Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Errata] [Info page]

INFORMATIONAL
Errata Exist
Independent Submission                                            J. LeeRequest for Comments: 5794                                        J. LeeCategory: Informational                                           J. KimISSN: 2070-1721                                                  D. Kwon                                                                  C. Kim                                                                    NSRI                                                              March 2010A Description of the ARIA Encryption AlgorithmAbstract   This document describes the ARIA encryption algorithm.  ARIA is a   128-bit block cipher with 128-, 192-, and 256-bit keys.  The   algorithm consists of a key scheduling part and data randomizing   part.Status of This Memo   This document is not an Internet Standards Track specification; it is   published for informational purposes.   This is a contribution to the RFC Series, independently of any other   RFC stream.  The RFC Editor has chosen to publish this document at   its discretion and makes no statement about its value for   implementation or deployment.  Documents approved for publication by   the RFC Editor are not a candidate for any level of Internet   Standard; seeSection 2 of RFC 5741.   Information about the current status of this document, any errata,   and how to provide feedback on it may be obtained athttp://www.rfc-editor.org/info/rfc5794.Copyright Notice   Copyright (c) 2010 IETF Trust and the persons identified as the   document authors.  All rights reserved.   This document is subject toBCP 78 and the IETF Trust's Legal   Provisions Relating to IETF Documents   (http://trustee.ietf.org/license-info) in effect on the date of   publication of this document.  Please review these documents   carefully, as they describe your rights and restrictions with respect   to this document.Lee, et al.                   Informational                     [Page 1]

RFC 5794              The ARIA Encryption Algorithm           March 20101.  Introduction1.1.  ARIA Overview   ARIA is a general-purpose block cipher algorithm developed by Korean   cryptographers in 2003.  It is an iterated block cipher with 128-,   192-, and 256-bit keys and encrypts 128-bit blocks in 12, 14, and 16   rounds, depending on the key size.  It is secure and suitable for   most software and hardware implementations on 32-bit and 8-bit   processors.  It was established as a Korean standard block cipher   algorithm in 2004 [ARIAKS] and has been widely used in Korea,   especially for government-to-public services.  It was included in   PKCS #11 in 2007 [ARIAPKCS].2.  Algorithm Description   The algorithm consists of a key scheduling part and data randomizing   part.2.1.  Notations   The following notations are used in this document to describe the   algorithm.      ^   bitwise XOR operation      <<< left circular rotation      >>> right circular rotation      ||  concatenation of bit strings      0x  hexadecimal representation2.2.  Key Scheduling Part   Let K denote a master key of 128, 192, or 256 bits.  Given the master   key K, we first define 128-bit values KL and KR as follows.   KL || KR = K || 0 ... 0,   where the number of zeros is 128, 64, or 0, depending on the size of   K.  That is, KL is set to the leftmost 128 bits of K and KR is set to   the remaining bits of K (if any), right-padded with zeros to a   128-bit value.  Then, we define four 128-bit values (W0, W1, W2, and   W3) as the intermediate round values appearing in the encryption of   KL || KR by a 3-round, 256-bit Feistel cipher.   W0 = KL,   W1 = FO(W0, CK1) ^ KR,   W2 = FE(W1, CK2) ^ W0,   W3 = FO(W2, CK3) ^ W1.Lee, et al.                   Informational                     [Page 2]

RFC 5794              The ARIA Encryption Algorithm           March 2010   Here, FO and FE, respectively called odd and even round functions,   are defined inSection 2.4.1.  CK1, CK2, and CK3 are 128-bit   constants, taking one of the following values.   C1 =  0x517cc1b727220a94fe13abe8fa9a6ee0   C2 =  0x6db14acc9e21c820ff28b1d5ef5de2b0   C3 =  0xdb92371d2126e9700324977504e8c90e   These values are obtained from the first 128*3 bits of the fractional   part of 1/PI, where PI is the circle ratio.  Now the constants CK1,   CK2, and CK3 are defined by the following table.       Key size  CK1  CK2  CK3         128     C1   C2   C3         192     C2   C3   C1         256     C3   C1   C2   For example, if the key size is 192 bits, CK1 = C2, CK2 = C3, and   CK3 = C1.   Once W0, W1, W2, and W3 are determined, we compute encryption round   keys ek1, ..., ek17 as follows.   ek1  = W0 ^(W1 >>> 19),   ek2  = W1 ^(W2 >>> 19),   ek3  = W2 ^(W3 >>> 19),   ek4  = (W0 >>> 19) ^ W3,   ek5  = W0 ^ (W1 >>> 31),   ek6  = W1 ^ (W2 >>> 31),   ek7  = W2 ^ (W3 >>> 31),   ek8  = (W0 >>> 31) ^ W3,   ek9  = W0 ^ (W1 <<< 61),   ek10 = W1 ^ (W2 <<< 61),   ek11 = W2 ^ (W3 <<< 61),   ek12 = (W0 <<< 61) ^ W3,   ek13 = W0 ^ (W1 <<< 31),   ek14 = W1 ^ (W2 <<< 31),   ek15 = W2 ^ (W3 <<< 31),   ek16 = (W0 <<< 31) ^ W3,   ek17 = W0 ^ (W1 <<< 19).   The number of rounds depends on the size of the master key as   follows.        Key size     Number of Rounds         128              12         192              14         256              16Lee, et al.                   Informational                     [Page 3]

RFC 5794              The ARIA Encryption Algorithm           March 2010   Due to an extra key addition layer in the last round, 12-, 14-, and   16-round algorithms require 13, 15, and 17 round keys, respectively.   Decryption round keys are derived from the encryption round keys.   dk1 = ek{n+1},   dk2 = A(ek{n}),   dk3 = A(ek{n-1}),   ...,   dk{n}= A(ek2),   dk{n+1}= ek1.   Here, A and n denote the diffusion layer of ARIA and the number of   rounds, respectively.  The diffusion layer A is defined inSection2.4.3.2.3.  Data Randomizing Part   The data randomizing part of the ARIA algorithm consists of the   encryption and decryption processes.  The encryption and decryption   processes use functions FO, FE, A, SL1, and SL2.  These functions are   defined inSection 2.4.2.3.1.  Encryption Process2.3.1.1.  Encryption for 128-Bit Keys   Let P be a 128-bit plaintext and K be a 128-bit master key.  Let ek1,   ..., ek13 be the encryption round keys defined by K.  Then the   ciphertext C is computed by the following algorithm.   P1  = FO(P  , ek1 );              // Round 1   P2  = FE(P1 , ek2 );              // Round 2   P3  = FO(P2 , ek3 );              // Round 3   P4  = FE(P3 , ek4 );              // Round 4   P5  = FO(P4 , ek5 );              // Round 5   P6  = FE(P5 , ek6 );              // Round 6   P7  = FO(P6 , ek7 );              // Round 7   P8  = FE(P7 , ek8 );              // Round 8   P9  = FO(P8 , ek9 );              // Round 9   P10 = FE(P9 , ek10);              // Round 10   P11 = FO(P10, ek11);              // Round 11   C   = SL2(P11 ^ ek12) ^ ek13;     // Round 12Lee, et al.                   Informational                     [Page 4]

RFC 5794              The ARIA Encryption Algorithm           March 20102.3.1.2.  Encryption for 192-Bit Keys   Let P be a 128-bit plaintext and K be a 192-bit master key.  Let ek1,   ..., ek15 be the encryption round keys defined by K.  Then the   ciphertext C is computed by the following algorithm.   P1  = FO(P  , ek1 );              // Round 1   P2  = FE(P1 , ek2 );              // Round 2   P3  = FO(P2 , ek3 );              // Round 3   P4  = FE(P3 , ek4 );              // Round 4   P5  = FO(P4 , ek5 );              // Round 5   P6  = FE(P5 , ek6 );              // Round 6   P7  = FO(P6 , ek7 );              // Round 7   P8  = FE(P7 , ek8 );              // Round 8   P9  = FO(P8 , ek9 );              // Round 9   P10 = FE(P9 , ek10);              // Round 10   P11 = FO(P10, ek11);              // Round 11   P12 = FE(P11, ek12);              // Round 12   P13 = FO(P12, ek13);              // Round 13   C   = SL2(P13 ^ ek14) ^ ek15;     // Round 142.3.1.3.  Encryption for 256-Bit Keys   Let P be a 128-bit plaintext and K be a 256-bit master key.  Let ek1,   ..., ek17 be the encryption round keys defined by K.  Then the   ciphertext C is computed by the following algorithm.   P1 = FO(P  , ek1 );              // Round 1   P2 = FE(P1 , ek2 );              // Round 2   P3 = FO(P2 , ek3 );              // Round 3   P4 = FE(P3 , ek4 );              // Round 4   P5 = FO(P4 , ek5 );              // Round 5   P6 = FE(P5 , ek6 );              // Round 6   P7 = FO(P6 , ek7 );              // Round 7   P8 = FE(P7 , ek8 );              // Round 8   P9 = FO(P8 , ek9 );              // Round 9   P10= FE(P9 , ek10);              // Round 10   P11= FO(P10, ek11);              // Round 11   P12= FE(P11, ek12);              // Round 12   P13= FO(P12, ek13);              // Round 13   P14= FE(P13, ek14);              // Round 14   P15= FO(P14, ek15);              // Round 15   C  = SL2(P15 ^ ek16) ^ ek17;     // Round 16Lee, et al.                   Informational                     [Page 5]

RFC 5794              The ARIA Encryption Algorithm           March 20102.3.2.  Decryption Process   The decryption process of ARIA is the same as the encryption process   except that encryption round keys are replaced by decryption round   keys.  For example, encryption round keys ek1, ..., ek13 of the   12-round ARIA algorithm are replaced by decryption round keys dk1,   ..., dk13, respectively.2.4.  Components of ARIA2.4.1.  Round Functions   There are two types of round functions for ARIA.  One is called an   odd round function and is denoted by FO.  It takes as input a pair   (D,RK) of two 128-bit strings and outputs   FO(D,RK) = A(SL1(D ^ RK)).   The other is called an even round function and is denoted by FE.  It   takes as input a pair (D,RK) of two 128-bit strings and outputs   FE(D,RK) = A(SL2(D ^ RK)).   Functions SL1 and SL2, called substitution layers, are described inSection 2.4.2.  Function A, called a diffusion layer, is described inSection 2.4.3.2.4.2.  Substitution Layers   ARIA has two types of substitution layers that alternate between   rounds.  Type 1 is used in the odd rounds, and type 2 is used in the   even rounds.   Type 1 substitution layer SL1 is an algorithm that takes a 16-byte   string x0 || x1 ||...|| x15 as input and outputs a 16-byte string   y0 || y1 ||...|| y15 as follows.   y0 = SB1(x0),  y1 = SB2(x1),  y2 = SB3(x2),  y3 = SB4(x3),   y4 = SB1(x4),  y5 = SB2(x5),  y6 = SB3(x6),  y7 = SB4(x7),   y8 = SB1(x8),  y9 = SB2(x9),  y10= SB3(x10), y11= SB4(x11),   y12= SB1(x12), y13= SB2(x13), y14= SB3(x14), y15= SB4(x15).   Type 2 substitution layer SL2 is an algorithm that takes a 16-byte   string x0 || x1 ||...|| x15 as input and outputs a 16-byte string   y0 || y1 ||...|| y15 as follows.Lee, et al.                   Informational                     [Page 6]

RFC 5794              The ARIA Encryption Algorithm           March 2010   y0 = SB3(x0),  y1 = SB4(x1),  y2 = SB1(x2),  y3 = SB2(x3),   y4 = SB3(x4),  y5 = SB4(x5),  y6 = SB1(x6),  y7 = SB2(x7),   y8 = SB3(x8),  y9 = SB4(x9),  y10= SB1(x10), y11= SB2(x11),   y12= SB3(x12), y13= SB4(x13), y14= SB1(x14), y15= SB2(x15).   Here, SB1, SB2, SB3, and SB4 are S-boxes that take an 8-bit string as   input and output an 8-bit string.  These S-boxes are defined by the   following look-up tables.      SB1:          0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f       00 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76       10 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0       20 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15       30 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75       40 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84       50 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf       60 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8       70 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2       80 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73       90 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db       a0 e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79       b0 e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08       c0 ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a       d0 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e       e0 e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df       f0 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16      SB2:          0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f       00 e2 4e 54 fc 94 c2 4a cc 62 0d 6a 46 3c 4d 8b d1       10 5e fa 64 cb b4 97 be 2b bc 77 2e 03 d3 19 59 c1       20 1d 06 41 6b 55 f0 99 69 ea 9c 18 ae 63 df e7 bb       30 00 73 66 fb 96 4c 85 e4 3a 09 45 aa 0f ee 10 eb       40 2d 7f f4 29 ac cf ad 91 8d 78 c8 95 f9 2f ce cd       50 08 7a 88 38 5c 83 2a 28 47 db b8 c7 93 a4 12 53       60 ff 87 0e 31 36 21 58 48 01 8e 37 74 32 ca e9 b1       70 b7 ab 0c d7 c4 56 42 26 07 98 60 d9 b6 b9 11 40       80 ec 20 8c bd a0 c9 84 04 49 23 f1 4f 50 1f 13 dc       90 d8 c0 9e 57 e3 c3 7b 65 3b 02 8f 3e e8 25 92 e5       a0 15 dd fd 17 a9 bf d4 9a 7e c5 39 67 fe 76 9d 43       b0 a7 e1 d0 f5 68 f2 1b 34 70 05 a3 8a d5 79 86 a8       c0 30 c6 51 4b 1e a6 27 f6 35 d2 6e 24 16 82 5f da       d0 e6 75 a2 ef 2c b2 1c 9f 5d 6f 80 0a 72 44 9b 6c       e0 90 0b 5b 33 7d 5a 52 f3 61 a1 f7 b0 d6 3f 7c 6d       f0 ed 14 e0 a5 3d 22 b3 f8 89 de 71 1a af ba b5 81Lee, et al.                   Informational                     [Page 7]

RFC 5794              The ARIA Encryption Algorithm           March 2010      SB3:          0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f       00 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb       10 7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb       20 54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e       30 08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25       40 72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92       50 6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84       60 90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06       70 d0 2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b       80 3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73       90 96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e       a0 47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b       b0 fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4       c0 1f dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f       d0 60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef       e0 a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61       f0 17 2b 04 7e ba 77 d6 26 e1 69 14 63 55 21 0c 7d      SB4:          0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f       00 30 68 99 1b 87 b9 21 78 50 39 db e1 72  9 62 3c       10 3e 7e 5e 8e f1 a0 cc a3 2a 1d fb b6 d6 20 c4 8d       20 81 65 f5 89 cb 9d 77 c6 57 43 56 17 d4 40 1a 4d       30 c0 63 6c e3 b7 c8 64 6a 53 aa 38 98 0c f4 9b ed       40 7f 22 76 af dd 3a 0b 58 67 88 06 c3 35 0d 01 8b       50 8c c2 e6 5f 02 24 75 93 66 1e e5 e2 54 d8 10 ce       60 7a e8 08 2c 12 97 32 ab b4 27 0a 23 df ef ca d9       70 b8 fa dc 31 6b d1 ad 19 49 bd 51 96 ee e4 a8 41       80 da ff cd 55 86 36 be 61 52 f8 bb 0e 82 48 69 9a       90 e0 47 9e 5c 04 4b 34 15 79 26 a7 de 29 ae 92 d7       a0 84 e9 d2 ba 5d f3 c5 b0 bf a4 3b 71 44 46 2b fc       b0 eb 6f d5 f6 14 fe 7c 70 5a 7d fd 2f 18 83 16 a5       c0 91 1f 05 95 74 a9 c1 5b 4a 85 6d 13 07 4f 4e 45       d0 b2 0f c9 1c a6 bc ec 73 90 7b cf 59 8f a1 f9 2d       e0 f2 b1 00 94 37 9f d0 2e 9c 6e 28 3f 80 f0 3d d3       f0 25 8a b5 e7 42 b3 c7 ea f7 4c 11 33 03 a2 ac 60   For example, SB1(0x23) = 0x26 and SB4(0xef) = 0xd3.  Note that SB3   and SB4 are the inverse functions of SB1 and SB2, respectively, and   accordingly SL2 is the inverse of SL1.2.4.3.  Diffusion Layer   Diffusion layer A is an algorithm that takes a 16-byte string x0 ||   x1 || ... || x15 as input and outputs a 16-byte string   y0 || y1 ||...|| y15 by the following equations.Lee, et al.                   Informational                     [Page 8]

RFC 5794              The ARIA Encryption Algorithm           March 2010      y0  = x3 ^ x4 ^ x6 ^ x8  ^ x9  ^ x13 ^ x14,      y1  = x2 ^ x5 ^ x7 ^ x8  ^ x9  ^ x12 ^ x15,      y2  = x1 ^ x4 ^ x6 ^ x10 ^ x11 ^ x12 ^ x15,      y3  = x0 ^ x5 ^ x7 ^ x10 ^ x11 ^ x13 ^ x14,      y4  = x0 ^ x2 ^ x5 ^ x8  ^ x11 ^ x14 ^ x15,      y5  = x1 ^ x3 ^ x4 ^ x9  ^ x10 ^ x14 ^ x15,      y6  = x0 ^ x2 ^ x7 ^ x9  ^ x10 ^ x12 ^ x13,      y7  = x1 ^ x3 ^ x6 ^ x8  ^ x11 ^ x12 ^ x13,      y8  = x0 ^ x1 ^ x4 ^ x7  ^ x10 ^ x13 ^ x15,      y9  = x0 ^ x1 ^ x5 ^ x6  ^ x11 ^ x12 ^ x14,      y10 = x2 ^ x3 ^ x5 ^ x6  ^ x8  ^ x13 ^ x15,      y11 = x2 ^ x3 ^ x4 ^ x7  ^ x9  ^ x12 ^ x14,      y12 = x1 ^ x2 ^ x6 ^ x7  ^ x9  ^ x11 ^ x12,      y13 = x0 ^ x3 ^ x6 ^ x7  ^ x8  ^ x10 ^ x13,      y14 = x0 ^ x3 ^ x4 ^ x5  ^ x9  ^ x11 ^ x14,      y15 = x1 ^ x2 ^ x4 ^ x5  ^ x8  ^ x10 ^ x15.   Note that A is an involution.  That is, for any 16-byte input string   x, x = A(A(x)) holds.3.  Security Considerations   ARIA is designed to be resistant to all known attacks on block   ciphers [ARIA03].  Its security was analyzed by the COSIC group of   K.U.Leuven in Belgium [ARIAEVAL] and no security flaw has been found.4.  Informative References   [ARIAEVAL] Biryukov, A., et al., "Security and Performance Analysis              of ARIA", K.U.Leuven (2003), available athttp://www.cosic.esat.kuleuven.be/publications/article-500.pdf   [ARIA03]   Kwon, D., et al., "New Block Cipher: ARIA", ICISC 2003,              pp. 432-445.   [ARIAKS]   Korean Agency for Technology and Standards (KATS), "128              bit block encryption algorithm ARIA", KS X 1213:2004,              December 2004 (In Korean).   [ARIAPKCS] RSA Laboratories, PKCS #11 v2.20 Amendment 3 Revision 1:              Additional PKCS #11 Mechanisms, January 2007.   [X.680]    ITU-T Recommendation X.680 (2002) | ISO/IEC 8824-1:2002,              Information technology - Abstract Syntax Notation One              (ASN.1): Specification of basic notation.Lee, et al.                   Informational                     [Page 9]

RFC 5794              The ARIA Encryption Algorithm           March 2010   [X.681]    ITU-T Recommendation X.681 (2002) | ISO/IEC 8824-2:2002,              Information technology - Abstract Syntax Notation One              (ASN.1): Information object specification.   [X.682]    ITU-T Recommendation X.682 (2002) | ISO/IEC 8824-3:2002,              Information technology - Abstract Syntax Notation One              (ASN.1): Constraint specification.   [X.683]    ITU-T Recommendation X.683 (2002) | ISO/IEC 8824-4:2002,              Information technology - Abstract Syntax Notation One              (ASN.1): Parameterization of ASN.1 specifications.Lee, et al.                   Informational                    [Page 10]

RFC 5794              The ARIA Encryption Algorithm           March 2010Appendix A.  Example Data of ARIA   Here are test data for ARIA in hexadecimal form.A.1.  128-Bit Key   - Key       : 000102030405060708090a0b0c0d0e0f   - Plaintext : 00112233445566778899aabbccddeeff   - Ciphertext: d718fbd6ab644c739da95f3be6451778   - Round key generators      W0: 000102030405060708090a0b0c0d0e0f      W1: 2afbea741e1746dd55c63ba1afcea0a5      W2: 7c8578018bb127e02dfe4e78c288e33c      W3: 6785b52b74da46bf181054082763ff6d   - Encryption round keys      e1:  d415a75c794b85c5e0d2a0b3cb793bf6      e2:  369c65e4b11777ab713a3e1e6601b8f4      e3:  0368d4f13d14497b6529ad7ac809e7d0      e4:  c644552b549a263fb8d0b50906229eec      e5:  5f9c434951f2d2ef342787b1a781794c      e6:  afea2c0ce71db6de42a47461f4323c54      e7:  324286db44ba4db6c44ac306f2a84b2c      e8:  7f9fa93574d842b9101a58063771eb7b      e9:  aab9c57731fcd213ad5677458fcfe6d4      e10: 2f4423bb06465abada5694a19eb88459      e11: 9f8772808f5d580d810ef8ddac13abeb      e12: 8684946a155be77ef810744847e35fad      e13: 0f0aa16daee61bd7dfee5a599970fb35   - Intermediate round values      P1:  7fc7f12befd0a0791de87fa96b469f52      P2:  ac8de17e49f7c5117618993162b189e9      P3:  c3e8d59ec2e62d5249ca2741653cb7dd      P4:  5d4aebb165e141ff759f669e1e85cc45      P5:  7806e469f68874c5004b5f4a046bbcfa      P6:  110f93c9a630cdd51f97d2202413345a      P7:  e054428ef088fef97928241cd3be499e      P8:  5734f38ea1ca3ddd102e71f95e1d5f97      P9:  4903325be3e500cccd52fba4354a39ae      P10: cb8c508e2c4f87880639dc896d25ec9d      P11: e7e0d2457ed73d23d481424095afdca0Lee, et al.                   Informational                    [Page 11]

RFC 5794              The ARIA Encryption Algorithm           March 2010A.2.  192-Bit Key   Key       : 000102030405060708090a0b0c0d0e0f               1011121314151617   Plaintext : 00112233445566778899aabbccddeeff   Ciphertext: 26449c1805dbe7aa25a468ce263a9e79A.3.  256-Bit Key   Key       : 000102030405060708090a0b0c0d0e0f               101112131415161718191a1b1c1d1e1f   Plaintext : 00112233445566778899aabbccddeeff   Ciphertext: f92bd7c79fb72e2f2b8f80c1972d24fcAppendix B.  OIDs   Here is an ASN.1 module conforming to the 2002 version of ASN.1   [X.680][X.681][X.682][X.683].   AriaModesOfOperation {   iso(1) member-body(2) korea(400) nsri(200046) algorithm (1)   symmetric-encryption-algorithm(1) asn1-module(0) alg-oids(0) }   DEFINITIONS IMPLICIT TAGS ::=   BEGIN   OID ::= OBJECT IDENTIFIER   -- Synonyms --   id-algorithm OID ::=  { iso(1) member-body(2) korea(410) nsri(200046)   algorithm(1)}   id-sea OID ::= { id-algorithm symmetric-encryption-algorithm(1)}   id-pad OID ::= { id-algorithm pad(2)}   id-pad-null  RELATIVE-OID ::= {0} -- no padding algorithms identified   id-pad-1     RELATIVE-OID ::= {1}   -- padding method 2 of ISO/IEC 9797-1:1999   -- confidentiality modes:   -- ECB, CBC, CFB, OFB, CTR   id-aria128-ecb OID ::= { id-sea aria128-ecb(1)}   id-aria128-cbc OID ::= { id-sea aria128-cbc(2)}   id-aria128-cfb OID ::= { id-sea aria128-cfb(3)}   id-aria128-ofb OID ::= { id-sea aria128-ofb(4)}   id-aria128-ctr OID ::= { id-sea aria128-ctr(5)}Lee, et al.                   Informational                    [Page 12]

RFC 5794              The ARIA Encryption Algorithm           March 2010   id-aria192-ecb OID ::= { id-sea aria192-ecb(6)}   id-aria192-cbc OID ::= { id-sea aria192-cbc(7)}   id-aria192-cfb OID ::= { id-sea aria192-cfb(8)}   id-aria192-ofb OID ::= { id-sea aria192-ofb(9)}   id-aria192-ctr OID ::= { id-sea aria192-ctr(10)}   id-aria256-ecb OID ::= { id-sea aria256-ecb(11)}   id-aria256-cbc OID ::= { id-sea aria256-cbc(12)}   id-aria256-cfb OID ::= { id-sea aria256-cfb(13)}   id-aria256-ofb OID ::= { id-sea aria256-ofb(14)}   id-aria256-ctr OID ::= { id-sea aria256-ctr(15)}   -- authentication modes: CMAC   id-aria128-cmac OID ::= { id-sea aria128-cmac(21)}   id-aria192-cmac OID ::= { id-sea aria192-cmac(22)}   id-aria256-cmac OID ::= { id-sea aria256-cmac(23)}   -- modes for both confidentiality and authentication   -- OCB 2.0, GCM, CCM, Key Wrap   id-aria128-ocb2 OID ::= { id-sea aria128-ocb2(31)}   id-aria192-ocb2 OID ::= { id-sea aria192-ocb2(32)}   id-aria256-ocb2 OID ::= { id-sea aria256-ocb2(33)}   id-aria128-gcm OID ::= { id-sea aria128-gcm(34)}   id-aria192-gcm OID ::= { id-sea aria192-gcm(35)}   id-aria256-gcm OID ::= { id-sea aria256-gcm(36)}   id-aria128-ccm OID ::= { id-sea aria128-ccm(37)}   id-aria192-ccm OID ::= { id-sea aria192-ccm(38)}   id-aria256-ccm OID ::= { id-sea aria256-ccm(39)}   id-aria128-kw OID ::= { id-sea aria128-kw(40)}   id-aria192-kw OID ::= { id-sea aria192-kw(41)}   id-aria256-kw OID ::= { id-sea aria256-kw(42)}   -- ARIA Key-Wrap with Padding Algorithm (AES version:RFC 5649)   id-aria128-kwp OID ::= { id-sea aria128-kwp(43)}   id-aria192-kwp OID ::= { id-sea aria192-kwp(44)}   id-aria256-kwp OID ::= { id-sea aria256-kwp(45)}Lee, et al.                   Informational                    [Page 13]

RFC 5794              The ARIA Encryption Algorithm           March 2010   AriaModeOfOperation ::= AlgorithmIdentifier   { {AriaModeOfOperationAlgorithms} }   AriaModeOfOperationAlgorithms ALGORITHM ::= {   aria128ecb  |aria128cbc  |aria128cfb  |aria128ofb  |aria128ctr  |   aria192ecb  |aria192cbc  |aria192cfb  |aria192ofb  |aria192ctr  |   aria256ecb  |aria256cbc  |aria256cfb  |aria256ofb  |aria256ctr  |   aria128cmac |aria192cmac |aria256cmac |   aria128ocb2 |aria192ocb2 |aria256ocb2 |   aria128gcm  |aria192gcm  |aria256gcm  |   aria128ccm  |aria192ccm  |aria256ccm  |   aria128kw   |aria192kw   |aria256kw   |   aria128kwp  |aria192kwp  |aria256kwp ,   ... --Extensible   }   aria128ecb  ALGORITHM ::=   { OID id-aria128-ecb PARAMS AriaEcbParameters }   aria128cbc  ALGORITHM ::=   { OID id-aria128-cbc PARAMS AriaCbcParameters }   aria128cfb  ALGORITHM ::=   { OID id-aria128-cfb PARAMS AriaCfbParameters }   aria128ofb  ALGORITHM ::=   { OID id-aria128-ofb PARAMS AriaOfbParameters }   aria128ctr  ALGORITHM ::=   { OID id-aria128-ctr PARAMS AriaCtrParameters }   aria192ecb  ALGORITHM ::=   { OID id-aria192-ecb PARAMS AriaEcbParameters }   aria192cbc  ALGORITHM ::=   { OID id-aria192-cbc PARAMS AriaCbcParameters }   aria192cfb  ALGORITHM ::=   { OID id-aria192-cfb PARAMS AriaCfbParameters }   aria192ofb  ALGORITHM ::=   { OID id-aria192-ofb PARAMS AriaOfbParameters }   aria192ctr  ALGORITHM ::=   { OID id-aria192-ctr PARAMS AriaCtrParameters }Lee, et al.                   Informational                    [Page 14]

RFC 5794              The ARIA Encryption Algorithm           March 2010   aria256ecb  ALGORITHM ::=   { OID id-aria256-ecb PARAMS AriaEcbParameters }   aria256cbc  ALGORITHM ::=   { OID id-aria256-cbc PARAMS AriaCbcParameters }   aria256cfb  ALGORITHM ::=   { OID id-aria256-cfb PARAMS AriaCfbParameters }   aria256ofb  ALGORITHM ::=   { OID id-aria256-ofb PARAMS AriaOfbParameters }   aria256ctr  ALGORITHM ::=   { OID id-aria256-ctr PARAMS AriaCtrParameters }   aria128cmac ALGORITHM ::=   { OID id-aria128-cmac PARAMS AriaCmacParameters }   aria192cmac ALGORITHM ::=   { OID id-aria192-cmac PARAMS AriaCmacParameters }   aria256cmac ALGORITHM ::=   { OID id-aria256-cmac PARAMS AriaCmacParameters }   aria128ocb2 ALGORITHM ::=   { OID id-aria128-ocb2 PARAMS AriaOcb2Parameters }   aria192ocb2 ALGORITHM ::=   { OID id-aria192-ocb2 PARAMS AriaOcb2Parameters }   aria256ocb2 ALGORITHM ::=   { OID id-aria256-ocb2 PARAMS AriaOcb2Parameters }   aria128gcm  ALGORITHM ::=   { OID id-aria128-gcm PARAMS AriaGcmParameters }   aria192gcm  ALGORITHM ::=   { OID id-aria192-gcm PARAMS AriaGcmParameters }   aria256gcm  ALGORITHM ::=   { OID id-aria256-gcm PARAMS AriaGcmParameters }   aria128ccm  ALGORITHM ::=   { OID id-aria128-ccm PARAMS AriaCcmParameters }   aria192ccm  ALGORITHM ::=   { OID id-aria192-ccm PARAMS AriaCcmParameters }   aria256ccm  ALGORITHM ::=   { OID id-aria256-ccm PARAMS AriaCcmParameters }   aria128kw   ALGORITHM ::= { OID id-aria128-kw }   aria192kw   ALGORITHM ::= { OID id-aria192-kw }   aria256kw   ALGORITHM ::= { OID id-aria256-kw }   aria128kwp   ALGORITHM ::= { OID id-aria128-kwp }   aria192kwp   ALGORITHM ::= { OID id-aria192-kwp }   aria256kwp   ALGORITHM ::= { OID id-aria256-kwp }Lee, et al.                   Informational                    [Page 15]

RFC 5794              The ARIA Encryption Algorithm           March 2010   AriaPadAlgo ::= CHOICE {       specifiedPadAlgo   RELATIVE-OID,       generalPadAlgo     OID   }   AriaEcbParameters ::= SEQUENCE {       padAlgo   AriaPadAlgo  DEFAULT specifiedPadAlgo:id-pad-null   }   AriaCbcParameters ::= SEQUENCE {       m         INTEGER       DEFAULT 1,       -- number of stored ciphertext blocks       padAlgo   AriaPadAlgo   DEFAULT specifiedPadAlgo:id-pad-1   }   AriaCfbParameters ::= SEQUENCE {       r         INTEGER,       -- bit-length of feedback buffer, 128<=r<=128*1024       k         INTEGER,       -- bit-length of feedback variable, 1<=k<=128       j         INTEGER,       -- bit-length of plaintext/ciphertext block, 1<=j<=k       padAlgo   AriaPadAlgo  DEFAULT specifiedPadAlgo:id-pad-null   }   AriaOfbParameters ::= SEQUENCE {       j         INTEGER,       -- bit-length of plaintext/ciphertext block, 1<=j<=128       padAlgo   AriaPadAlgo  DEFAULT specifiedPadAlgo:id-pad-null   }   AriaCtrParameters ::= SEQUENCE {       j         INTEGER,       -- bit-length of plaintext/ciphertext block, 1<=j<=128       padAlgo   AriaPadAlgo  DEFAULT specifiedPadAlgo:id-pad-null   }   AriaCmacParameters ::= INTEGER -- bit-length of authentication tag   AriaOcb2Parameters ::= INTEGER -- bit-length of authentication tag   AriaGcmParameters  ::= SEQUENCE {       s       INTEGER,   -- bit-length of starting variable       t       INTEGER    -- bit-length of authentication tag   }Lee, et al.                   Informational                    [Page 16]

RFC 5794              The ARIA Encryption Algorithm           March 2010   AriaCcmParameters  ::= SEQUENCE {       w      INTEGER (2|3|4|5|6|7|8),       -- length of message length field in octets       t      INTEGER (32|48|64|80|96|112|128)       -- bit-length of authentication tag   }   ALGORITHM ::= CLASS {       &id    OBJECT IDENTIFIER UNIQUE,       &Type  OPTIONAL   }   WITH SYNTAX { OID &id  [PARAMS &Type] }   AlgorithmIdentifier { ALGORITHM:AlgoSet } ::= SEQUENCE {       algorithm    ALGORITHM.&id( {AlgoSet} ),       parameters ALGORITHM.&Type( {AlgoSet}{@algorithm} ) OPTIONAL   }   ENDLee, et al.                   Informational                    [Page 17]

RFC 5794              The ARIA Encryption Algorithm           March 2010Authors' Addresses   Jungkeun Lee   National Security Research Institute   P.O.Box 1, Yuseong, Daejeon, 305-350, Korea   EMail: jklee@ensec.re.kr   Jooyoung Lee   National Security Research Institute   P.O.Box 1, Yuseong, Daejeon, 305-350, Korea   EMail: jlee05@ensec.re.kr   Jaeheon Kim   National Security Research Institute   P.O.Box 1, Yuseong, Daejeon, 305-350, Korea   EMail: jaeheon@ensec.re.kr   Daesung Kwon   National Security Research Institute   P.O.Box 1, Yuseong, Daejeon, 305-350, Korea   EMail: ds_kwon@ensec.re.kr   Choonsoo Kim   National Security Research Institute   P.O.Box 1, Yuseong, Daejeon, 305-350, Korea   EMail: jbr@ensec.re.krLee, et al.                   Informational                    [Page 18]

[8]ページ先頭

©2009-2025 Movatter.jp