Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Info page]

INFORMATIONAL
Internet Engineering Task Force (IETF)                        A. KirkhamRequest for Comments: 6752                            Palo Alto NetworksCategory: Informational                                   September 2012ISSN: 2070-1721Issues with Private IP Addressing in the InternetAbstract   The purpose of this document is to provide a discussion of the   potential problems of using private,RFC 1918, or non-globally   routable addressing within the core of a Service Provider (SP)   network.  The discussion focuses on link addresses and, to a small   extent, loopback addresses.  While many of the issues are well   recognised within the ISP community, there appears to be no document   that collectively describes the issues.Status of This Memo   This document is not an Internet Standards Track specification; it is   published for informational purposes.   This document is a product of the Internet Engineering Task Force   (IETF).  It represents the consensus of the IETF community.  It has   received public review and has been approved for publication by the   Internet Engineering Steering Group (IESG).  Not all documents   approved by the IESG are a candidate for any level of Internet   Standard; seeSection 2 of RFC 5741.   Information about the current status of this document, any errata,   and how to provide feedback on it may be obtained athttp://www.rfc-editor.org/info/rfc6752.Copyright Notice   Copyright (c) 2012 IETF Trust and the persons identified as the   document authors.  All rights reserved.   This document is subject toBCP 78 and the IETF Trust's Legal   Provisions Relating to IETF Documents   (http://trustee.ietf.org/license-info) in effect on the date of   publication of this document.  Please review these documents   carefully, as they describe your rights and restrictions with respect   to this document.  Code Components extracted from this document must   include Simplified BSD License text as described in Section 4.e of   the Trust Legal Provisions and are provided without warranty as   described in the Simplified BSD License.Kirkham                       Informational                     [Page 1]

RFC 6752          Private IP Addressing in the Internet   September 2012Table of Contents1. Introduction ....................................................22. Conservation of Address Space ...................................33. Effects on Traceroute ...........................................34. Effects on Path MTU Discovery ...................................65. Unexpected Interactions with Some NAT Implementations ...........76. Interactions with Edge Anti-Spoofing Techniques .................97. Peering Using Loopbacks .........................................98. DNS Interaction .................................................99. Operational and Troubleshooting Issues .........................1010. Security Considerations .......................................1011. Alternate Approaches to Core Network Security .................1212. References ....................................................1312.1. Normative References .....................................1312.2. Informative References ...................................13Appendix A.  Acknowledgments ......................................141.  Introduction   In the mid to late 1990s, some Internet Service Providers (ISPs)   adopted the practice of utilising private (or non-globally unique)   [RFC1918] IP addresses for the infrastructure links and in some cases   the loopback interfaces within their networks.  The reasons for this   approach centered on conservation of address space (i.e., scarcity of   public IPv4 address space) and security of the core network (also   known as core hiding).   However, a number of technical and operational issues occurred as a   result of using private (or non-globally unique) IP addresses, and   virtually all these ISPs moved away from the practice.  Tier 1 ISPs   are considered the benchmark of the industry and as of the time of   writing, there is no known tier 1 ISP that utilises the practice of   private addressing within their core network.   The following sections will discuss the various issues associated   with deploying private [RFC1918] IP addresses within ISP core   networks.   The intent of this document is not to suggest that private IP   addresses can not be used with the core of an SP network, as some   providers use this practice and operate successfully.  The intent is   to outline the potential issues or effects of such a practice.   Note:  The practice of ISPs using "squat" address space (also known   as "stolen" space) has many of the same, plus some additional, issues   (or effects) as that of using private IP address space within core   networks.  The term "squat IP address space" refers to the practiceKirkham                       Informational                     [Page 2]

RFC 6752          Private IP Addressing in the Internet   September 2012   of an ISP using address space for its own infrastructure/core network   addressing that has been officially allocated by an RIR (Regional   Internet Registry) to another provider, but that provider is not   currently using or advertising within the Internet.  Squat addressing   is not discussed further in this document.  It is simply noted as an   associated issue.2.  Conservation of Address Space   One of the original intents for the use of private IP addressing   within an ISP core was the conservation of IP address space.  When an   ISP is allocated a block of public IP addresses (from an RIR), this   address block was traditionally split in order to dedicate some   portion for infrastructure use (i.e., for the core network) and the   other portion for customer (subscriber) or other address pool use.   Typically, the number of infrastructure addresses needed is   relatively small in comparison to the total address count.  So unless   the ISP was only granted a small public block, dedicating some   portion to infrastructure links and loopback addresses (/32) is   rarely a large enough issue to outweigh the problems that are   potentially caused when private address space is used.   Additionally, specifications and equipment capability improvements   now allow for the use of /31 subnets [RFC3021] for link addresses in   place of the original /30 subnets -- further minimising the impact of   dedicating public addresses to infrastructure links by only using two   (2) IP addresses per point-to-point link versus four (4),   respectively.   The use of private addressing as a conservation technique within an   Internet Service Provider (ISP) core can cause a number of technical   and operational issues or effects.  The main effects are described   below.3.  Effects on Traceroute   The single biggest effect caused by the use of private addressing   [RFC1918] within an Internet core is the fact that it can disrupt the   operation of traceroute in some situations.  This section provides   some examples of the issues that can occur.   A first example illustrates the situation where the traceroute   crosses an Autonomous System (AS) boundary, and one of the networks   has utilised private addressing.  The following simple network is   used to show the effects.Kirkham                       Informational                     [Page 3]

RFC 6752          Private IP Addressing in the Internet   September 2012              AS64496                 EBGP                AS64497                    IBGP Mesh <--------------->  IBGP MeshR1 Pool -                                                      R6 Pool -203.0.113.0/26                                          203.0.113.64/26                               198.51.100.8/30                                             198.51.100.4/30    10.1.1.0/30  10.1.1.4/30                             198.51.100.0/30                               .9          .10    .1       .2  .5       .6    ------------    .6      .5  .2      .1  R1-----------R2-----------R3--|          |--R4----------R5----------R6  R1 Loopback: 10.1.1.101                    R4 Loopback: 198.51.100.103  R2 Loopback: 10.1.1.102                    R5 Loopback: 198.51.100.102  R3 Loopback: 10.1.1.103                    R6 Loopback: 198.51.100.101   Using this example, performing the traceroute from AS64497 to   AS64496, we can see the private addresses of the infrastructure links   in AS64496 are returned.   R6#traceroute 203.0.113.1   Type escape sequence to abort.   Tracing the route to 203.0.113.1     1 198.51.100.2 40 msec 20 msec 32 msec     2 198.51.100.6 16 msec 20 msec 20 msec     3 198.51.100.9 20 msec 20 msec 32 msec     4 10.1.1.5 20 msec 20 msec 20 msec     5 10.1.1.1 20 msec 20 msec 20 msec   R6#   This effect in itself is often not a problem.  However, if anti-   spoofing controls are applied at network perimeters, then responses   returned from hops with private IP addresses will be dropped.  Anti-   spoofing refers to a security control where traffic with an invalid   source address is discarded.  Anti-spoofing is further described in   [BCP38] and [BCP84].  Additionally, any [RFC1918] filtering   mechanism, such as those employed in most firewalls and many other   network devices can cause the same effect.   The effects are illustrated in a second example below.  The same   network as in example 1 is used, but with the addition of anti-   spoofing deployed at the ingress of R4 on the R3-R4 interface (IP   Address 198.51.100.10).Kirkham                       Informational                     [Page 4]

RFC 6752          Private IP Addressing in the Internet   September 2012   R6#traceroute 203.0.113.1   Type escape sequence to abort.   Tracing the route to 203.0.113.1     1 198.51.100.2 24 msec 20 msec 20 msec     2 198.51.100.6 20 msec 52 msec 44 msec     3 198.51.100.9 44 msec 20 msec 32 msec     4  *  *  *     5  *  *  *     6  *  *  *     7  *  *  *     8  *  *  *     9  *  *  *    10  *  *  *    11  *  *  *    12  *  *  *   In a third example, a similar effect is caused.  If a traceroute is   initiated from a router with a private (source) IP address, located   in AS64496 and the destination is outside of the ISP's AS (AS64497),   then in this situation, the traceroute will fail completely beyond   the AS boundary.   R1# traceroute 203.0.113.65   Type escape sequence to abort.   Tracing the route to 203.0.113.65     1 10.1.1.2 20 msec 20 msec 20 msec     2 10.1.1.6 52 msec 24 msec 40 msec     3  *  *  *     4  *  *  *     5  *  *  *     6  *  *  *   R1#   While it is completely unreasonable to expect a packet with a private   source address to be successfully returned in a typical SP   environment, the case is included to show the effect as it can have   implications for troubleshooting.  This case will be referenced in a   later section.   In a complex topology, with multiple paths and exit points, the   provider will lose its ability to trace paths originating within its   own AS, through its network, to destinations within other ASes.  Such   a situation could be a severe troubleshooting impediment.Kirkham                       Informational                     [Page 5]

RFC 6752          Private IP Addressing in the Internet   September 2012   For completeness, a fourth example is included to show that a   successful traceroute can be achieved by specifying a public source   address as the source address of the traceroute.  Such an approach   can be used in many operational situations if the router initiating   the traceroute has at least one public address configured.  However,   the approach is more cumbersome.   R1#traceroute   Protocol [ip]:   Target IP address: 203.0.113.65   Source address: 203.0.113.1   Numeric display [n]:   Timeout in seconds [3]:   Probe count [3]:   Minimum Time to Live [1]:   Maximum Time to Live [30]: 10   Port Number [33434]:   Loose, Strict, Record, Timestamp, Verbose[none]:   Type escape sequence to abort.   Tracing the route to 203.0.113.65     1 10.1.1.2 0 msec 4 msec 0 msec     2 10.1.1.6 0 msec 4 msec 0 msec     3 198.51.100.10 [AS 64497] 0 msec 4 msec 0 msec     4 198.51.100.5 [AS 64497] 0 msec 0 msec 4 msec     5 198.51.100.1 [AS 64497] 0 msec 0 msec 4 msec   R1#   It should be noted that some solutions to this problem have been   proposed in [RFC5837], which provides extensions to ICMP to allow the   identification of interfaces and their components by any combination   of the following:  ifIndex, IPv4 address, IPv6 address, name, and   MTU.  However, at the time of this writing, little or no deployment   was known to be in place.4.  Effects on Path MTU Discovery   The Path MTU Discovery (PMTUD) process was designed to allow hosts to   make an accurate assessment of the maximum packet size that can be   sent across a path without fragmentation.  Path MTU Discovery is   utilised by IPv4 [RFC1191], IPv6 [RFC1981], and some tunnelling   protocols such as Generic Routing Encapsulation (GRE) and IPsec.   The PMTUD mechanism requires that an intermediate router can reply to   the source address of an IP packet with an ICMP reply that uses the   router's interface address.  If the router's interface address is a   private IP address, then this ICMP reply packet may be discarded due   to unicast reverse path forwarding (uRPF) or ingress filtering,Kirkham                       Informational                     [Page 6]

RFC 6752          Private IP Addressing in the Internet   September 2012   thereby causing the PMTUD mechanism to fail.  If the PMTUD mechanism   fails, this will cause transmission of data between the two hosts to   fail silently due to the traffic being black-holed.  As a result, the   potential for application-level issues may be created.5.  Unexpected Interactions with Some NAT Implementations   Private addressing is legitimately used within many enterprise,   corporate, or government networks for internal network addressing.   When users on the inside of the network require Internet access, they   will typically connect through a perimeter router, firewall, or   network proxy that provides Network Address Translation (NAT) or   Network Address Port Translation (NAPT) services to a public   interface.   Scarcity of public IPv4 addresses is forcing many service providers   to make use of NAT.  CGN (Carrier-Grade NAT) will enable service   providers to assign private [RFC1918] IPv4 addresses to their   customers rather than public, globally unique IPv4 addresses.  NAT444   will make use of a double NAT process.   Unpredictable or confusing interactions could occur if traffic such   as traceroute, PMTUD, and possibly other applications were launched   from the NAT IPv4 'inside address', and it passed over the same   address range in the public IP core.  While such a situation would be   unlikely to occur if the NAT pools and the private infrastructure   addressing were under the same administration, such a situation could   occur in the more typical situation of a NATed corporate network   connecting to an ISP.  For example, say 10.1.1.0/24 is used to   internally number the corporate network.  A traceroute or PMTUD   request is initiated inside the corporate network from say 10.1.1.1.   The packet passes through a NAT (or NAPT) gateway, then over an ISP   core numbered from the same range.  When the responses are delivered   back to the originator, the returned packets from the privately   addressed part of the ISP core could have an identical source and   destination address of 10.1.1.1.Kirkham                       Informational                     [Page 7]

RFC 6752          Private IP Addressing in the Internet   September 2012            NAT Pool -           203.0.113.0/24    10.1.1.0/30                 10.1.1.0/30              198.51.100.0/30               198.51.100.12/30                198.51.100.4/30    .1       .2  .14     .13  .1           .2  .6      .5  .2      .1  R1-----------R2-----------R3---------------R4----------R5----------R6               NAT                                                          R6 Loopback:                                                          198.51.100.100   R1#traceroute 198.51.100.100   Type escape sequence to abort.   Tracing the route to 198.51.100.100     1 10.1.1.2 0 msec 0 msec 0 msec     2 198.51.100.13 0 msec 4 msec 0 msec     3 10.1.1.2 0 msec 4 msec 0 msec        <<<<     4 198.51.100.5 4 msec 0 msec 4 msec     5 198.51.100.1 0 msec 0 msec 0 msec   R1#   This duplicate address space scenario has the potential to cause   confusion among operational staff, thereby making it more difficult   to successfully debug networking problems.   Certainly a scenario where the same [RFC1918] address space becomes   utilised on both the inside and outside interfaces of a NAT/NAPT   device can be problematic.  For example, the same private address   range is assigned by both the administrator of a corporate network   and its ISP.  Some applications discover the outside address of their   local Customer Premises Equipment (CPE) to determine if that address   is reserved for special use.  Application behaviour may then be based   on this determination.  "IANA-Reserved IPv4 Prefix for Shared Address   Space" [RFC6598] provides further analysis of this situation.   To address this scenario and others, "IANA-Reserved IPv4 Prefix for   Shared Address Space" [RFC6598] allocated a dedicated /10 address   block for the purpose of Shared CGN (Carrier Grade NAT) Address   Space:  100.64.0.0/10.  The purpose of Shared CGN Address Space is to   number CPE (Customer Premise Equipment) interfaces that connect to   CGN devices.  As explained in [RFC6598], [RFC1918] addressing has   issues when used in this deployment scenario.Kirkham                       Informational                     [Page 8]

RFC 6752          Private IP Addressing in the Internet   September 20126.  Interactions with Edge Anti-Spoofing Techniques   Denial-of-Service (DOS) attacks and Distributed Denial-of-Service   (DDoS) attacks can make use of spoofed source IP addresses in an   attempt to obfuscate the source of an attack.  Network Ingress   Filtering [RFC2827] strongly recommends that providers of Internet   connectivity implement filtering to prevent packets using source   addresses outside of their legitimately assigned and advertised   prefix ranges.  Such filtering should also prevent packets with   private source addresses from egressing the AS.   Best security practices for ISPs also strongly recommend that packets   with illegitimate source addresses should be dropped at the AS   perimeter.  Illegitimate source addresses includes private [RFC1918]   IP addresses, addresses within the provider's assigned prefix ranges,   and bogons (legitimate but unassigned IP addresses).  Additionally,   packets with private IP destination addresses should also be dropped   at the AS perimeter.   If such filtering is properly deployed, then traffic either sourced   from or destined for privately addressed portions of the network   should be dropped, hence the negative consequences on traceroute,   PMTUD, and regular ping-type traffic.7.  Peering Using Loopbacks   Some ISPs use the loopback addresses of Autonomous System Border   Routers (ASBRs) for peering, in particular, where multiple   connections or exchange points exist between the two ISPs.  Such a   technique is used by some ISPs as the foundation of fine-grained   traffic engineering and load balancing through the combination of IGP   metrics and multi-hop BGP.  When private or non-globally reachable   addresses are used as loopback addresses, this technique is either   not possible or considerably more complex to implement.8.  DNS Interaction   Many ISPs utilise their DNS to perform both forward and reverse   resolution for infrastructure devices and infrastructure addresses.   With a privately numbered core, the ISP itself will still have the   capability to perform name resolution of its own infrastructure.   However, others outside of the autonomous system will not have this   capability.  At best, they will get a number of unidentified   [RFC1918] IP addresses returned from a traceroute.Kirkham                       Informational                     [Page 9]

RFC 6752          Private IP Addressing in the Internet   September 2012   It is also worth noting that in some cases, the reverse resolution   requests may leak outside of the AS.  Such a situation can add load   to public DNS servers.  Further information on this problem is   documented in "AS112 Nameserver Operations" [RFC6304].9.  Operational and Troubleshooting Issues   Previous sections of this document have noted issues relating to   network operations and troubleshooting.  In particular, when private   IP addressing within an ISP core is used, the ability to easily   troubleshoot across the AS boundary may be limited.  In some cases,   this may be a serious troubleshooting impediment.  In other cases, it   may be solved through the use of alternative troubleshooting   techniques.   The key point is that the flexibility of initiating an outbound ping   or traceroute from a privately numbered section of the network is   lost.  In a complex topology, with multiple paths and exit points   from the AS, the provider may be restricted in its ability to trace   paths through the network to other ASes.  Such a situation could be a   severe troubleshooting impediment.   For users outside of the AS, the loss of the ability to use a   traceroute for troubleshooting is very often a serious issue.  As   soon as many of these people see a row of "* * *" in a traceroute   they often incorrectly assume that a large part of the network is   down or inaccessible (e.g., behind a firewall).  Operational   experience in many large providers has shown that significant   confusion can result.   With respect to [RFC1918] IP addresses applied as loopbacks, in this   world of acquisitions, if an operator needed to merge two networks,   each using the same private IP ranges, then the operator would likely   need to renumber one of the two networks.  In addition, assume an   operator needed to compare information such as NetFlow / IP Flow   Information Export (IPFIX) or syslog, between two networks using the   same private IP ranges.  There would likely be an issue as the unique   ID in the collector is, in most cases, the source IP address of the   UDP export, i.e., the loopback address.10.  Security Considerations   One of the arguments often put forward for the use of private   addressing within an ISP is an improvement in the network security.   It has been argued that if private addressing is used within the   core, the network infrastructure becomes unreachable from outside the   provider's autonomous system, hence protecting the infrastructure.   There is legitimacy to this argument.  Certainly, if the core isKirkham                       Informational                    [Page 10]

RFC 6752          Private IP Addressing in the Internet   September 2012   privately numbered and unreachable, it potentially provides a level   of isolation in addition to what can be achieved with other   techniques, such as infrastructure Access Control Lists (ACLs), on   their own.  This is especially true in the event of an ACL   misconfiguration, something that does commonly occur as the result of   human error.   There are three key security gaps that exist in a privately addressed   IP core.   1.  The approach does not protect against reflection attacks if edge       anti-spoofing is not deployed.  For example, if a packet with a       spoofed source address corresponding to the network's       infrastructure address range is sent to a host (or other device)       attached to the network, that host will send its response       directly to the infrastructure address.  If such an attack was       performed across a large number of hosts, then a successful       large-scale DoS attack on the infrastructure could be achieved.       This is not to say that a publicly numbered core will protect       from the same attack; it won't.  The key point is that a       reflection attack does get around the apparent security offered       in a privately addressed core.   2.  Even if anti-spoofing is deployed at the AS boundary, the border       routers will potentially carry routing information for the       privately addressed network infrastructure.  This can mean that       packets with spoofed addresses, corresponding to the private       infrastructure addressing, may be considered legitimate by edge       anti-spoofing techniques (such as Unicast Reverse Path Forwarding       - Loose Mode) and forwarded.  To avoid this situation, an edge       anti-spoofing algorithm (such as Unicast Reverse Path Forwarding       - Strict Mode) would be required.  Strict approaches can be       problematic in some environments or where asymmetric traffic       paths exist.   3.  The approach on its own does not protect the network       infrastructure from directly connected customers (i.e., within       the same AS).  Unless other security controls, such as access       control lists (ACLs), are deployed at the ingress point of the       network, customer devices will normally be able to reach, and       potentially attack, both core and edge infrastructure devices.Kirkham                       Informational                    [Page 11]

RFC 6752          Private IP Addressing in the Internet   September 201211.  Alternate Approaches to Core Network Security   Today, hardware-based ACLs, which have minimal to no performance   impact, are now widespread.  Applying an ACL at the AS perimeter to   prevent access to the network core may be a far simpler approach and   provide comparable protection to using private addressing; such a   technique is known as an infrastructure ACL (iACL).   In concept, iACLs provide filtering at the edge network, which allows   traffic to cross the network core but not to terminate on   infrastructure addresses within the core.  Proper iACL deployment   will normally allow required network management traffic to be passed,   such that traceroutes and PMTUD can still operate successfully.  For   an iACL deployment to be practical, the core network needs to have   been addressed with a relatively small number of contiguous address   blocks.  For this reason, the technique may or may not be practical.   A second approach to preventing external access to the core is IS-IS   core hiding.  This technique makes use of a fundamental property of   the IS-IS protocol, which allows link addresses to be removed from   the routing table while still allowing loopback addresses to be   resolved as next hops for BGP.  The technique prevents parties   outside the AS from being able to route to infrastructure addresses,   while still allowing traceroutes to operate successfully.  IS-IS core   hiding does not have the same practical requirement for the core to   be addressed from a small number of contiguous address blocks as with   iACLs.  From an operational and troubleshooting perspective, care   must be taken to ensure that pings and traceroutes are using source   and destination addresses that exist in the routing tables of all   routers in the path, i.e., not hidden link addresses.   A third approach is the use of either an MPLS-based IP VPN or an   MPLS-based IP Core where the 'P' routers (or Label Switch Routers) do   not carry global routing information.  As the core 'P' routers (or   Label Switch Routers) are only switching labeled traffic, they are   effectively not reachable from outside of the MPLS domain.  The 'P'   routers can optionally be hidden so that they do not appear in a   traceroute.  While this approach isolates the 'P' routers from   directed attacks, it does not protect the edge routers ('PE' routers   or Label Edge Routers (LERs)).  Obviously, there are numerous other   engineering considerations in such an approach; we simply note it as   an option.   These techniques may not be suitable for every network.  However,   there are many circumstances where they can be used successfully   without the associated effects of privately addressing the core.Kirkham                       Informational                    [Page 12]

RFC 6752          Private IP Addressing in the Internet   September 201212.  References12.1.  Normative References   [BCP38]    Ferguson, P. and D. Senie, "Network Ingress Filtering:              Defeating Denial of Service Attacks which employ IP Source              Address Spoofing", May 2000.   [BCP84]    Baker, F. and P. Savola, "Ingress Filtering for Multihomed              Networks", March 2004.   [RFC1191]  Mogul, J. and S. Deering, "Path MTU discovery",RFC 1191,              November 1990.   [RFC1918]  Rekhter, Y., Moskowitz, R., Karrenberg, D., Groot, G., and              E. Lear, "Address Allocation for Private Internets",BCP 5,RFC 1918, February 1996.   [RFC1981]  McCann, J., Deering, S., and J. Mogul, "Path MTU Discovery              for IP version 6",RFC 1981, August 1996.   [RFC2827]  Ferguson, P. and D. Senie, "Network Ingress Filtering:              Defeating Denial of Service Attacks which employ IP Source              Address Spoofing",BCP 38,RFC 2827, May 2000.12.2.  Informative References   [RFC3021]  Retana, A., White, R., Fuller, V., and D. McPherson,              "Using 31-Bit Prefixes on IPv4 Point-to-Point Links",RFC 3021, December 2000.   [RFC5837]  Atlas, A., Bonica, R., Pignataro, C., Shen, N., and JR.              Rivers, "Extending ICMP for Interface and Next-Hop              Identification",RFC 5837, April 2010.   [RFC6304]  Abley, J. and W. Maton, "AS112 Nameserver Operations",RFC 6304, July 2011.   [RFC6598]  Weil, J., Kuarsingh, V., Donley, C., Liljenstolpe, C., and              M. Azinger, "IANA-Reserved IPv4 Prefix for Shared Address              Space",BCP 153,RFC 6598, April 2012.Kirkham                       Informational                    [Page 13]

RFC 6752          Private IP Addressing in the Internet   September 2012Appendix A.  Acknowledgments   The author would like to thank the following people for their input   and review:  Dan Wing (Cisco Systems), Roland Dobbins (Arbor   Networks), Philip Smith (APNIC), Barry Greene (ISC), Anton Ivanov   (kot-begemot.co.uk), Ryan Mcdowell (Cisco Systems), Russ White (Cisco   Systems), Gregg Schudel (Cisco Systems), Michael Behringer (Cisco   Systems), Stephan Millet (Cisco Systems), Tom Petch (BT Connect), Wes   George (Time Warner Cable), and Nick Hilliard (INEX).   The author would also like to acknowledge the use of a variety of   NANOG mail archives as references.Author's Address   Anthony Kirkham   Palo Alto Networks   Level 32, 101 Miller St   North Sydney, New South Wales  2060   Australia   Phone:  +61 7 33530902   EMail:  tkirkham@paloaltonetworks.comKirkham                       Informational                    [Page 14]

[8]ページ先頭

©2009-2025 Movatter.jp