in which the final   paragraph seemed to partially retract what had previously been said.   It clarified that the question of whether the probability of   dropping/marking a packet should depend on its size was not related   to whether the resource itself was bit-congestible, but a completely   orthogonal question.  However, the only example given had the queue   measured in packets but packet drop depended on the size of the   packet in question.  No example was given the other way round.   In 2000, Cnodder et al. [REDbyte] pointed out that there was an error   in the part of the original 1993 RED algorithm that aimed to   distribute drops uniformly, because it didn't correctly take into   account the adjustment for packet size.  They recommended an   algorithm called RED_4 to fix this.  But they also recommended a   further change, RED_5, to adjust the drop rate dependent on the   square of the relative packet size.  This was indeed consistent with   one implied motivation behind RED's byte-mode drop -- that we should   reverse engineer the network to improve the performance of dominant   end-to-end congestion control mechanisms.  This memo makes a   different recommendations inSection 2.   By 2003, a further change had been made to the adjustment for packet   size, this time in the RED algorithm of the ns2 simulator.  Instead   of taking each packet's size relative to a 'maximum packet size', it   was taken relative to a 'mean packet size', intended to be a static   value representative of the 'typical' packet size on the link.  We   have not been able to find a justification in the literature for this   change; however, Eddy and Allman conducted experiments [REDbias] that   assessed how sensitive RED was to this parameter, amongst other   things.  This changed algorithm can often lead to drop probabilities   of greater than 1 (which gives a hint that there is probably a   mistake in the theory somewhere).   On 10-Nov-2004, this variant of byte-mode packet drop was made the   default in the ns2 simulator.  It seems unlikely that byte-mode drop   has ever been implemented in production networks (Appendix A);   therefore, any conclusions based on ns2 simulations that use RED   without disabling byte-mode drop are likely to behave very   differently from RED in production networks.4.2.1.2.  Packet-Size Bias Regardless of AQM   The byte-mode drop variant of RED (or a similar variant of other AQM   algorithms) is not the only possible bias towards small packets in   queuing systems.  We have already mentioned that tail-drop queues   naturally tend to lock out large packets once they are full.Briscoe & Manner          Best Current Practice                [Page 21]

RFC 7141         Byte and Packet Congestion Notification   February 2014   But also, queues with fixed-size buffers reduce the probability that   small packets will be dropped if (and only if) they allow small   packets to borrow buffers from the pools for larger packets (seeSection 4.1.1).  Borrowing effectively makes the maximum queue size   for small packets greater than that for large packets, because more   buffers can be used by small packets while less will fit large   packets.  Incidentally, the bias towards small packets from buffer   borrowing is nothing like as large as that of RED's byte-mode drop.   Nonetheless, fixed-buffer memory with tail drop is still prone to   lock out large packets, purely because of the tail-drop aspect.  So,   fixed-size packet buffers should be augmented with a good AQM   algorithm and packet-mode drop.  If an AQM is too complicated to   implement with multiple fixed buffer pools, the minimum necessary to   prevent large-packet lockout is to ensure that smaller packets never   use the last available buffer in any of the pools for larger packets.4.2.2.  Transport Bias When Decoding   The above proposals to alter the network equipment to bias towards   smaller packets have largely carried on outside the IETF process.   Whereas, within the IETF, there are many different proposals to alter   transport protocols to achieve the same goals, i.e., either to make   the flow bit rate take into account packet size, or to protect   control packets from loss.  This memo argues that altering transport   protocols is the more principled approach.   A recently approved experimental RFC adapts its transport-layer   protocol to take into account packet sizes relative to typical TCP   packet sizes.  This proposes a new small-packet variant of TCP-   friendly rate control (TFRC [RFC5348]), which is called TFRC-SP   [RFC4828].  Essentially, it proposes a rate equation that inflates   the flow rate by the ratio of a typical TCP segment size (1,500 B   including TCP header) over the actual segment size [PktSizeEquCC].   (There are also other important differences of detail relative to   TFRC, such as using virtual packets [CCvarPktSize] to avoid   responding to multiple losses per round trip and using a minimum   inter-packet interval.)Section 4.5.1 of the TFRC-SP specification discusses the implications   of operating in an environment where queues have been configured to   drop smaller packets with proportionately lower probability than   larger ones.  But it only discusses TCP operating in such an   environment, only mentioning TFRC-SP briefly when discussing how to   define fairness with TCP.  And it only discusses the byte-mode   dropping version of RED as it was before Cnodder et al. pointed out   that it didn't sufficiently bias towards small packets to make TCP   independent of packet size.Briscoe & Manner          Best Current Practice                [Page 22]

RFC 7141         Byte and Packet Congestion Notification   February 2014   So the TFRC-SP specification doesn't address the issue of whether the   network or the transport _should_ handle fairness between different   packet sizes.  InAppendix B.4 of RFC 4828, it discusses the   possibility of both TFRC-SP and some network buffers duplicating each   other's attempts to deliberately bias towards small packets.  But the   discussion is not conclusive, instead reporting simulations of many   of the possibilities in order to assess performance but not   recommending any particular course of action.   The paper originally proposing TFRC with virtual packets (VP-TFRC)   [CCvarPktSize] proposed that there should perhaps be two variants to   cater for the different variants of RED.  However, as the TFRC-SP   authors point out, there is no way for a transport to know whether   some queues on its path have deployed RED with byte-mode packet drop   (except if an exhaustive survey found that no one has deployed it! --   seeAppendix A).  Incidentally, VP-TFRC also proposed that byte-mode   RED dropping should really square the packet-size compensation factor   (like that of Cnodder's RED_5, but apparently unaware of it).   Pre-congestion notification [RFC5670] is an IETF technology to use a   virtual queue for AQM marking for packets within one Diffserv class   in order to give early warning prior to any real queuing.  The PCN-   marking algorithms have been designed not to take into account packet   size when forwarding through queues.  Instead, the general principle   has been to take the sizes of marked packets into account when   monitoring the fraction of marking at the edge of the network, as   recommended here.4.2.3.  Making Transports Robust against Control Packet Losses   Recently, two RFCs have defined changes to TCP that make it more   robust against losing small control packets [RFC5562] [RFC5690].  In   both cases, they note that the case for these two TCP changes would   be weaker if RED were biased against dropping small packets.  We   argue here that these two proposals are a safer and more principled   way to achieve TCP performance improvements than reverse engineering   RED to benefit TCP.   Although there are no known proposals, it would also be possible and   perfectly valid to make control packets robust against drop by   requesting a scheduling class with lower drop probability, which   would be achieved by re-marking to a Diffserv code point [RFC2474]   within the same behaviour aggregate.   Although not brought to the IETF, a simple proposal from Wischik   [DupTCP] suggests that the first three packets of every TCP flow   should be routinely duplicated after a short delay.  It shows that   this would greatly improve the chances of short flows completingBriscoe & Manner          Best Current Practice                [Page 23]

RFC 7141         Byte and Packet Congestion Notification   February 2014   quickly, but it would hardly increase traffic levels on the Internet,   because Internet bytes have always been concentrated in the large   flows.  It further shows that the performance of many typical   applications depends on completion of long serial chains of short   messages.  It argues that, given most of the value people get from   the Internet is concentrated within short flows, this simple   expedient would greatly increase the value of the best-effort   Internet at minimal cost.  A similar but more extensive approach has   been evaluated on Google servers [GentleAggro].   The proposals discussed in this sub-section are experimental   approaches that are not yet in wide operational use, but they are   existence proofs that transports can make themselves robust against   loss of control packets.  The examples are all TCP-based, but   applications over non-TCP transports could mitigate loss of control   packets by making similar use of Diffserv, data duplication, FEC,   etc.4.2.4.  Congestion Notification: Summary of Conflicting Advice   +-----------+-----------------+-----------------+-------------------+   | transport |  RED_1 (packet- |  RED_4 (linear  |   RED_5 (square   |   |        cc |    mode drop)   | byte-mode drop) |  byte-mode drop)  |   +-----------+-----------------+-----------------+-------------------+   |    TCP or |    s/sqrt(p)    |    sqrt(s/p)    |     1/sqrt(p)     |   |      TFRC |                 |                 |                   |   |   TFRC-SP |    1/sqrt(p)    |   1/sqrt(s*p)   |   1/(s*sqrt(p))   |   +-----------+-----------------+-----------------+-------------------+    Table 2: Dependence of flow bit rate per RTT on packet size, s, and     drop probability, p, when there is network and/or transport bias                 towards small packets to varying degrees   Table 2 aims to summarise the potential effects of all the advice   from different sources.  Each column shows a different possible AQM   behaviour in different queues in the network, using the terminology   of Cnodder et al. outlined earlier (RED_1 is basic RED with packet-   mode drop).  Each row shows a different transport behaviour: TCP   [RFC5681] and TFRC [RFC5348] on the top row with TFRC-SP [RFC4828]   below.  Each cell shows how the bits per round trip of a flow depends   on packet size, s, and drop probability, p.  In order to declutter   the formulae to focus on packet-size dependence, they are all given   per round trip, which removes any RTT term.   Let us assume that the goal is for the bit rate of a flow to be   independent of packet size.  Suppressing all inessential details, the   table shows that this should either be achievable by not altering the   TCP transport in a RED_5 network, or using the small packet TFRC-SPBriscoe & Manner          Best Current Practice                [Page 24]

RFC 7141         Byte and Packet Congestion Notification   February 2014   transport (or similar) in a network without any byte-mode dropping   RED (top right and bottom left).  Top left is the 'do nothing'   scenario, while bottom right is the 'do both' scenario in which the   bit rate would become far too biased towards small packets.  Of   course, if any form of byte-mode dropping RED has been deployed on a   subset of queues that congest, each path through the network will   present a different hybrid scenario to its transport.   Whatever the case, we can see that the linear byte-mode drop column   in the middle would considerably complicate the Internet.  Even if   one believes the network should be doing the biasing, linear byte-   mode drop is a half-way house that doesn't bias enough towards small   packets.Section 2 recommends that _all_ bias in network equipment   towards small packets should be turned off -- if indeed any equipment   vendors have implemented it -- leaving packet-size bias solely as the   preserve of the transport layer (solely the leftmost, packet-mode   drop column).   In practice, it seems that no deliberate bias towards small packets   has been implemented for production networks.  Of the 19% of vendors   who responded to a survey of 84 equipment vendors, none had   implemented byte-mode drop in RED (seeAppendix A for details).5.  Outstanding Issues and Next Steps5.1.  Bit-congestible Network   For a connectionless network with nearly all resources being bit-   congestible, the recommended position is clear -- the network should   not make allowance for packet sizes and the transport should.  This   leaves two outstanding issues:   o  The question of how to handle any legacy AQM deployments using      byte-mode drop;   o  The need to start a programme to update transport congestion      control protocol standards to take packet size into account.   A survey of equipment vendors (Section 4.2.4) found no evidence that   byte-mode packet drop had been implemented, so deployment will be   sparse at best.  A migration strategy is not really needed to remove   an algorithm that may not even be deployed.   A programme of experimental updates to take packet size into account   in transport congestion control protocols has already started with   TFRC-SP [RFC4828].Briscoe & Manner          Best Current Practice                [Page 25]

RFC 7141         Byte and Packet Congestion Notification   February 20145.2.  Bit- and Packet-Congestible Network   The position is much less clear-cut if the Internet becomes populated   by a more even mix of both packet-congestible and bit-congestible   resources (seeAppendix B.2).  This problem is not pressing, because   most Internet resources are designed to be bit-congestible before   packet processing starts to congest (seeSection 1.1).   The IRTF's Internet Congestion Control Research Group (ICCRG) has set   itself the task of reaching consensus on generic forwarding   mechanisms that are necessary and sufficient to support the   Internet's future congestion control requirements (the first   challenge in [RFC6077]).  The research question of whether packet   congestion might become common and what to do if it does may in the   future be explored in the IRTF (the "Challenge 3: Packet Size" in   [RFC6077]).   Note that sometimes it seems that resources might be congested by   neither bits nor packets, e.g., where the queue for access to a   wireless medium is in units of transmission opportunities.  However,   the root cause of congestion of the underlying spectrum is overload   of bits (seeSection 4.1.2).6.  Security Considerations   This memo recommends that queues do not bias drop probability due to   packets size.  For instance, dropping small packets less often than   large ones creates a perverse incentive for transports to break down   their flows into tiny segments.  One of the benefits of implementing   AQM was meant to be to remove this perverse incentive that tail-drop   queues gave to small packets.   In practice, transports cannot all be trusted to respond to   congestion.  So another reason for recommending that queues not bias   drop probability towards small packets is to avoid the vulnerability   to small-packet DDoS attacks that would otherwise result.  One of the   benefits of implementing AQM was meant to be to remove tail drop's   DoS vulnerability to small packets, so we shouldn't add it back   again.   If most queues implemented AQM with byte-mode drop, the resulting   network would amplify the potency of a small-packet DDoS attack.  At   the first queue, the stream of packets would push aside a greater   proportion of large packets, so more of the small packets would   survive to attack the next queue.  Thus a flood of small packets   would continue on towards the destination, pushing regular traffic   with large packets out of the way in one queue after the next, but   suffering much less drop itself.Briscoe & Manner          Best Current Practice                [Page 26]

RFC 7141         Byte and Packet Congestion Notification   February 2014Appendix C explains why the ability of networks to police the   response of _any_ transport to congestion depends on bit-congestible   network resources only doing packet-mode drop, not byte-mode drop.   In summary, it says that making drop probability depend on the size   of the packets that bits happen to be divided into simply encourages   the bits to be divided into smaller packets.  Byte-mode drop would   therefore irreversibly complicate any attempt to fix the Internet's   incentive structures.7.  Conclusions   This memo identifies the three distinct stages of the congestion   notification process where implementations need to decide whether to   take packet size into account.  The recommendations provided inSection 2 of this memo are different in each case:   o  When network equipment measures the length of a queue, if it is      not feasible to use time; it is recommended to count in bytes if      the network resource is congested by bytes, or to count in packets      if is congested by packets.   o  When network equipment decides whether to drop (or mark) a packet,      it is recommended that the size of the particular packet should      not be taken into account.   o  However, when a transport algorithm responds to a dropped or      marked packet, the size of the rate reduction should be      proportionate to the size of the packet.   In summary, the answers are 'it depends', 'no', and 'yes',   respectively.   For the specific case of RED, this means that byte-mode queue   measurement will often be appropriate, but the use of byte-mode drop   is very strongly discouraged.   At the transport layer, the IETF should continue updating congestion   control protocols to take into account the size of each packet that   indicates congestion.  Also, the IETF should continue to make   protocols less sensitive to losing control packets like SYNs, pure   ACKs, and DNS exchanges.  Although many control packets happen to be   small, the alternative of network equipment favouring all small   packets would be dangerous.  That would create perverse incentives to   split data transfers into smaller packets.   The memo develops these recommendations from principled arguments   concerning scaling, layering, incentives, inherent efficiency,   security, and 'policeability'.  It also addresses practical issuesBriscoe & Manner          Best Current Practice                [Page 27]

RFC 7141         Byte and Packet Congestion Notification   February 2014   such as specific buffer architectures and incremental deployment.   Indeed, a limited survey of RED implementations is discussed, which   shows there appears to be little, if any, installed base of RED's   byte-mode drop.  Therefore, it can be deprecated with little, if any,   incremental deployment complications.   The recommendations have been developed on the well-founded basis   that most Internet resources are bit-congestible, not packet-   congestible.  We need to know the likelihood that this assumption   will prevail in the longer term and, if it might not, what protocol   changes will be needed to cater for a mix of the two.  The IRTF   Internet Congestion Control Research Group (ICCRG) is currently   working on these problems [RFC6077].8.  Acknowledgements   Thank you to Sally Floyd, who gave extensive and useful review   comments.  Also thanks for the reviews from Philip Eardley, David   Black, Fred Baker, David Taht, Toby Moncaster, Arnaud Jacquet, and   Mirja Kuehlewind, as well as helpful explanations of different   hardware approaches from Larry Dunn and Fred Baker.  We are grateful   to Bruce Davie and his colleagues for providing a timely and   efficient survey of RED implementation in Cisco's product range.   Also, grateful thanks to Toby Moncaster, Will Dormann, John Regnault,   Simon Carter, and Stefaan De Cnodder who further helped survey the   current status of RED implementation and deployment, and, finally,   thanks to the anonymous individuals who responded.   Bob Briscoe and Jukka Manner were partly funded by Trilogy and   Trilogy 2, research projects (ICT-216372, ICT-317756) supported by   the European Community under its Seventh Framework Programme.  The   views expressed here are those of the authors only.9.  References9.1.  Normative References   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate              Requirement Levels",BCP 14,RFC 2119, March 1997.   [RFC2309]  Braden, B., Clark, D., Crowcroft, J., Davie, B., Deering,              S., Estrin, D., Floyd, S., Jacobson, V., Minshall, G.,              Partridge, C., Peterson, L., Ramakrishnan, K., Shenker,              S., Wroclawski, J., and L. Zhang, "Recommendations on              Queue Management and Congestion Avoidance in the              Internet",RFC 2309, April 1998.Briscoe & Manner          Best Current Practice                [Page 28]

RFC 7141         Byte and Packet Congestion Notification   February 2014   [RFC2914]  Floyd, S., "Congestion Control Principles",BCP 41,RFC2914, September 2000.   [RFC3168]  Ramakrishnan, K., Floyd, S., and D. Black, "The Addition              of Explicit Congestion Notification (ECN) to IP",RFC3168, September 2001.9.2.  Informative References   [BLUE02]   Feng, W-c., Shin, K., Kandlur, D., and D. Saha, "The BLUE              active queue management algorithms", IEEE/ACM Transactions              on Networking 10(4) 513-528, August 2002,              <http://dx.doi.org/10.1109/TNET.2002.801399>.   [CCvarPktSize]              Widmer, J., Boutremans, C., and J-Y. Le Boudec, "End-to-              end congestion control for TCP-friendly flows with              variable packet size", ACM CCR 34(2) 137-151, April 2004,              <http://doi.acm.org/10.1145/997150.997162>.   [CHOKe_Var_Pkt]              Psounis, K., Pan, R., and B. Prabhaker, "Approximate Fair              Dropping for Variable-Length Packets", IEEE Micro              21(1):48-56, January-February 2001,              <http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=903061>.   [CoDel]    Nichols, K. and V. Jacobson, "Controlled Delay Active              Queue Management", Work in Progress, February 2013.   [DRQ]      Shin, M., Chong, S., and I. Rhee, "Dual-Resource TCP/AQM              for Processing-Constrained Networks", IEEE/ACM              Transactions on Networking Vol 16, issue 2, April 2008,              <http://dx.doi.org/10.1109/TNET.2007.900415>.   [DupTCP]   Wischik, D., "Short messages", Philosophical Transactions              of the Royal Society A 366(1872):1941-1953, June 2008,              <http://rsta.royalsocietypublishing.org/content/366/1872/              1941.full.pdf+html>.   [ECNFixedWireless]              Siris, V., "Resource Control for Elastic Traffic in CDMA              Networks", Proc. ACM MOBICOM'02 , September 2002,              <http://www.ics.forth.gr/netlab/publications/resource_control_elastic_cdma.html>.Briscoe & Manner          Best Current Practice                [Page 29]

RFC 7141         Byte and Packet Congestion Notification   February 2014   [Evol_cc]  Gibbens, R. and F. Kelly, "Resource pricing and the              evolution of congestion control", Automatica              35(12)1969-1985, December 1999,              <http://www.sciencedirect.com/science/article/pii/S0005109899001351>.   [GentleAggro]              Flach, T., Dukkipati, N., Terzis, A., Raghavan, B.,              Cardwell, N., Cheng, Y., Jain, A., Hao, S., Katz-Bassett,              E., and R. Govindan, "Reducing web latency: the virtue of              gentle aggression", ACM SIGCOMM CCR 43(4)159-170, August              2013, <http://doi.acm.org/10.1145/2486001.2486014>.   [IOSArch]  Bollapragada, V., White, R., and C. Murphy, "Inside Cisco              IOS Software Architecture", Cisco Press: CCIE Professional              Development ISBN13: 978-1-57870-181-0, July 2000.   [PIE]      Pan, R., Natarajan, P., Piglione, C., Prabhu, M.,              Subramanian, V., Baker, F., and B. Steeg, "PIE: A              Lightweight Control Scheme To Address the Bufferbloat              Problem", Work in Progress, February 2014.   [PktSizeEquCC]              Vasallo, P., "Variable Packet Size Equation-Based              Congestion Control", ICSI Technical Report tr-00-008,              2000, <http://http.icsi.berkeley.edu/ftp/global/pub/techreports/2000/tr-00-008.pdf>.   [RED93]    Floyd, S. and V. Jacobson, "Random Early Detection (RED)              gateways for Congestion Avoidance", IEEE/ACM Transactions              on Networking 1(4) 397--413, August 1993,              <http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=251892>.   [REDbias]  Eddy, W. and M. Allman, "A Comparison of RED's Byte and              Packet Modes", Computer Networks 42(3) 261--280, June              2003,              <http://www.ir.bbn.com/documents/articles/redbias.ps>.   [REDbyte]  De Cnodder, S., Elloumi, O., and K. Pauwels, "Effect of              different packet sizes on RED performance", Proc. 5th IEEE              Symposium on Computers and Communications (ISCC) 793-799,              July 2000, <http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=860741>.Briscoe & Manner          Best Current Practice                [Page 30]

RFC 7141         Byte and Packet Congestion Notification   February 2014   [RFC2474]  Nichols, K., Blake, S., Baker, F., and D. Black,              "Definition of the Differentiated Services Field (DS              Field) in the IPv4 and IPv6 Headers",RFC 2474, December              1998.   [RFC3426]  Floyd, S., "General Architectural and Policy              Considerations",RFC 3426, November 2002.   [RFC3550]  Schulzrinne, H., Casner, S., Frederick, R., and V.              Jacobson, "RTP: A Transport Protocol for Real-Time              Applications", STD 64,RFC 3550, July 2003.   [RFC3714]  Floyd, S. and J. Kempf, "IAB Concerns Regarding Congestion              Control for Voice Traffic in the Internet",RFC 3714,              March 2004.   [RFC4828]  Floyd, S. and E. Kohler, "TCP Friendly Rate Control              (TFRC): The Small-Packet (SP) Variant",RFC 4828, April              2007.   [RFC5348]  Floyd, S., Handley, M., Padhye, J., and J. Widmer, "TCP              Friendly Rate Control (TFRC): Protocol Specification",RFC5348, September 2008.   [RFC5562]  Kuzmanovic, A., Mondal, A., Floyd, S., and K.              Ramakrishnan, "Adding Explicit Congestion Notification              (ECN) Capability to TCP's SYN/ACK Packets",RFC 5562, June              2009.   [RFC5670]  Eardley, P., "Metering and Marking Behaviour of PCN-              Nodes",RFC 5670, November 2009.   [RFC5681]  Allman, M., Paxson, V., and E. Blanton, "TCP Congestion              Control",RFC 5681, September 2009.   [RFC5690]  Floyd, S., Arcia, A., Ros, D., and J. Iyengar, "Adding              Acknowledgement Congestion Control to TCP",RFC 5690,              February 2010.   [RFC6077]  Papadimitriou, D., Welzl, M., Scharf, M., and B. Briscoe,              "Open Research Issues in Internet Congestion Control",RFC6077, February 2011.   [RFC6679]  Westerlund, M., Johansson, I., Perkins, C., O'Hanlon, P.,              and K. Carlberg, "Explicit Congestion Notification (ECN)              for RTP over UDP",RFC 6679, August 2012.Briscoe & Manner          Best Current Practice                [Page 31]

RFC 7141         Byte and Packet Congestion Notification   February 2014   [RFC6789]  Briscoe, B., Woundy, R., and A. Cooper, "Congestion              Exposure (ConEx) Concepts and Use Cases",RFC 6789,              December 2012.   [Rate_fair_Dis]              Briscoe, B., "Flow Rate Fairness: Dismantling a Religion",              ACM CCR 37(2)63-74, April 2007,              <http://portal.acm.org/citation.cfm?id=1232926>.   [gentle_RED]              Floyd, S., "Recommendation on using the "gentle_" variant              of RED", Web page , March 2000,              <http://www.icir.org/floyd/red/gentle.html>.   [pBox]     Floyd, S. and K. Fall, "Promoting the Use of End-to-End              Congestion Control", IEEE/ACM Transactions on Networking              7(4) 458--472, August 1999, <http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=793002>.   [pktByteEmail]              Floyd, S., "RED: Discussions of Byte and Packet Modes",              email, March 1997,              <http://ee.lbl.gov/floyd/REDaveraging.txt>.Briscoe & Manner          Best Current Practice                [Page 32]

RFC 7141         Byte and Packet Congestion Notification   February 2014Appendix A.  Survey of RED Implementation Status   This Appendix is informative, not normative.   In May 2007 a survey was conducted of 84 vendors to assess how widely   drop probability based on packet size has been implemented in RED   Table 3.  About 19% of those surveyed replied, giving a sample size   of 16.  Although in most cases we do not have permission to identify   the respondents, we can say that those that have responded include   most of the larger equipment vendors, covering a large fraction of   the market.  The two who gave permission to be identified were Cisco   and Alcatel-Lucent.  The others range across the large network   equipment vendors at L3 & L2, firewall vendors, wireless equipment   vendors, as well as large software businesses with a small selection   of networking products.  All those who responded confirmed that they   have not implemented the variant of RED with drop dependent on packet   size (2 were fairly sure they had not but needed to check more   thoroughly).  At the time the survey was conducted, Linux did not   implement RED with packet-size bias of drop, although we have not   investigated a wider range of open source code.     +-------------------------------+----------------+--------------+     |                      Response | No. of vendors | % of vendors |     +-------------------------------+----------------+--------------+     |               Not implemented |             14 |          17% |     |    Not implemented (probably) |              2 |           2% |     |                   Implemented |              0 |           0% |     |                   No response |             68 |          81% |     | Total companies/orgs surveyed |             84 |         100% |     +-------------------------------+----------------+--------------+    Table 3: Vendor Survey on byte-mode drop variant of RED (lower drop                      probability for small packets)   Where reasons were given for why the byte-mode drop variant had not   been implemented, the extra complexity of packet-bias code was most   prevalent, though one vendor had a more principled reason for   avoiding it -- similar to the argument of this document.   Our survey was of vendor implementations, so we cannot be certain   about operator deployment.  But we believe many queues in the   Internet are still tail drop.  The company of one of the co-authors   (BT) has widely deployed RED; however, many tail-drop queues are   bound to still exist, particularly in access network equipment and on   middleboxes like firewalls, where RED is not always available.Briscoe & Manner          Best Current Practice                [Page 33]

RFC 7141         Byte and Packet Congestion Notification   February 2014   Routers using a memory architecture based on fixed-size buffers with   borrowing may also still be prevalent in the Internet.  As explained   inSection 4.2.1, these also provide a marginal (but legitimate) bias   towards small packets.  So even though RED byte-mode drop is not   prevalent, it is likely there is still some bias towards small   packets in the Internet due to tail-drop and fixed-buffer borrowing.Appendix B.  Sufficiency of Packet-Mode Drop   This Appendix is informative, not normative.   Here we check that packet-mode drop (or marking) in the network gives   sufficiently generic information for the transport layer to use.  We   check against a 2x2 matrix of four scenarios that may occur now or in   the future (Table 4).  Checking the two scenarios in each of the   horizontal and vertical dimensions tests the extremes of sensitivity   to packet size in the transport and in the network respectively.   Note that this section does not consider byte-mode drop at all.   Having deprecated byte-mode drop, the goal here is to check that   packet-mode drop will be sufficient in all cases.   +-------------------------------+-----------------+-----------------+   |                  Transport -> |  a) Independent | b) Dependent on |   | ----------------------------- |  of packet size |  packet size of |   | Network                       |  of congestion  |    congestion   |   |                               |  notifications  |  notifications  |   +-------------------------------+-----------------+-----------------+   | 1) Predominantly bit-         |   Scenario a1)  |   Scenario b1)  |   | congestible network           |                 |                 |   | 2) Mix of bit-congestible and |   Scenario a2)  |   Scenario b2)  |   | pkt-congestible network       |                 |                 |   +-------------------------------+-----------------+-----------------+                Table 4: Four Possible Congestion ScenariosAppendix B.1 focuses on the horizontal dimension of Table 4 checking   that packet-mode drop (or marking) gives sufficient information,   whether or not the transport uses it -- scenarios b) and a)   respectively.Appendix B.2 focuses on the vertical dimension of Table 4, checking   that packet-mode drop gives sufficient information to the transport   whether resources in the network are bit-congestible or packet-   congestible (these terms are defined inSection 1.1).Briscoe & Manner          Best Current Practice                [Page 34]

RFC 7141         Byte and Packet Congestion Notification   February 2014   Notation:  To be concrete, we will compare two flows with different      packet sizes, s_1 and s_2.  As an example, we will take      s_1 = 60 B = 480 b and s_2 = 1,500 B = 12,000 b.      A flow's bit rate, x [bps], is related to its packet rate, u      [pps], by         x(t) = s*u(t).      In the bit-congestible case, path congestion will be denoted by      p_b, and in the packet-congestible case by p_p.  When either case      is implied, the letter p alone will denote path congestion.B.1.  Packet-Size (In)Dependence in Transports   In all cases, we consider a packet-mode drop queue that indicates   congestion by dropping (or marking) packets with probability p   irrespective of packet size.  We use an example value of loss   (marking) probability, p=0.1%.   A transport like TCP as specified inRFC 5681 treats a congestion   notification on any packet whatever its size as one event.  However,   a network with just the packet-mode drop algorithm gives more   information if the transport chooses to use it.  We will use Table 5   to illustrate this.   We will set aside the last column until later.  The columns labelled   'Flow 1' and 'Flow 2' compare two flows consisting of 60 B and   1,500 B packets respectively.  The body of the table considers two   separate cases, one where the flows have an equal bit rate and the   other with equal packet rates.  In both cases, the two flows fill a   96 Mbps link.  Therefore, in the equal bit rate case, they each have   half the bit rate (48Mbps).  Whereas, with equal packet rates, Flow 1   uses 25 times smaller packets so it gets 25 times less bit rate -- it   only gets 1/(1+25) of the link capacity (96 Mbps / 26 = 4 Mbps after   rounding).  In contrast Flow 2 gets 25 times more bit rate (92 Mbps)   in the equal packet rate case because its packets are 25 times   larger.  The packet rate shown for each flow could easily be derived   once the bit rate was known by dividing the bit rate by packet size,   as shown in the column labelled 'Formula'.Briscoe & Manner          Best Current Practice                [Page 35]

RFC 7141         Byte and Packet Congestion Notification   February 2014      Parameter               Formula       Flow 1   Flow 2 Combined      ----------------------- ----------- -------- -------- --------      Packet size             s/8             60 B  1,500 B    (Mix)      Packet size             s              480 b 12,000 b    (Mix)      Pkt loss probability    p               0.1%     0.1%     0.1%      EQUAL BIT RATE CASE      Bit rate                x            48 Mbps  48 Mbps  96 Mbps      Packet rate             u = x/s     100 kpps   4 kpps 104 kpps      Absolute pkt-loss rate  p*u          100 pps    4 pps  104 pps      Absolute bit-loss rate  p*u*s        48 kbps  48 kbps  96 kbps      Ratio of lost/sent pkts p*u/u           0.1%     0.1%     0.1%      Ratio of lost/sent bits p*u*s/(u*s)     0.1%     0.1%     0.1%      EQUAL PACKET RATE CASE      Bit rate                x             4 Mbps  92 Mbps  96 Mbps      Packet rate             u = x/s       8 kpps   8 kpps  15 kpps      Absolute pkt-loss rate  p*u            8 pps    8 pps   15 pps      Absolute bit-loss rate  p*u*s         4 kbps  92 kbps  96 kbps      Ratio of lost/sent pkts p*u/u           0.1%     0.1%     0.1%      Ratio of lost/sent bits p*u*s/(u*s)     0.1%     0.1%     0.1%    Table 5: Absolute Loss Rates and Loss Ratios for Flows of Small and                      Large Packets and Both Combined   So far, we have merely set up the scenarios.  We now consider   congestion notification in the scenario.  Two TCP flows with the same   round-trip time aim to equalise their packet-loss rates over time;   that is, the number of packets lost in a second, which is the packets   per second (u) multiplied by the probability that each one is dropped   (p).  Thus, TCP converges on the case labelled 'Equal packet rate' in   the table, where both flows aim for the same absolute packet-loss   rate (both 8 pps in the table).   Packet-mode drop actually gives flows sufficient information to   measure their loss rate in bits per second, if they choose, not just   packets per second.  Each flow can count the size of a lost or marked   packet and scale its rate response in proportion (as TFRC-SP does).   The result is shown in the row entitled 'Absolute bit-loss rate',   where the bits lost in a second is the packets per second (u)   multiplied by the probability of losing a packet (p) multiplied by   the packet size (s).  Such an algorithm would try to remove any   imbalance in the bit-loss rate such as the wide disparity in the case   labelled 'Equal packet rate' (4k bps vs. 92 kbps).  Instead, a   packet-size-dependent algorithm would aim for equal bit-loss rates,   which would drive both flows towards the case labelled 'Equal bit   rate', by driving them to equal bit-loss rates (both 48 kbps in this   example).Briscoe & Manner          Best Current Practice                [Page 36]

RFC 7141         Byte and Packet Congestion Notification   February 2014   The explanation so far has assumed that each flow consists of packets   of only one constant size.  Nonetheless, it extends naturally to   flows with mixed packet sizes.  In the right-most column of Table 5,   a flow of mixed-size packets is created simply by considering Flow 1   and Flow 2 as a single aggregated flow.  There is no need for a flow   to maintain an average packet size.  It is only necessary for the   transport to scale its response to each congestion indication by the   size of each individual lost (or marked) packet.  Taking, for   example, the case labelled 'Equal packet rate', in one second about 8   small packets and 8 large packets are lost (making closer to 15 than   16 losses per second due to rounding).  If the transport multiplies   each loss by its size, in one second it responds to 8*480 and   8*12,000 lost bits, adding up to 96,000 lost bits in a second.  This   double checks correctly, being the same as 0.1% of the total bit rate   of 96 Mbps.  For completeness, the formula for absolute bit-loss rate   is p(u1*s1+u2*s2).   Incidentally, a transport will always measure the loss probability   the same, irrespective of whether it measures in packets or in bytes.   In other words, the ratio of lost packets to sent packets will be the   same as the ratio of lost bytes to sent bytes.  (This is why TCP's   bit rate is still proportional to packet size, even when byte   counting is used, as recommended for TCP in [RFC5681], mainly for   orthogonal security reasons.)  This is intuitively obvious by   comparing two example flows; one with 60 B packets, the other with   1,500 B packets.  If both flows pass through a queue with drop   probability 0.1%, each flow will lose 1 in 1,000 packets.  In the   stream of 60 B packets, the ratio of lost bytes to sent bytes will be   60 B in every 60,000 B; and in the stream of 1,500 B packets, the   loss ratio will be 1,500 B out of 1,500,000 B.  When the transport   responds to the ratio of lost to sent packets, it will measure the   same ratio whether it measures in packets or bytes: 0.1% in both   cases.  The fact that this ratio is the same whether measured in   packets or bytes can be seen in Table 5, where the ratio of lost   packets to sent packets and the ratio of lost bytes to sent bytes is   always 0.1% in all cases (recall that the scenario was set up with   p=0.1%).   This discussion of how the ratio can be measured in packets or bytes   is only raised here to highlight that it is irrelevant to this memo!   Whether or not a transport depends on packet size depends on how this   ratio is used within the congestion control algorithm.   So far, we have shown that packet-mode drop passes sufficient   information to the transport layer so that the transport can take bit   congestion into account, by using the sizes of the packets that   indicate congestion.  We have also shown that the transport canBriscoe & Manner          Best Current Practice                [Page 37]

RFC 7141         Byte and Packet Congestion Notification   February 2014   choose not to take packet size into account if it wishes.  We will   now consider whether the transport can know which to do.B.2.  Bit-Congestible and Packet-Congestible Indications   As a thought-experiment, imagine an idealised congestion notification   protocol that supports both bit-congestible and packet-congestible   resources.  It would require at least two ECN flags, one for each of   the bit-congestible and packet-congestible resources.   1.  A packet-congestible resource trying to code congestion level p_p       into a packet stream should mark the idealised 'packet       congestion' field in each packet with probability p_p       irrespective of the packet's size.  The transport should then       take a packet with the packet congestion field marked to mean       just one mark, irrespective of the packet size.   2.  A bit-congestible resource trying to code time-varying byte-       congestion level p_b into a packet stream should mark the 'byte       congestion' field in each packet with probability p_b, again       irrespective of the packet's size.  Unlike before, the transport       should take a packet with the byte congestion field marked to       count as a mark on each byte in the packet.   This hides a fundamental problem -- much more fundamental than   whether we can magically create header space for yet another ECN   flag, or whether it would work while being deployed incrementally.   Distinguishing drop from delivery naturally provides just one   implicit bit of congestion indication information -- the packet is   either dropped or not.  It is hard to drop a packet in two ways that   are distinguishable remotely.  This is a similar problem to that of   distinguishing wireless transmission losses from congestive losses.   This problem would not be solved, even if ECN were universally   deployed.  A congestion notification protocol must survive a   transition from low levels of congestion to high.  Marking two states   is feasible with explicit marking, but it is much harder if packets   are dropped.  Also, it will not always be cost-effective to implement   AQM at every low-level resource, so drop will often have to suffice.   We are not saying two ECN fields will be needed (and we are not   saying that somehow a resource should be able to drop a packet in one   of two different ways so that the transport can distinguish which   sort of drop it was!).  These two congestion notification channels   are a conceptual device to illustrate a dilemma we could face in the   future.Section 3 gives four good reasons why it would be a bad idea   to allow for packet size by biasing drop probability in favour of   small packets within the network.  The impracticality of our thoughtBriscoe & Manner          Best Current Practice                [Page 38]

RFC 7141         Byte and Packet Congestion Notification   February 2014   experiment shows that it will be hard to give transports a practical   way to know whether or not to take into account the size of   congestion indication packets.   Fortunately, this dilemma is not pressing because by design most   equipment becomes bit-congested before its packet processing becomes   congested (as already outlined inSection 1.1).  Therefore,   transports can be designed on the relatively sound assumption that a   congestion indication will usually imply bit congestion.   Nonetheless, although the above idealised protocol isn't intended for   implementation, we do want to emphasise that research is needed to   predict whether there are good reasons to believe that packet   congestion might become more common, and if so, to find a way to   somehow distinguish between bit and packet congestion [RFC3714].   Recently, the dual resource queue (DRQ) proposal [DRQ] has been made   on the premise that, as network processors become more cost-   effective, per-packet operations will become more complex   (irrespective of whether more function in the network is desirable).   Consequently the premise is that CPU congestion will become more   common.  DRQ is a proposed modification to the RED algorithm that   folds both bit congestion and packet congestion into one signal   (either loss or ECN).   Finally, we note one further complication.  Strictly, packet-   congestible resources are often cycle-congestible.  For instance, for   routing lookups, load depends on the complexity of each lookup and   whether or not the pattern of arrivals is amenable to caching.  This   also reminds us that any solution must not require a forwarding   engine to use excessive processor cycles in order to decide how to   say it has no spare processor cycles.Appendix C.  Byte-Mode Drop Complicates Policing Congestion Response   This section is informative, not normative.   There are two main classes of approach to policing congestion   response: (i) policing at each bottleneck link or (ii) policing at   the edges of networks.  Packet-mode drop in RED is compatible with   either, while byte-mode drop precludes edge policing.   The simplicity of an edge policer relies on one dropped or marked   packet being equivalent to another of the same size without having to   know which link the drop or mark occurred at.  However, the byte-mode   drop algorithm has to depend on the local MTU of the line -- it needs   to use some concept of a 'normal' packet size.  Therefore, one   dropped or marked packet from a byte-mode drop algorithm is notBriscoe & Manner          Best Current Practice                [Page 39]

RFC 7141         Byte and Packet Congestion Notification   February 2014   necessarily equivalent to another from a different link.  A policing   function local to the link can know the local MTU where the   congestion occurred.  However, a policer at the edge of the network   cannot, at least not without a lot of complexity.   The early research proposals for type (i) policing at a bottleneck   link [pBox] used byte-mode drop, then detected flows that contributed   disproportionately to the number of packets dropped.  However, with   no extra complexity, later proposals used packet-mode drop and looked   for flows that contributed a disproportionate amount of dropped bytes   [CHOKe_Var_Pkt].   Work is progressing on the Congestion Exposure (ConEx) protocol   [RFC6789], which enables a type (ii) edge policer located at a user's   attachment point.  The idea is to be able to take an integrated view   of the effect of all a user's traffic on any link in the   internetwork.  However, byte-mode drop would effectively preclude   such edge policing because of the MTU issue above.   Indeed, making drop probability depend on the size of the packets   that bits happen to be divided into would simply encourage the bits   to be divided into smaller packets in order to confuse policing.  In   contrast, as long as a dropped/marked packet is taken to mean that   all the bytes in the packet are dropped/marked, a policer can remain   robust against sequences of bits being re-divided into different size   packets or across different size flows [Rate_fair_Dis].Briscoe & Manner          Best Current Practice                [Page 40]

RFC 7141         Byte and Packet Congestion Notification   February 2014Authors' Addresses   Bob Briscoe   BT   B54/77, Adastral Park   Martlesham Heath   Ipswich  IP5 3RE   UK   Phone: +44 1473 645196   EMail: bob.briscoe@bt.com   URI:http://bobbriscoe.net/   Jukka Manner   Aalto University   Department of Communications and Networking (Comnet)   P.O. Box 13000   FIN-00076 Aalto   Finland   Phone: +358 9 470 22481   EMail: jukka.manner@aalto.fi   URI:http://www.netlab.tkk.fi/~jmanner/Briscoe & Manner          Best Current Practice                [Page 41]

[8]ページ先頭

©2009-2025 Movatter.jp