Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|PDF|HTML] [Tracker] [IPR] [Errata] [Info page]

INFORMATIONAL
Errata Exist
Independent Submission                                  J. Tripathi, Ed.Request for Comments: 6687                           J. de Oliveira, Ed.Category: Informational                                Drexel UniversityISSN: 2070-1721                                         JP. Vasseur, Ed.                                                     Cisco Systems, Inc.                                                            October 2012Performance Evaluationof the Routing Protocol for Low-Power and Lossy Networks (RPL)Abstract   This document presents a performance evaluation of the Routing   Protocol for Low-Power and Lossy Networks (RPL) for a small outdoor   deployment of sensor nodes and for a large-scale smart meter network.   Detailed simulations are carried out to produce several routing   performance metrics using these real-life deployment scenarios.   Please refer to the PDF version of this document, which includes   several plots for the performance metrics not shown in the plain-text   version.Status of This Memo   This document is not an Internet Standards Track specification; it is   published for informational purposes.   This is a contribution to the RFC Series, independently of any other   RFC stream.  The RFC Editor has chosen to publish this document at   its discretion and makes no statement about its value for   implementation or deployment.  Documents approved for publication by   the RFC Editor are not a candidate for any level of Internet   Standard; seeSection 2 of RFC 5741.   Information about the current status of this document, any errata,   and how to provide feedback on it may be obtained athttp://www.rfc-editor.org/info/rfc6687.Tripathi, et al.              Informational                     [Page 1]

RFC 6687              Performance Evaluation of RPL         October 2012Copyright Notice   Copyright (c) 2012 IETF Trust and the persons identified as the   document authors.  All rights reserved.   This document is subject toBCP 78 and the IETF Trust's Legal   Provisions Relating to IETF Documents   (http://trustee.ietf.org/license-info) in effect on the date of   publication of this document.  Please review these documents   carefully, as they describe your rights and restrictions with respect   to this document.Table of Contents1. Introduction ....................................................22. Terminology .....................................................33. Methodology and Simulation Setup ................................44. Performance Metrics .............................................74.1. Common Assumptions .........................................74.2. Path Quality ...............................................74.3. Routing Table Size ........................................104.4. Delay Bound for P2P Routing ...............................104.5. Control Packet Overhead ...................................114.6. Loss of Connectivity ......................................135. RPL in a Building Automation Routing Scenario ..................185.1. Path Quality ..............................................185.2. Delay .....................................................196. RPL in a Large-Scale Network ...................................196.1. Path Quality ..............................................196.2. Delay .....................................................216.3. Control Packet Overhead ...................................217. Scaling Property and Routing Stability .........................228. Comments .......................................................249. Security Considerations ........................................2510. Acknowledgements ..............................................2511. Informative References ........................................251.  Introduction   Designing a routing protocol for Low-Power and Lossy Networks (LLNs)   imposes great challenges, mainly due to low data rates, high   probability of packet delivery failure, and strict energy constraints   in the nodes.  The IETF ROLL Working Group took on this task and   specified the Routing Protocol for Low-Power and Lossy Networks (RPL)   in [RFC6550].   RPL is designed to meet the core requirements specified in [RFC5826],   [RFC5867], [RFC5673], and [RFC5548].Tripathi, et al.              Informational                     [Page 2]

RFC 6687              Performance Evaluation of RPL         October 2012   This document's contribution is to provide a performance evaluation   of RPL with respect to several metrics of interest.  This is   accomplished using real data and topologies in a discrete event   simulator developed to reproduce the protocol behavior.   The following metrics are evaluated:   o  Path quality metrics, such as ETX path cost, ETX path stretch, ETX      fractional stretch, and hop distance stretch, as defined inSection 2 ("Terminology");   o  Control plane overhead;   o  End-to-end delay between nodes;   o  Ability to cope with unstable situations (link churns, node      dying);   o  Required resource constraints on nodes (routing table size).   Some of these metrics are mentioned in the aforementioned RFCs,   whereas others have been introduced to consider the challenges and   unique requirements of LLNs as discussed in [RFC6550].  For example,   routing in a home automation deployment has strict time bounds on   protocol convergence after any change in topology, as mentioned inSection 3.4 of [RFC5826].  [RFC5673] requires bounded and guaranteed   end-to-end delay for routing in an industrial deployment, and   [RFC5548] requires comparatively loose bounds on latency for end-to-   end communication.  [RFC5548] mandates scalability in terms of   protocol performance for a network of size ranging from 10^2 to 10^4   nodes.   Although simulation cannot prove formally that a protocol operates   properly in all situations, it can give a good level of confidence in   protocol behavior in highly stressful conditions, if and only if   real-life data are used.  Simulation is particularly useful when   theoretical model assumptions may not be applicable to such networks   and scenarios.  In this document, real deployed network data traces   have been used to model link behaviors and network topologies.2.  Terminology   Please refer to [ROLL-TERMS] and [RFC6550] for terminology.  In   addition, the following terms are specified:   PDR:  Packet Delivery Ratio.   CDF:  Cumulative Distribution Function.Tripathi, et al.              Informational                     [Page 3]

RFC 6687              Performance Evaluation of RPL         October 2012   Expected Transmission Count (ETX Metric):  The expected number of      transmissions to reach the next hop is determined as the inverse      of the link PDR.  Consequently, in every hop, if the link quality      (PDR) is high, the expected number of transmissions to reach the      next hop may be as low as 1.  However, if the PDR for the      particular link is low, multiple transmissions may be needed.   ETX Path Cost:  The ETX path cost metric is determined as the      summation of the ETX value for each link on the route a packet      takes towards the destination.   ETX Path Cost Stretch:  The ETX path cost stretch is defined as the      difference between the number of expected transmissions (ETX      Metric) taken by a packet traveling from source to destination,      following a route determined by RPL and a route determined by a      hypothetical ideal shortest path routing protocol (using link ETX      as the metric).   ETX Fractional Stretch (fractional stretch factor of link ETX metric      against ideal shortest path):  The fractional path stretch is the      ratio of ETX path stretch to ETX path cost for the shortest path      route for the source-destination pair.   Hop Distance Stretch (stretch factor for node hop distance against      ideal shortest path):  The hop distance stretch is defined as the      difference between the number of hops taken by a packet traveling      from source to destination, following a route determined by RPL      and by a hypothetical ideal shortest path algorithm, both using      ETX as the link cost.  The fractional hop distance stretch is      computed as the ratio of path stretch to count value between a      source-destination pair for the hypothetical shortest path route      optimizing ETX path cost.3.  Methodology and Simulation Setup   In the context of this document, RPL has been simulated using OMNeT++   [OMNeTpp], a well-known discrete event-based simulator written in C++   and NEtwork Description (NED).  Castalia-2.2 [Castalia-2.2] has been   used as a Wireless Sensor Network Simulator framework within OMNeT++.   The output and events in the simulation are visualized with the help   of the Network AniMator, or NAM, which is distributed with the NS   (Network Simulator) [NS-2].   Note that no versions of the NS itself are used in this simulation   study.  Only the visualization tool was borrowed for verification   purposes.Tripathi, et al.              Informational                     [Page 4]

RFC 6687              Performance Evaluation of RPL         October 2012   In contrast with theoretical models, which may have assumptions not   applicable to lossy links, real-life data was used for two aspects of   the simulations:   *  Link Failure Model: Derived from time-varying real network traces      containing packet delivery probability for each link, over all      channels, for both indoor network deployment and outdoor network      deployment.   *  Topology: Gathered from real-life deployment (traces mentioned      above) as opposed to random topology simulations.   A 45-node topology, deployed as an outdoor network and shown in   Figure 1, and a 2442-node topology, gathered from a smart meter   network deployment, were used in the simulations.  In Figure 1, links   between a most preferred parent node and child nodes are shown in   red.  Links that are shown in black are also part of the topology but   are not between a preferred parent and child node.   Figure 1 [See the PDF.]             Figure 1: Outdoor Network Topology with 45 Nodes.   Note that this is just a start to validate the simulation before   using large-scale networks.   A set of time-varying link quality data was gathered from a real   network deployment to form a database used for the simulations.  Each   link in the topology randomly 'picks up' a link model (trace) from   the database.  Each link has a Packet Delivery Ratio (PDR) that   varies with time (in the simulation, a new PDR is read from the   database every 10 minutes) according to the gathered data.  Packets   are dropped randomly from that link with probability (1 - PDR).  Each   time a packet is about to be sent, the module generates a random   number using the Mersenne Twister random number generation method.   The random number is compared to the PDR to determine whether the   packet should be dropped.  Note that each link uses a different   random number generator to maintain true randomness in the simulator   and to avoid correlation between links.  Also, the packet drop   applies to all kinds of data and control packets (RPL), such as the   DIO, DAO, and DIS packets defined in [RFC6550].  Figure 2 shows a   typical temporal characteristic of links from the indoor network   traces used in the simulations.  The figure shows several links with   perfect connectivity, some links with a PDR as low as 10%, and   several for which the PDR may vary from 30% to 80%, sharply changing   back and forth between a high value (strong connectivity) and a low   value (weak connectivity).Tripathi, et al.              Informational                     [Page 5]

RFC 6687              Performance Evaluation of RPL         October 2012   Figure 2 [See the PDF.]                Figure 2: Example of Link Characteristics.   In the RPL simulator, the LBR (LLN Border Router) or the Directed   Acyclic Graph (DAG) root first initiates sending out DIO messages,   and the DAG is gradually constructed.  RPL makes use of trickle   timers: the protocol sets a minimum time period with which the nodes   start re-issuing DAOs, and this minimum period is denoted by the   trickle parameter Imin.  RPL also sets an upper limit on how many   times this time period can be doubled; this is denoted by the   parameter DIOIntervalDoublings, as defined in [RFC6550].  For the   simulation, Imin is initially set to 1 second and   DIOIntervalDoublings is equal to 16, and therefore the maximum time   between two consecutive DIO emissions by a node (under a steady   network condition) is 18.2 hours.  The trickle time interval for   emitting DIO messages assumes the initial value of 1 second and then   changes over simulation time, as mentioned in [RFC6206].   Another objective of this study is to give insight to the network   administrator on how to tweak the trickle values.  These   recommendations could then be used in applicability statement   documents.   Each node in the network, other than the LBR or DAG root, also emits   DAO messages as specified in [RFC6550], to initially populate the   routing tables with the prefixes received from children via the DAO   messages to support Point-to-Point (P2P) and Point-to-Multipoint   (P2MP) traffic in the "down" direction.  During these simulations, it   is assumed that each node is capable of storing route information for   other nodes in the network (storing mode of RPL).   For nodes implementing RPL, as expected, the routing table memory   requirement varies according to the position in the DODAG   (Destination-Oriented DAG).  The (worst-case) assumption is made that   there is no route summarization (aggregation) in the network.  Thus,   a node closer to the DAG will have to store more entries in its   routing table.  It is also assumed that all nodes have equal memory   capacity to store the routing states.   For simulations of the indoor network, each node sends traffic   according to a Constant Bit Rate (CBR) to all other nodes in the   network, over the simulation period.  Each node generates a new data   packet every 10 seconds.  Each data packet has a size of 127 bytes   including 802.15.4 PHY/MAC headers and RPL packet headers.  All   control packets are also encapsulated with 802.15.4 PHY/MAC headers.   To simulate a more realistic scenario, 80% of the packets generated   by each node are destined to the root, and the remaining 20% of theTripathi, et al.              Informational                     [Page 6]

RFC 6687              Performance Evaluation of RPL         October 2012   packets are uniformly assigned as destined to nodes other than the   root.  Therefore, the root receives a considerably larger amount of   data than other nodes.  These values may be revised when studying P2P   traffic so as to have a majority of traffic going to all nodes as   opposed to the root.  In the later part of the simulation, a typical   home/building routing scenario is also simulated, and different path   quality metrics are computed for that traffic pattern.   The packets are routed through the DODAG built by RPL according to   the mechanisms specified in [RFC6550].   A number of RPL parameters are varied (such as the packet rate from   each source and the time period for emitting a new DAG sequence   number) to observe their effect on the performance metric of   interest.4.  Performance Metrics4.1.  Common Assumptions   As the DAO messages are used to feed the routing tables in the   network, they grow with time and size of the network.  Nevertheless,   no constraint was imposed on the size of the routing table nor on how   much information the node can store.  The routing table size is not   expressed in terms of Kbytes of memory usage but measured in terms of   the number of entries for each node.  Each entry has the next-hop   node and path cost associated with the destination node.   The link ETX (Expected Transmission Count) metric is used to build   the DODAG and is specified in [RFC6551].4.2.  Path Quality   Hop Count:  For each source-destination pair, the number of hops for      both RPL and shortest path routing is computed.  Shortest path      routing refers to a hypothetical ideal routing protocol that would      always provide the shortest path in terms of ETX path cost (or      whichever metric is used) in the network.   The Cumulative Distribution Function (CDF) of the hop count for all   paths (n * (n - 1) in an n-node network) in the network with respect   to the hop count is plotted in Figure 3 for both RPL and shortest   path routing.  One can observe that the CDF corresponding to 4 hops   is around 80% for RPL and 90% for shortest path routing.  In other   words, for the given topology, 90% of the paths have a path length of   4 hops or less with an ideal shortest path routing methodology,   whereas in RPL P2P routing, 90% of the paths will have a length of no   more than 5 hops.  This result indicates that despite having aTripathi, et al.              Informational                     [Page 7]

RFC 6687              Performance Evaluation of RPL         October 2012   non-optimized P2P routing scheme, the path quality of RPL is close to   an optimized P2P routing mechanism for the topology under   consideration.  Another reason for this may relate to the fact that   the DAG root is at the center of the network; thus, routing through   the DAG root is often close to an optimal (shortest path) routing.   This result may be different in a topology where the DAG root is   located at one end of the network.   Figure 3 [See the PDF.]               Figure 3: CDF of Hop Count versus Hop Count.   ETX Path Cost:  In the simulation, the total ETX path cost (defined      in the Terminology section) from source to destination for each      packet is computed.   Figure 4 shows the CDF of the total ETX path cost, both with RPL and   shortest path routing.  Here also one can observe that the ETX path   cost from all sources to all destinations is close to that of   shortest path routing for the network.   Figure 4 [See the PDF.]   Figure 4: CDF of Total ETX Path Cost along Path versus ETX Path Cost.   Path Stretch:  The path stretch metric encompasses the stretch factor      for both hop distance and ETX path cost (as defined in the      Terminology section).  The hop distance stretch, which is      determined as the difference between the number of hops taken by a      packet while following a route built via RPL and the number of      hops taken by shortest path routing (using link ETX as the      metric), is computed.  The ETX path cost stretch is also provided.   The CDF of both path stretch metrics is plotted against the value of   the corresponding path stretch over all packets in Figures 5 and 6,   for hop distance stretch and ETX path stretch, respectively.  It can   be observed that, for a few packets, the path built via RPL has fewer   hops than the ideal shortest path where path ETX is minimized along   the DAG.  This is because there are a few source-destination pairs   where the total ETX path cost is equal to or less than that of the   ideal shortest path when the packet takes a longer hop count.  As the   RPL implementation ignores a 20% change in total ETX path cost before   switching to a new parent or emitting a new DIO, it does not   necessarily provide the shortest path in terms of total ETX path   cost.  Thus, this implementation yields a few paths with smaller hop   counts but larger (or equal) total ETX path cost.Tripathi, et al.              Informational                     [Page 8]

RFC 6687              Performance Evaluation of RPL         October 2012   Figure 5 [See the PDF.]               Figure 5: CDF of Hop Distance Stretch versus                        Hop Distance Stretch Value.   Figure 6 [See the PDF.]     Figure 6: CDF of ETX Path Stretch versus ETX Path Stretch Value.   The data for the CDF of the hop count and ETX path cost for the ideal   shortest path (SP) and a path built via RPL, along with the CDF of   the routing table size, is given below in Table 1.  Figures 3 to 7   relate to the data in this table.   +---------+--------+---------+-----------+------------+-------------+   |   CDF   |   Hop  |   Hop   |  ETX Cost |  ETX Cost  |   Routing   |   |  (%age) |  (SP)  |  (RPL)  |    (SP)   |    (RPL)   |  Table Size |   +---------+--------+---------+-----------+------------+-------------+   |     0   |   1.0  |   1.0   |     1     |    1.0     |      0      |   |     5   |   1.0  |   1.03  |     1     |    1.242   |      1      |   |    10   |   2.0  |   2.0   |     2     |    2.048   |      2      |   |    15   |   2.0  |   2.01  |     2     |    2.171   |      2      |   |    20   |   2.0  |   2.06  |     2     |    2.400   |      2      |   |    25   |   2.0  |   2.11  |     2     |    2.662   |      3      |   |    30   |   2.0  |   2.42  |     2     |    2.925   |      3      |   |    35   |   2.0  |   2.90  |     3     |    3.082   |      3      |   |    40   |   3.0  |   3.06  |     3     |    3.194   |      4      |   |    45   |   3.0  |   3.1   |     3     |    3.41    |      4      |   |    50   |   3.0  |   3.15  |     3     |    3.626   |      4      |   |    55   |   3.0  |   3.31  |     3     |    3.823   |      5      |   |    60   |   3.0  |   3.50  |     3     |    4.032   |      6      |   |    65   |   3.0  |   3.66  |     3     |    4.208   |      7      |   |    70   |   3.0  |   3.92  |     4     |    4.474   |      7      |   |    75   |   4.0  |   4.16  |     4     |    4.694   |      7      |   |    80   |   4.0  |   4.55  |     4     |    4.868   |      8      |   |    85   |   4.0  |   4.70  |     4     |    5.091   |      9      |   |    90   |   4.0  |   4.89  |     4     |    5.488   |     10      |   |    95   |   4.0  |   5.65  |     5     |    5.923   |     12      |   |   100   |   5.0  |   7.19  |     9     |   10.125   |     44      |   +---------+--------+---------+-----------+------------+-------------+                        Table 1: Path Quality CDFs.   Overall, the path quality metrics give us important information about   the protocol's performance when minimizing the ETX path cost is the   objective to form the DAG.  The protocol, as explained, does not   always provide an optimum path, especially for peer-to-peer   communication.  However, it does end up reducing the control overheadTripathi, et al.              Informational                     [Page 9]

RFC 6687              Performance Evaluation of RPL         October 2012   cost, thereby reducing unnecessary parent selection and DIO message   forwarding events, by choosing a non-optimized path.  Despite this   specific implementation technique, around 30% of the packets travel   the same number of hops as an ideal shortest path routing mechanism,   and 20% of the packets experience the same number of attempted   transmissions to reach the destination.  On average, this   implementation costs only a few extra transmission attempts and saves   a large number of control packet transmissions.4.3.  Routing Table Size   The objective of this metric is to observe the distribution of the   number of entries per node.  Figure 7 shows the CDF of the number of   routing table entries for all nodes.  Note that 90% of the nodes need   to store less than 10 entries in their routing table for the topology   under study.  The LBR does not have the same power or memory   constraints as regular nodes do, and hence it can accommodate entries   for all the nodes in the network.  The requirement to accommodate   devices with low storage capacity has been mandated in [RFC5673],   [RFC5826], and [RFC5867].  However, when RPL is implemented in   storing mode, some nodes closer to the LBR or DAG root will require   more memory to store larger routing tables.   Figure 7 [See the PDF.]   Figure 7: CDF of Routing Table Size with Respect to Number of Nodes.4.4.  Delay Bound for P2P Routing   For delay-sensitive applications, such as home and building   automation, it is critical to optimize the end-to-end delay.   Figure 8 shows the upper bound and distributions of delay for paths   between any two given nodes for different hop counts between the   source and destination.  Here, the hop count refers to the number of   hops a packet travels to reach the destination when using RPL paths.   This hop distance does not correspond to the shortest path distance   between two nodes.  Note that each packet has a length of 127 bytes,   with a 240-kbps radio, which makes the transmission delay   approximately 4 milliseconds (ms).   Figure 8 [See the PDF.]    Figure 8: Comparison of Packet Latency, for Different Path Lengths,                          Expressed in Hop Count.   RFCs 5673 [RFC5673] and 5548 [RFC5548] mention a requirement for the   end-to-end delivery delay to remain within a bounded latency.  For   instance, according to the industrial routing requirement,Tripathi, et al.              Informational                    [Page 10]

RFC 6687              Performance Evaluation of RPL         October 2012   non-critical closed-loop applications may have a latency requirement   that can be as low as 100 ms, whereas monitoring services may   tolerate a delay in the order of seconds.  The results show that   about 99% of the end-to-end communication (where the maximum hop   count is 7 hops) is bounded within the 100-ms requirement, for the   topology under study.  It should be noted that due to poor link   condition, there may be packet drops triggering retransmission, which   may cause larger end-to-end delivery delays.  Nodes in the proximity   of the LBR may become congested at high traffic loads, which can also   lead to higher end-to-end delay.4.5.  Control Packet Overhead   The control plane overhead is an important routing characteristic in   LLNs.  It is imperative to bound the control plane overhead.  One of   the distinctive characteristics of RPL is that it makes use of   trickle timers so as to reduce the number of control plane packets by   eliminating redundant messages.  The aim of this performance metric   is thus to analyze the control plane overhead both in stable   conditions (no network element failure overhead) and in the presence   of failures.   Data and control plane traffic comparison for each node:  Figure 9      shows the comparison between the amount of data packets      transmitted (including forwarded packets) and control packets (DIO      and DAO messages) transmitted for all individual nodes when link      ETX is used to optimize the DAG.  As mentioned earlier, each node      generates a new data packet every 10 seconds.  Here one can      observe that a considerable amount of traffic is routed through      the DAG root itself.  The x axis indicates the node ID in the      network.  Also, as expected, the nodes that are closer to the DAG      root and that act as routers (as opposed to leaves) handle much      more data traffic than other nodes.  Nodes 12, 36, and 38 are      examples of nodes next to the DAG root, taking part in routing      most of the data packets and hence having many more data packet      transmissions than other nodes, as observed in Figure 9.  We can      also observe that the proportion of control traffic is negligible      for those nodes.  This result also reinforces the fact that the      amount of control plane traffic generated by RPL is negligible on      these topologies.  Leaf nodes have comparable amounts of data and      control packet transmissions (they do not take part in routing the      data).   Figure 9 [See the PDF.]     Figure 9: Amount of Data and Control Packets Transmitted against                 Node Id Using Link ETX as Routing Metric.Tripathi, et al.              Informational                    [Page 11]

RFC 6687              Performance Evaluation of RPL         October 2012   Data and control packet transmission with respect to time:  In      Figures 10, 11, and 12, the amount of data and control packets      transmitted for node 12 (low rank in DAG, closer to the root),      node 43 (in the middle), and node 31 (leaf node) are shown,      respectively.  These values stand for the number of data and      control packets transmitted for each 10-minute interval for the      particular node, to help understand what the ratio is between data      and control packets exchanged in the network.  One can observe      that nodes closer to the DAG root have a higher proportion of data      packets (as expected), and the proportion of control traffic is      negligible in comparison with the data traffic.  Also, the amount      of data traffic handled by a node within a given interval varies      largely over time for a node closer to the DAG root, because in      each interval the destination of the packets from the same source      changes, while 20% of the packets are destined to the DAG root.      As a result, the pattern of the traffic that is handled changes      widely in each interval for the nodes closer to the DAG root.  For      the nodes that are farther away from the DAG root, the ratio of      data traffic to control traffic is smaller, since the amount of      data traffic is greatly reduced.   The control traffic load exhibits a wave-like pattern.  The amount of   control packets for each node drops quickly as the DODAG stabilizes,   due to the effect of trickle timers.  However, when a new DODAG   sequence is advertised (global repair of the DODAG), the trickle   timers are reset and the nodes start emitting DIOs frequently again   to rebuild the DODAG.  For a node closer to the DAG root, the amount   of data packets is much larger than that of control packets and   somewhat oscillatory around a mean value.  The amount of control   packets exhibits a 'saw-tooth' behavior.  In the case where the ETX   link metric is used, when the PDR changes, the ETX link metric for a   node to its child changes, which may lead to choosing a new parent   and changing the DAG rank of the child.  This event resets the   trickle timer and triggers the emission of a new DIO.  Also, the   issue of a new DODAG sequence number triggers DODAG re-computation   and resets the trickle timers.  Therefore, one can observe that the   number of control packets attains a high value for one interval and   comes down to lower values for subsequent intervals.  The interval   with a high number of control packets denotes the interval where the   timers to emit a new DIO are reset more frequently.  As the network   stabilizes, the control packets are less dense in volume.  For leaf   nodes, the amount of control packets is comparable to that of data   packets, as leaf nodes are more prone to face changes in their DODAG   rank as opposed to nodes closer to the DAG root when the link ETX   value in the topology changes dynamically.Tripathi, et al.              Informational                    [Page 12]

RFC 6687              Performance Evaluation of RPL         October 2012   Figure 10 [See the PDF.]         Figure 10: Amount of Data and Control Packets Transmitted                               for Node 12.   Figure 11 [See the PDF.]         Figure 11: Amount of Data and Control Packets Transmitted                               for Node 43.   Figure 12 [See the PDF.]         Figure 12: Amount of Data and Control Packets Transmitted                               for Node 31.4.6.  Loss of Connectivity   Upon link failures, a node may lose its parents -- preferred and   backup (if any) -- thus leading to a loss of connectivity (no path to   the DAG root).  RPL specifies two mechanisms for DODAG repairs,   referred to as global repair and local repair.  In this document,   simulation results are presented to evaluate the amount of time data   packets are dropped due to a loss of connectivity for the following   two cases: a) when only using global repair (i.e., the DODAG is   rebuilt thanks to the emission of new DODAG sequence numbers by the   DAG root), and b) when using local repair (poisoning the sub-DAG in   case of loss of connectivity) in addition to global repair.  The idea   is to tune the frequency at which new DODAG sequence numbers are   generated by the DAG root, and also to observe the effect of varying   the frequency for global repair and the concurrent use of global and   local repair.  It is expected that more frequent increments of DODAG   sequence numbers will lead to a shorter duration of connectivity loss   at a price of a higher rate of control packets in the network.  For   the use of both global and local repair, the simulation results show   the trade-off in amount of time that a node may remain without   service and total number of control packets.   Figure 13 shows the CDF of time spent by any node without service,   when the data packet rate is one packet every 10 seconds and a new   DODAG sequence number is generated every 10 minutes.  This plot   reflects the property of global repair without any local repair   scheme.  When all the parents are temporarily unreachable from a   node, the time before it hears a DIO from another node is recorded,   which gives the time without service.  We define the DAG repair timer   as the interval at which the LBR increments the DAG sequence number,Tripathi, et al.              Informational                    [Page 13]

RFC 6687              Performance Evaluation of RPL         October 2012   thus triggering a global re-optimization.  In some cases, this value   might go up to the DAG repair timer value, because until a DIO is   heard, the node does not have a parent and hence no route to the LBR   or other nodes not in its own sub-DAG.  Clearly, this situation   indicates a lack of connectivity and loss of service for the node.   Figure 13 [See the PDF.]         Figure 13: CDF: Loss of Connectivity with Global Repair.   The effect of the DAG repair timer on time without service is plotted   in Figure 14, where the source rate is 20 seconds/packet and in   Figure 15, where the source sends a packet every 10 seconds.   Figure 14 [See the PDF.]            Figure 14: CDF: Loss of Connectivity for Different           Global Repair Period, Source Rate 20 Seconds/Packet.   Figure 15 [See the PDF.]            Figure 15: CDF: Loss of Connectivity for Different           Global Repair Period, Source Rate 10 Seconds/Packet.Tripathi, et al.              Informational                    [Page 14]

RFC 6687              Performance Evaluation of RPL         October 2012   The data for Figures 13 and 15 can be found in Table 2.  The table   shows how the CDF of time without connectivity to the LBR increases   while we increase the time period to emit new DAG sequence numbers,   when the nodes generate a packet every 10 seconds.   +---------+------------------+------------------+-------------------+   |   CDF   |  Repair Period   |  Repair Period   |   Repair Period   |   |  (%age) |   10 Minutes     |   30 Minutes     |    60 Minutes     |   +---------+------------------+------------------+-------------------+   |     0   |       0.464      |       0.045      |       0.027       |   |     5   |       0.609      |       0.424      |       0.396       |   |    10   |       1.040      |       1.451      |       0.396       |   |    15   |       1.406      |       3.035      |       0.714       |   |    20   |       1.934      |       3.521      |       0.714       |   |    25   |       2.113      |       5.461      |       1.856       |   |    30   |       3.152      |       5.555      |       1.856       |   |    35   |       3.363      |       7.756      |       6.173       |   |    40   |       4.9078     |       8.604      |       6.173       |   |    45   |       8.575      |       9.181      |      14.751       |   |    50   |       9.788      |      21.974      |      14.751       |   |    55   |      13.230      |      30.017      |      14.751       |   |    60   |      17.681      |      31.749      |      16.166       |   |    65   |      29.356      |      68.709      |      16.166       |   |    70   |      34.019      |      92.974      |     302.459       |   |    75   |      49.444      |     117.869      |     302.459       |   |    80   |      75.737      |     133.653      |     488.602       |   |    85   |     150.089      |     167.828      |     488.602       |   |    90   |     180.505      |     271.884      |     488.602       |   |    95   |     242.247      |     464.047      |     488.602       |   |   100   |     273.808      |     464.047      |     488.602       |   +---------+------------------+------------------+-------------------+   Table 2: Loss of Connectivity Time, Data Rate - 10 Seconds / Packet.Tripathi, et al.              Informational                    [Page 15]

RFC 6687              Performance Evaluation of RPL         October 2012   The data for Figure 14 can be found in Table 3.  The table shows how   the CDF of time without connectivity to the LBR increases while we   increase the time period to emit new DAG sequence numbers, when the   nodes generate a packet every 20 seconds.   +---------+------------------+------------------+-------------------+   |   CDF   |   Repair Period  |   Repair Period  |   Repair Period   |   |  (%age) |    10 Minutes    |    30 Minutes    |    60 Minutes     |   +---------+------------------+------------------+-------------------+   |     0   |       0.071      |       0.955      |       0.167       |   |     5   |       0.126      |       2.280      |       1.377       |   |    10   |       0.403      |       2.926      |       1.409       |   |    15   |       0.902      |       3.269      |       1.409       |   |    20   |       1.281      |      16.623      |       3.054       |   |    25   |       2.322      |      21.438      |       5.175       |   |    30   |       2.860      |      48.479      |       5.175       |   |    35   |       3.316      |      49.495      |      10.30        |   |    40   |       3.420      |      93.700      |      25.406       |   |    45   |       6.363      |     117.594      |      25.406       |   |    50   |      11.500      |     243.429      |      34.379       |   |    55   |      19.703      |     277.039      |     102.141       |   |    60   |      22.216      |     284.660      |     102.141       |   |    65   |      39.211      |     285.101      |     328.293       |   |    70   |      63.197      |     376.549      |     556.296       |   |    75   |      88.986      |     443.450      |     556.296       |   |    80   |     147.509      |     452.883      |    1701.52        |   |    85   |     154.26       |     653.420      |    2076.41        |   |    90   |     244.241      |     720.032      |    2076.41        |   |    95   |     518.835      |    1760.47       |    2076.41        |   |   100   |     555.57       |    1760.47       |    2076.41        |   +---------+------------------+------------------+-------------------+   Table 3: Loss of Connectivity Time, Data Rate - 20 Seconds / Packet.   Figure 16 shows the effect of the DAG global repair timer period on   control traffic.  As expected, as the frequency at which new DAG   sequence numbers are generated increases, the amount of control   traffic decreases because DIO messages are sent less frequently to   rebuild the DODAG.  However, reducing the control traffic comes at a   price of increased loss of connectivity when only global repair is   used.   Figure 16 [See the PDF.]            Figure 16: Amount of Control Traffic for Different                          Global Repair Periods.Tripathi, et al.              Informational                    [Page 16]

RFC 6687              Performance Evaluation of RPL         October 2012   From the above results, it is clear that the time the protocol takes   to re-establish routes and to converge, after an unexpected link or   device failure happens, is fairly long.  [RFC5826] mandates that "the   routing protocol MUST converge within 0.5 seconds if no nodes have   moved".  Clearly, implementation of a repair mechanism based on new   DAG sequence numbers alone would not meet the requirements.  Hence, a   local repair mechanism, in the form of poisoning the sub-DAG and   issuing a DIS, has been adopted.   The effect of the DAG repair timer on time without service when local   repair is activated is now observed and plotted in Figure 17, where   the source rate is 20 seconds/packet.  A comparison of the CDF of   loss of connectivity for the global repair mechanism and the global +   local repair mechanism is shown in Figures 18 and 19 (semi-log plots,   x axis in logarithmic scale and y axis in linear scale), where the   source generates a packet every 10 seconds and 20 seconds,   respectively.  For these plots, the x axis shows time in log scale,   and the y axis denotes the corresponding CDF in linear scale.  One   can observe that using local repair (with poisoning of the sub-DAG)   greatly reduces loss of connectivity.   Figure 17 [See the PDF.]    Figure 17: CDF: Loss of Connectivity for Different DAG Repair Timer      Values for Global+Local Repair, Source Rate 20 Seconds/Packet.   Figure 18 [See the PDF.]        Figure 18: CDF: Loss of Connectivity for Global Repair and            Global+Local Repair, Source Rate 10 Seconds/Packet.   Figure 19 [See the PDF.]        Figure 19: CDF: Loss of Connectivity for Global Repair and            Global+Local Repair, Source Rate 20 Seconds/Packet.   A comparison between the amount of control plane overhead used for   global repair only and for the global plus local repair mechanism is   shown in Figure 20, which highlights the improved performance of RPL   in terms of convergence time at very little extra overhead.  From   Figure 19, in 85% of the cases the protocol finds connectivity to the   LBR for the concerned nodes within a fraction of seconds when local   repair is employed.  Using only global repair leads to repair periods   of 150-154 seconds, as observed in Figures 13 and 14.Tripathi, et al.              Informational                    [Page 17]

RFC 6687              Performance Evaluation of RPL         October 2012   Figure 20 [See the PDF.]            Figure 20: Number of Control Packets for Different            DAG Sequence Number Period, for Both Global Repair                         and Global+Local Repair.5.  RPL in a Building Automation Routing Scenario   Unlike the previous traffic pattern, where a majority of the total   traffic generated by any node is destined to the root, this section   considers a different traffic pattern, which is more prominent in a   home or building routing scenario.  In the simulations shown below,   the nodes send 60% of their total generated traffic to the physically   1-hop distant node and 20% of traffic to a 2-hop distant node; the   other 20% of traffic is distributed among other nodes in the network.   The CDF of path quality metrics such as hop count, ETX path cost,   average hop distance stretch, ETX path stretch, and delay for P2P   routing for all pairs of nodes is calculated.  Maintaining a low   delay bound for P2P traffic is of high importance, as applications in   home and building routing typically have low delay tolerance.5.1.  Path Quality   Figure 21 shows the CDF of the hop count for both RPL and ideal   shortest path routing for the traffic pattern described above.   Figure 22 shows the CDF of the expected number of transmissions (ETX)   for each packet to reach its destination.  Figures 23 and 24 show the   CDF of the stretch factor for these two metrics.  To illustrate the   stretch factor, an example from Figure 24 will be given next.  For   all paths built by RPL, 85% of the time, the path cost is less than   the path cost for the ideal shortest path plus one.   Figure 21 [See the PDF.]            Figure 21: CDF of End-to-End Hop Count for RPL and                   Ideal Shortest Path in Home Routing.   Figure 22 [See the PDF.]            Figure 22: CDF of ETX Path Cost Metric for RPL and                   Ideal Shortest Path in Home Routing.   Figure 23 [See the PDF.]     Figure 23: CDF of Hop Distance Stretch from Ideal Shortest Path.Tripathi, et al.              Informational                    [Page 18]

RFC 6687              Performance Evaluation of RPL         October 2012   Figure 24 [See the PDF.]      Figure 24: CDF of ETX Metric Stretch from Ideal Shortest Path.5.2.  Delay   To get an idea of maximum observable delay in the above-mentioned   traffic pattern, the delay for different numbers of hops to the   destination for RPL is considered.  Figure 25 shows how the end-to-   end packet latency is distributed for different packets with   different hop counts in the network.   Figure 25 [See the PDF.]        Figure 25: Packet Latency for Different Hop Counts in RPL.   For this deployment scenario, 60% of the traffic has been restricted   to a 1-hop neighborhood.  Hence, intuitively, the protocol is   expected to yield path qualities that are close to those of ideal   shortest path routing for most of the paths.  From the CDF of the hop   count and ETX path cost, it is clear that peer-to-peer paths are more   often closer to an ideal shortest path.  The end-to-end delay for   distances within 2 hops is less than 60 ms for 99% of the delivered   packets, while packets traversing 5 hops or more are delivered within   100 ms 99% of the time.  These results demonstrate that for a normal   routing scenario of an LLN deployment in a building, RPL performs   fairly well without incurring much control plane overhead, and it can   be applied for delay-critical applications as well.6.  RPL in a Large-Scale Network   In this section, we focus on simulating RPL in a large network and   study its scalability by focusing on a few performance metrics: the   latency and path cost stretch, and the amount of control packets.   The 2442-node smart meter network with its corresponding link traces   was used in this scalability study.  To simulate a more realistic   scenario for a smart meter network, 100% of the packets generated by   each node are destined to the root.  Therefore, no traffic is   destined to nodes other than the root.6.1.  Path Quality   To investigate RPL's scalability, the CDF of the ETX path cost in the   large-scale smart meter network is compared to a hypothetical ideal   shortest path routing protocol that minimizes the total ETX path cost   (Figure 26).  In this simulation, the path stretch is also calculated   for each packet that traverses the network.  The path stretch is   determined as the difference between the path cost taken by a packetTripathi, et al.              Informational                    [Page 19]

RFC 6687              Performance Evaluation of RPL         October 2012   while following a route built via RPL and a path computed using an   ideal shortest path routing protocol.  The CDF of the ETX fractional   stretch, which is determined as the ETX metric stretch value over the   ETX path cost of an ideal shortest path, is plotted in Figure 27.   The fractional hop distance stretch value, as defined in the   Terminology section, is shown in Figure 28.   Looking at the path quality plots, it is obvious that RPL works in a   non-optimal fashion in this deployment scenario as well.  However, on   average, for each source-destination pair, the ETX fractional stretch   is limited to 30% of the ideal shortest path cost.  This fraction is   higher for paths with shorter distances and lower for paths where the   source and destination are far apart.  The negative stretch factor   for the hop count is an interesting feature of this deployment and is   due to RPL's decision to not switch to another parent where the   improvement in path quality is not significant.  As mentioned   previously, in this implementation, a node will only switch to a new   parent if the advertised ETX path cost to the LBR through the new   candidate parent is 20% better than the old one.  The nodes tend to   hear DIOs from a smaller hop count first, and later do not always   shift to a larger hop count and smaller ETX path cost.  As the   traffic is mostly to the DAG root, some P2P paths built via RPL do   yield a smaller hop count from source to destination, albeit at a   larger ETX path cost.   As observed in Figure 26, 90% of the packets transmitted during the   simulation have a (shortest) ETX path cost to destination less than   or equal to 12.  However, via RPL, 90% of the packets will follow   paths that have a total ETX path cost of up to 14.  Though all   packets are destined to the LBR, it is to be noted that this   implementation ignores a change of up to 20% in total ETX path cost.   Figures 27 and 28 indicate that all paths have a very low ETX   fractional stretch factor as far as the total ETX path cost is   concerned, and some of the paths have lower hop counts to the LBR or   DAG root as well when compared to the hop count of the ideal shortest   path.   Figure 26 [See the PDF.]        Figure 26: CDF of Total ETX Path Cost versus ETX Path Cost.   Figure 27 [See the PDF.]              Figure 27: CDF of ETX Fractional Stretch versus                       ETX Fractional Stretch Value.Tripathi, et al.              Informational                    [Page 20]

RFC 6687              Performance Evaluation of RPL         October 2012   Figure 28 [See the PDF.]              Figure 28: CDF of Fractional Hop Count Stretch.6.2.  Delay   Figure 29 shows how end-to-end packet latency is distributed for   different hop counts in the network.  According to [RFC5548], Urban   LLNs (U-LLNs) are delay tolerant, and the information, except for   critical alarms, should arrive within a fraction of the reporting   interval (within a few seconds).  The packet generation for this   deployment has been set higher than usual to incur high traffic   volume, and nodes generate data once every 30 seconds.  However, the   end-to-end latency for most of the packets is condensed between   500 ms and 1 s, where the upper limit corresponds to packets   traversing longer (greater than or equal to 6 hops) paths.   Figure 29 [See the PDF.]               Figure 29: End-to-End Packet Delivery Latency                         for Different Hop Counts.6.3.  Control Packet Overhead   Figure 30 shows the comparison between data packets (originated and   forwarded) and control packets (DIO and DAO messages) transmitted by   each node (link ETX is used as the routing metric).  Here one can   observe that in spite of the large scale of the network, the amount   of control traffic in the protocol is negligible in comparison to   data packet transmission.  The smaller node ID for this network   actually indicates closer proximity to the DAG root, and nodes with   high ID numbers are actually farther away from the DAG root.  Also,   as expected, we can observe in Figures 31, 32, and 33 that the   (non-leaf) nodes closer to the DAG root have many more data packet   transmissions than other nodes.  The leaf nodes have comparable   amounts of data and control packet transmissions, as they do not take   part in routing the data.  As seen before, the data traffic for a   child node has much less variation than the nodes that are closer to   the DAG root.  This variation decreases with increase in DAG depth.   In this topology, Nodes 1, 2, and 3, etc., are direct children of   the LBR.   Figure 30 [See the PDF.]              Figure 30: Data and Control Packet Comparison.Tripathi, et al.              Informational                    [Page 21]

RFC 6687              Performance Evaluation of RPL         October 2012   Figure 31 [See the PDF.]         Figure 31: Data and Control Packets over Time for Node 1.   Figure 32 [See the PDF.]        Figure 32: Data and Control Packets over Time for Node 78.   Figure 33 [See the PDF.]        Figure 33: Data and Control Packets over Time for Node 300.   In Figure 34, the effect of the global repair period timer on control   packet overhead is shown.   Figure 34 [See the PDF.]            Figure 34: Numbers of Control Packets for Different                       Global Repair Timer Periods.7.  Scaling Property and Routing Stability   An important metric of interest is the maximum load experienced by   any node (CPU usage) in terms of the number of control packets   transmitted by the node.  Also, to get an idea of scaling properties   of RPL in large-scale networks, it is also key to analyze the number   of packets handled by the RPL nodes for networks of different sizes.   In these simulations, at any given interval, the node with maximum   control overhead load is identified.  The amount of maximum control   overhead processed by that node is plotted against time for three   different networks under study.  The first one is Network 'A', which   has 45 nodes and is shown in Figure 1 (Section 3); the second is   Network 'B', which is another deployed outdoor network with 86 nodes;   and the third is Network 'C', which is the large deployed smart meter   network with 2442 nodes as noted previously in this document.   In Figure 35, the comparison of maximum control loads is shown for   different network sizes.  For the network with 45 nodes, the maximum   number of control packets in the network stays within a limit of   50 packets (per 1-minute interval), where for the networks with 86   and 2442 nodes, this limit stretches to 100 and 2 * 10^3 packets per   1-minute interval, respectively.   Figure 35 [See the PDF.]          Figure 35: Scaling Property of Maximum Control Packets                     Processed by Any Node over Time.Tripathi, et al.              Informational                    [Page 22]

RFC 6687              Performance Evaluation of RPL         October 2012   For a network built with low-power devices interconnected by lossy   links, it is of the utmost importance to ensure that routing packets   are not flooded in the entire network and that the routing topology   stays as stable as possible.  Any change in routing information,   especially parent-child relationships, would reset the timer, leading   to emitting new DIOs, and would hence change the node's path metric   to reach the root.  This change will trigger a series of control   plane messages (RPL packets) in the DODAG.  Therefore, it is   important to carefully control the triggering of DIO control packets   via the use of thresholds.   In this study, the effect of the tolerance value that is considered   before emitting a DIO reflecting a new path cost is analyzed.  Four   cases are considered:   o  No change in DAG depth of a node is ignored;   o  The implementation ignores a 10% change in the ETX path cost to      the DAG root.  That is, if the change in total path cost to the      root/LBR -- due to DIO reception from the most preferred parent or      due to shifting to another parent -- is less than 10%, the node      will not advertise the new metric to the root;   o  The implementation ignores a 20% change in ETX path cost to the      DAG root for any node before deciding to advertise a new depth;   o  The implementation ignores a 30% change in the total ETX path cost      to the DAG root of a node before deciding to advertise a new      depth.   This decision does affect the optimum path quality to the DAG root.   As observed in Figure 36, for 0% tolerance, 95% of paths used have an   ETX fractional stretch factor of less than 10%.  Similarly, for 10%   and 20% tolerance levels, 95% of paths will have a 15% and 20% ETX   fractional path stretch.  However, the increased routing stability   and decreased control overhead are the profit gained from the 10%   extra increase in path length or ETX path cost, whichever is used as   the metric to optimize the DAG.   Figure 36 [See the PDF.]                 Figure 36: ETX Fractional Stretch Factor                      for Different Tolerance Levels.   As the above-mentioned threshold also affects the path taken by a   packet, this study also demonstrates the effect of the threshold on   routing stability (number of times P2P paths change between a source   and a destination).  For Network 'A' (shown in Figure 1) and theTripathi, et al.              Informational                    [Page 23]

RFC 6687              Performance Evaluation of RPL         October 2012   large smart meter network 'C', the CDF of path change is plotted in   Figures 37 and 38, respectively, against the fraction of path change   for different thresholds (triggering the emission of a new DIO upon   path cost change).   If X packets are transferred from source A to destination B, and out   of X times, Y times the path between this source-destination pair is   changed, then we compute the fraction of path change as Y/X * 100%.   This metric is computed over all source-destination pairs, and the   CDF is plotted in the y axis.   Figure 37 [See the PDF.]     Figure 37: Distribution of Fraction of Path Change for Network A.   Figure 38 [See the PDF.]            Figure 38: Distribution of Fraction of Path Change                           for Large Network C.   This document also compares the CDF of the fraction of path change   for three different networks -- A, B, and C.  Figure 39 shows how the   three networks exhibit a change of P2P path when a 30% change in   metric cost to the root is ignored before shifting to a new parent.   Figure 39 [See the PDF.]     Figure 39: Comparison of Distribution of Fraction of Path Change.8.  Comments   All the simulation results presented in this document corroborate the   expected protocol behavior for the topologies and traffic model used   in the study.  For the particular discussed scenarios, the protocol   is shown to meet the desired delay and convergency requirements and   to exhibit self-healing properties without external intervention,   incurring negligible control overhead (only a small fraction of data   traffic).  RPL provided near-optimum path quality for most of the   packets in the scenarios considered here and is able to trade off   control overhead for path quality via configurable parameters (such   as decisions on when to switch to a new parent), as per the   application and device requirements; thus, RPL can trade off routing   stability for control overhead as well.  Finally, as per the   requirement of urban LLN deployments, the protocol is shown to scale   to larger topologies (several thousand nodes), for the topologies   considered in this implementation.Tripathi, et al.              Informational                    [Page 24]

RFC 6687              Performance Evaluation of RPL         October 20129.  Security Considerations   This document describes investigations performed in the Castalia   wireless sensor network simulator; it does not consider packets on   the Internet.  [RFC6550] describes security considerations for RPL   networks.10.  Acknowledgements   The authors would like to acknowledge Jerald P. Martocci, Mukul   Goyal, Emmanuel Monnerie, Philip Levis, Omprakash Gnawali, and Craig   Partridge for their valuable and helpful suggestions over metrics to   include and overall feedback.11.  Informative References   [Castalia-2.2]              Boulis, A., "Castalia: Revealing pitfalls in designing              distributed algorithms in WSN", Proceedings of the 5th              international conference on Embedded networked sensor              systems (SenSys'07), pp. 407-408, 2007.   [NS-2]     "The Network Simulator version 2 (ns-2)",              <http://www.isi.edu/nsnam/ns/>.   [OMNeTpp]  Varga, A., "The OMNeT++ Discrete Event Simulation System",              Proceedings of the European Simulation              Multiconference (ESM'2001), June 2001.   [RFC5548]  Dohler, M., Ed., Watteyne, T., Ed., Winter, T., Ed., and              D. Barthel, Ed., "Routing Requirements for Urban Low-Power              and Lossy Networks",RFC 5548, May 2009.   [RFC5673]  Pister, K., Ed., Thubert, P., Ed., Dwars, S., and T.              Phinney, "Industrial Routing Requirements in Low-Power and              Lossy Networks",RFC 5673, October 2009.   [RFC5826]  Brandt, A., Buron, J., and G. Porcu, "Home Automation              Routing Requirements in Low-Power and Lossy Networks",RFC 5826, April 2010.   [RFC5867]  Martocci, J., Ed., De Mil, P., Riou, N., and W. Vermeylen,              "Building Automation Routing Requirements in Low-Power and              Lossy Networks",RFC 5867, June 2010.   [RFC6206]  Levis, P., Clausen, T., Hui, J., Gnawali, O., and J. Ko,              "The Trickle Algorithm",RFC 6206, March 2011.Tripathi, et al.              Informational                    [Page 25]

RFC 6687              Performance Evaluation of RPL         October 2012   [RFC6550]  Winter, T., Ed., Thubert, P., Ed., Brandt, A., Hui, J.,              Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur,              JP., and R. Alexander, "RPL: IPv6 Routing Protocol for              Low-Power and Lossy Networks",RFC 6550, March 2012.   [RFC6551]  Vasseur, JP., Ed., Kim, M., Ed., Pister, K., Dejean, N.,              and D. Barthel, "Routing Metrics Used for Path Calculation              in Low-Power and Lossy Networks",RFC 6551, March 2012.   [ROLL-TERMS]              Vasseur, JP., "Terminology in Low power And Lossy              Networks", Work in Progress, September 2011.Authors' Addresses   Joydeep Tripathi (editor)   Drexel University   3141 Chestnut Street 7-313   Philadelphia, PA  19104   USA   EMail: jt369@drexel.edu   Jaudelice C. de Oliveira (editor)   Drexel University   3141 Chestnut Street 7-313   Philadelphia, PA  19104   USA   EMail: jau@coe.drexel.edu   JP. Vasseur (editor)   Cisco Systems, Inc.   11, Rue Camille Desmoulins   Issy Les Moulineaux  92782   France   EMail: jpv@cisco.comTripathi, et al.              Informational                    [Page 26]

[8]ページ先頭

©2009-2025 Movatter.jp