Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Errata] [Info page]

INFORMATIONAL
Errata Exist
Network Working Group                                       V. MammolitiRequest for Comments: 5515                                  C. PignataroCategory: Informational                                    Cisco Systems                                                               P. Arberg                                                        Redback Networks                                                              J. Gibbons                                                        Juniper Networks                                                               P. Howard                                                                May 2009Layer 2 Tunneling Protocol (L2TP) Access Line InformationAttribute Value Pair (AVP) ExtensionsStatus of This Memo   This memo provides information for the Internet community.  It does   not specify an Internet standard of any kind.  Distribution of this   memo is unlimited.Copyright Notice   Copyright (c) 2009 IETF Trust and the persons identified as the   document authors.  All rights reserved.   This document is subject toBCP 78 and the IETF Trust's Legal   Provisions Relating to IETF Documents in effect on the date of   publication of this document (http://trustee.ietf.org/license-info).   Please review these documents carefully, as they describe your rights   and restrictions with respect to this document.Abstract   This document describes a set of Layer 2 Tunneling Protocol (L2TP)   Attribute Value Pair (AVP) extensions designed to carry the   subscriber Access Line identification and characterization   information that arrives at the Broadband Remote Access Server (BRAS)   with L2TP Access Concentrator (LAC) functionality.  It also describes   a mechanism to report connection speed changes, after the initial   connection speeds are sent during session establishment.  The primary   purpose of this document is to provide a reference for DSL equipment   vendors wishing to interoperate with other vendors' products.  The   L2TP AVPs defined in this document are applicable to both L2TPv2 and   L2TPv3.Mammoliti, et al.            Informational                      [Page 1]

RFC 5515            L2TP Access Line AVP Extensions             May 2009Table of Contents1. Introduction ....................................................32. Terminology .....................................................32.1. Requirements Language ......................................32.2. Technical Terms and Acronyms ...............................43. Access Line Information L2TP AVP Operation ......................54. Additional L2TP Messages ........................................64.1. Connect-Speed-Update-Notification (CSUN) ...................84.2. Connect-Speed-Update-Request (CSURQ) .......................85. Access Line Information L2TP Attribute Value Pair Extensions ....95.1. Access Line Agent-Circuit-Id AVP ..........................105.2. Access Line Agent-Remote-Id AVP ...........................115.3. Access Line Actual-Data-Rate-Upstream AVP .................125.4. Access Line Actual-Data-Rate-Downstream AVP ...............135.5. Access Line Minimum-Data-Rate-Upstream AVP ................135.6. Access Line Minimum-Data-Rate-Downstream AVP ..............145.7. Access Line Attainable-Data-Rate-Upstream AVP .............145.8. Access Line Attainable-Data-Rate-Downstream AVP ...........145.9. Access Line Maximum-Data-Rate-Upstream AVP ................155.10. Access Line Maximum-Data-Rate-Downstream AVP .............155.11. Access Line Minimum-Data-Rate-Upstream-Low-Power AVP .....165.12. Access Line Minimum-Data-Rate-Downstream-Low-Power AVP ...165.13. Access Line Maximum-Interleaving-Delay-Upstream AVP ......175.14. Access Line Actual-Interleaving-Delay-Upstream AVP .......175.15. Access Line Maximum-Interleaving-Delay-Downstream AVP ....185.16. Access Line Actual-Interleaving-Delay-Downstream AVP .....185.17. Access Line Access-Loop-Encapsulation AVP ................195.18. ANCP Access Line Type AVP ................................205.19. Access Line IWF-Session AVP ..............................216. Connect Speed Update L2TP Attribute Value Pair Extensions ......226.1. Connect Speed Update AVP (CSUN, CSURQ) ....................226.2. Connect Speed Update Enable AVP (ICRQ) ....................237. Access Line Information AVP Mapping ............................247.1. Summary of Access Line AVPs ...............................248. IANA Considerations ............................................258.1. Message Type AVP Values ...................................258.2. Control Message Attribute Value Pairs (AVPs) ..............258.3. Values for Access Line Information AVPs ...................259. Security Considerations ........................................2510. Acknowledgements ..............................................2611. References ....................................................2611.1. Normative References .....................................2611.2. Informative References ...................................27Mammoliti, et al.            Informational                      [Page 2]

RFC 5515            L2TP Access Line AVP Extensions             May 20091.  Introduction   Access Nodes (ANs), referred to as Digital Subscriber Line Access   Multiplexers (DSLAMs) in DSL, are adding enhancement features to   forward, via in-band signaling, subscriber Access Line identification   and characterization information to their connected upstream   Broadband Remote Access Server (BRAS) with L2TP Access Concentrator   (LAC) functionality.   The Access Node/DSLAM may forward the information via one or more of   the following methods:   o  Vendor-Specific Point-to-Point Protocol over Ethernet (PPPoE) Tags      [RFC2516].   o  DHCP Relay Options [RFC3046] and Vendor-Specific Information      Suboptions [RFC4243].   o  Access Node Control Protocol [ANCP].   Currently, this information is been collected on the BRAS and   forwarded to a radius server via [RFC4679].   This document describes the new additional L2TP AVPs that were   created to forward the subscriber line identification and   characterization information received at the BRAS/LAC to the   terminating L2TP Network Server (LNS).  It also describes a mechanism   by which the LAC may report connection speed changes to the LNS,   after the initial connection speeds are sent by the LAC during   session establishment.   The L2TP AVPs defined in this document MAY be used with either an   L2TPv2 [RFC2661] or L2TPv3 [RFC3931] implementation.   The information acquired may be used to provide authentication,   policy, and accounting functionality.  It may also be collected and   used for management and troubleshooting purposes.2.  Terminology   The following sections define the usage and meaning of certain   specialized terms in the context of this document.2.1.  Requirements Language   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this   document are to be interpreted as described in [RFC2119].Mammoliti, et al.            Informational                      [Page 3]

RFC 5515            L2TP Access Line AVP Extensions             May 20092.2.  Technical Terms and Acronyms   Access Node/DSLAM      The Access Node/DSLAM is a DSL signal terminator that contains a      minimum of one Ethernet or ATM interface that serves as its      upstream interface into which it aggregates traffic from several      ATM-based (subscriber ports) or Ethernet-based downstream      interfaces.   BNG      Broadband Network Gateway.  A BNG is an IP edge router where      bandwidth and Quality-of-Service (QoS) policies are applied; the      functions performed by a BRAS are a superset of those performed by      a BNG.   BRAS      Broadband Remote Access Server.  A BRAS is a BNG and is the      aggregation point for the subscriber traffic.  It provides      aggregation capabilities (e.g., IP, PPP, Ethernet) between the      access network and the core network.  Beyond its aggregation      function, the BRAS is also an injection point for policy      management and IP QoS in the access network.   DSL      Digital Subscriber Line.  DSL is a technology that allows digital      data transmission over wires in the local telephone network.   DSLAM      Digital Subscriber Line Access Multiplexer.  DSLAM is a device      that terminates DSL subscriber lines.  The data is aggregated and      forwarded to ATM- or Ethernet-based aggregation networks.   IWF      Interworking Function.  The set of functions required for      interconnecting two networks of different technologies (e.g., ATM      and Ethernet).  IWF is utilized to enable the carriage of Point-      to-Point Protocol over ATM (PPPoA) traffic over PPPoE.Mammoliti, et al.            Informational                      [Page 4]

RFC 5515            L2TP Access Line AVP Extensions             May 2009   LAC      L2TP Access Concentrator.  If an L2TP Control Connection Endpoint      (LCCE) is being used to cross-connect an L2TP session directly to      a data link, we refer to it as an L2TP Access Concentrator (LAC).      (See [RFC2661] and [RFC3931].)   LCCE      L2TP Control Connection Endpoint.  An L2TP node that exists at      either end of an L2TP control connection.  May also be referred to      as an LAC or LNS, depending on whether tunneled frames are      processed at the data link (LAC) or network layer (LNS).  (See      [RFC3931].)   LNS      L2TP Network Server.  If a given L2TP session is terminated at the      L2TP node and the encapsulated network layer (L3) packet processed      on a virtual interface, we refer to this L2TP node as an L2TP      Network Server (LNS).  (See [RFC2661] and [RFC3931].)3.  Access Line Information L2TP AVP Operation   When the BRAS with LAC functionality receives the Access Line   information from the Access Node and has determined that the session   will be established with an LNS, the LAC will forward the information   that it has collected in the newly defined L2TP AVPs.  The LAC will   only forward the Access Line Information AVPs that have populated   values.   Access Line information from any of the above methods must be   available at the BRAS prior to the start of session negotiation by   the LAC.  This ensures Access Line parameters are reliably provided   to the LNS and avoids additional call set-up delays.  Under the   condition that the LAC has not received any Access Line information   from any of the methods, as default behavior the LAC SHOULD establish   the L2TP session without waiting for the Access Line information.  In   this case, the LAC MUST NOT send any of the Access Line AVPs to the   LNS.  The LAC MAY, as local policy, wait for the Access Line   information from one or more of the methods before forwarding the   information in the Access Line L2TP AVPs to the LNS.   It is possible that the Access Node will only send a subset of the   currently available line information defined.  The LAC MUST be able   to limit and/or filter which AVPs, if any, are sent to the LNS.Mammoliti, et al.            Informational                      [Page 5]

RFC 5515            L2TP Access Line AVP Extensions             May 2009   It is also possible that the LAC may receive Access Line information   from multiple sources and at different time intervals.  Local policy   SHOULD determine which source(s) the LAC will accept.  The LAC SHOULD   default to accepting ANCP-sourced parameters.   The Access Line AVPs are sent as part of the L2TP Incoming-Call-   Request (ICRQ) control message.  Connect Speed Update AVPs are sent   as part of the Connect-Speed-Update-Notification (CSUN) or Connect-   Speed-Update-Request (CSURQ) L2TP messages (see Sections4,4.1, and   4.2).   It is possible for the LAC to send updated Connect Speed   characteristics to the LNS via the Connect Speed Update AVP in an   L2TP Connect-Speed-Update-Notification (CSUN) control message (seeSection 4.1).  To avoid unnecessary L2TP Connect-Speed-Update-Request   and Connect-Speed-Update-Notification message exchanges between the   LAC and LNS (e.g., during failover protocol recovery and   resynchronization), the LAC signals in the session establishment   exchange its ability and desire to provide speed updates during the   life of the session.  This is achieved using a new AVP, Connect Speed   Update Enable (seeSection 6.2), sent in the L2TP Incoming-Call-   Request (ICRQ) control message.  The absence of this AVP in the ICRQ   message implies that the LAC will not be sending any speed updates   during the life of the session.  If the LAC is configured to accept   ANCP-sourced parameters, and supports providing speed updates during   the life of a session, it MUST send the Connect Speed Update Enable   AVP in the ICRQ, since this implies that speed updates may occur over   the life of the connection.  If the LAC is configured to only accept   PPPoE vendor-specific tags, it MUST NOT send the Connect Speed Update   Enable AVP in the ICRQ, since the connection speed is only sent   during PPPoE discovery and no further updates will occur during the   life of the connection.4.  Additional L2TP Messages   If the Access Line information changes while the session is still   maintained, connection speed updates MAY be sent from the LAC to the   LNS via an L2TP Connect-Speed-Update-Notification (CSUN) Message (seeSection 4.1).  A new AVP, Connect Speed Update AVP (seeSection 6.1),   is included in the CSUN message to report connect speed updates for a   specific session after the initial connection speeds are established   (i.e., at session establishment via the Tx Connect Speed and Rx   Connect Speed AVPs, Attribute Types 24 and 38, respectively, for   L2TPv2 and 74 and 75, respectively, for L2TPv3).  The values   established in the Connect Speed Update AVP (as well as the values   for the initial Tx/Rx Connect Speeds AVPs) are based on LAC local   policy.  For example, the LAC's local policy may use the Actual-Data-   Rate-Upstream and Actual-Data-Rate-Downstream as its policy to reportMammoliti, et al.            Informational                      [Page 6]

RFC 5515            L2TP Access Line AVP Extensions             May 2009   connection speed updates.  For consistency, the same local policy   SHOULD equally apply both to the initial connect speeds (conveyed   during session establishment) and to the (optional) connect speed   updates (sent after the establishment of the session).  The CSUN   message MAY be sent periodically to the LNS based on local policy and   may include more than one Connect Speed Update AVP.  The bulking of   more than one Connect Speed Update AVP into the CSUN message serves   the following purposes:   o  Dampens the rate of changes sent to the LNS when Access Line      parameter updates are received at a high rate for a given line.   o  Efficiently forwards speed updates when Access Line parameter      updates are received for many lines at the same time.   o  Supports failover [RFC4951] protocol recovery and      resynchronization.   During failover recovery and resynchronization, to ensure the correct   speeds have been applied to outstanding sessions on each tunnel, the   LNS MAY issue a Connect-Speed-Update-Request (CSURQ) message (seeSection 4.2) to the LAC containing one or more Session IDs.  In   response to the CSURQ message, the LAC MUST issue a Connect-Speed-   Update-Notification (CSUN) message (seeSection 4.1) containing a   Connect Speed Update AVP for each of the Session IDs requested in the   CSURQ.  Note: In the CSUN response to the CSURQ, the LAC MUST NOT   respond to unknown sessions, or to known sessions for which it did   not issue a Connect Speed Update Enable AVP in the prior Incoming-   Call-Request (ICRQ) control message for the session (see Sections3   and 6.2).   This section defines two new Messages that are used with the IETF   Vendor ID of 0 in the Message Type AVP.      The following message types will be assigned to these new messages      (seeSection 8.1):         28: (CSUN) Connect-Speed-Update-Notification         29: (CSURQ) Connect-Speed-Update-Request   The Mandatory (M) bit within the Message Type AVP SHOULD be clear   (i.e., not set) for the CSUN and CSURQ control messages, to allow for   an L2TP Control Connection Endpoint (LCCE) to maintain the control   connection if the message type is unknown.Mammoliti, et al.            Informational                      [Page 7]

RFC 5515            L2TP Access Line AVP Extensions             May 20094.1.  Connect-Speed-Update-Notification (CSUN)   The Connect-Speed-Update-Notification (CSUN) is an L2TP control   message sent by the LAC to the LNS to provide transmit and receive   connection speed updates for one or more sessions.  The connection   speed may change at any time during the life of the call; thus, the   LNS SHOULD be able to update its connection speed on an active   session.   The following AVPs MUST be present in the CSUN:      Message Type      Connect Speed Update (more than one may be present in the CSUN)   Note that the LAC MUST NOT include a Connect Speed Update AVP for   which it did not send a Connect Speed Update Enable AVP in the prior   Incoming-Call-Request (ICRQ) control message for the session.4.2.  Connect-Speed-Update-Request (CSURQ)   The Connect-Speed-Update-Request (CSURQ) is an L2TP control message   sent by the LNS to the LAC to request the current transmit and   receive connection speed for one or more sessions.  It MAY be issued   at any time during the life of the tunnel and MUST only be issued for   each outstanding session on each tunnel on which the LNS has already   received a Connect Speed Update Enable AVP in the prior Incoming-   Call-Request (ICRQ) control message for the session.  It is typically   used as part of failover recovery and resynchronization to allow the   LNS to verify it has the correct speeds for each outstanding session   on each tunnel.   The following AVPs MUST be present in the CSURQ:      Message Type      Connect Speed Update (more than one may be present in the CSURQ)   The Current Tx Connect Speed and Current Rx Connect Speed fields in   the Connect Speed Update AVP MUST be set to 0 when this AVP is used   in the CSURQ message.   In the CSUN response to the CSURQ, the LAC MUST NOT respond to   unknown sessions or to known sessions for which it did not issue a   Connect Speed Update Enable AVP in the prior Incoming-Call-Request   (ICRQ) control message for the session.Mammoliti, et al.            Informational                      [Page 8]

RFC 5515            L2TP Access Line AVP Extensions             May 20095.  Access Line Information L2TP Attribute Value Pair Extensions   The Access Line information was initially defined in the DSL Forum   Technical Report TR-101 [TR-101].  TR-101 defines the line   characteristic that are sent from an Access Node.   The following sections contain a list of the Access Line Information   L2TP AVPs.  Included with each of the listed AVPs is a short   description of the purpose of the AVPs.   The AVPs follow the standard method of encoding AVPs as follows:      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |M|H| rsvd  |      Length       |           Vendor ID           |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |         Attribute Type        |Attribute Value, if Required ...     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                     ... (Until Length is reached)                   |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The M bit for all the AVPs defined in this document SHOULD be set to   0 to allow for backwards compatibility with LNSs that do not support   the Access Line Information AVP extensions hereby defined.  However,   if it is desired to prevent the establishment of the L2TP session if   the peer LNS does not support the Access Line Information AVP   extensions, the M bit MAY be set to 1.  SeeSection 4.2 of [RFC2661]   andSection 5.2 of [RFC3931].   All the AVPs defined in this document MAY be hidden (the H bit MAY be   0 or 1).   The Length (before hiding) of all the listed AVPs is 6 plus the   length of the Attribute Value, if one is required, in octets.   The Vendor ID for all the listed AVPs (Sections5.1 through5.19) is   that of the IANA assigned ADSL Forum Vendor ID, decimal 3561   [IANA.enterprise-numbers].   All the listed AVPs (Section 5.1 throughSection 5.19) MAY be present   in the following messages unless otherwise stipulated:      Incoming-Call-Request (ICRQ)   The Value of the AVP contains information about the Access Line to   which the subscriber is attached.Mammoliti, et al.            Informational                      [Page 9]

RFC 5515            L2TP Access Line AVP Extensions             May 2009   With the exception of the Connect Speed Update AVP (seeSection 6.1),   all new AVPs specifying a data rate or speed expressed in bits per   second (bps) will be sent as 64-bits to provide extensibility to   support future increases in subscriber connection speeds.  These new   AVPs that specify a 64-bit "Data-Rate" are defined fromSection 5.3   toSection 5.12, both inclusive.  Whenever a speed value sent in an   AVP fits within 32 bits, the upper 32 bits MUST be transmitted as 0s.   The various Data-Rates and Interleaving-Delays used in the subsequent   Sections5.3 through5.16 are defined in Section 3.9.4 of [TR-101].   The qualifiers used with these Data-Rates and Interleaving-Delays   have the following meanings:   o  Actual      Actual rate or delay of an access loop   o  Attainable  Maximum value that can be achieved by the equipment   o  Minimum     Minimum value configured by the operator   o  Maximum     Maximum value configured by the operator5.1.  Access Line Agent-Circuit-Id AVP   The Access Line Agent-Circuit-Id AVP, Attribute Type 1, contains   information describing the subscriber agent circuit ID corresponding   to the logical access loop port of the Access Node/DSLAM from which a   subscriber's requests are initiated.   The Attribute Value field for this AVP has the following format:      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     | Agent-Circuit-Id ... (2 to 63 octets)     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The Agent-Circuit-Id is of arbitrary length, but MUST be greater than   1 octet and not greater than 63 octets.   The Length (before hiding) of this AVP is 6 plus the length of the   Agent-Circuit-Id.   The Agent-Circuit-Id contains information about the Access Node/DSLAM   to which the subscriber is attached, along with a unique identifier   for the subscriber's DSL port on that Access Node/DSLAM.  The Agent-Mammoliti, et al.            Informational                     [Page 10]

RFC 5515            L2TP Access Line AVP Extensions             May 2009   Circuit-Id contains a locally administered string representing the   access loop logical port, and its syntax is defined in Section 3.9.3   of [TR-101].  The text string is encoded in the UTF-8 charset   [RFC3629].   An exemplary description of the Agent-Circuit-Id string format   follows for background purposes.  The LAC MUST treat the string as an   opaque value and MUST NOT manipulate or enforce the format of the   string based on the description here or in TR-101 [TR-101].   Default syntax for the string is defined in [TR-101].  The examples   in this section are included only for illustrative purposes.  The   exact syntax of the string is implementation dependent; however, a   typical practice is to subdivide it into two or more space-separated   components, one to identify the Access Node and another the   subscriber line on that node, with perhaps an indication of whether   that line is Ethernet or ATM.  Example formats for this string are   shown below.      "Access-Node-Identifier atm slot/port:vpi.vci"      (when ATM/DSL is used)      "Access-Node-Identifier eth slot/port[:vlan-id]"      (when Ethernet/DSL is used)   The syntax for the string is defined in [TR-101].  An example showing   the slot and port field encoding is given below:      "Relay-identifier atm 3/0:100.33"      (slot = 3, port = 0, vpi = 100, vci = 33)   The Access-Node-Identifier is a unique ASCII string that does not   include 'space' characters.  The syntax of the slot and port fields   reflects typical practices currently in place.  The slot identifier   does not exceed 6 characters in length, and the port identifier does   not exceed 3 characters in length using a '/' as a delimiter.   The exact manner in which slots are identified is Access Node/DSLAM   implementation dependent.  The vpi, vci, and vlan-id fields (when   applicable) are related to a given access loop (U-interface).5.2.  Access Line Agent-Remote-Id AVP   The Access Line Agent-Remote-Id AVP, Attribute Type 2, contains an   operator-specific, statically configured string that uniquely   identifies the subscriber on the associated access loop of the Access   Node/DSLAM.Mammoliti, et al.            Informational                     [Page 11]

RFC 5515            L2TP Access Line AVP Extensions             May 2009   The Attribute Value field for this AVP has the following format:      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     | Agent-Remote-Id ... (2 to 63 octets)     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The Agent-Remote-Id is of arbitrary length, but MUST be greater than   1 octet and not greater than 63 octets.   The Length (before hiding) of this AVP is 6 plus the length of the   Agent-Remote-Id.   The Agent-Remote-Id contains information sent from the Access Node/   DSLAM from which the subscriber is attached, to further refine the   access loop logical port identification with a user.  The content of   this message is entirely open to the service provider's discretion.   For example, it MAY contain a subscriber billing ID or telephone   number.  The LAC MUST treat the string as an opaque value and MUST   NOT manipulate or enforce its format.  The text string is defined in   [TR-101], and is encoded in the UTF-8 charset [RFC3629].5.3.  Access Line Actual-Data-Rate-Upstream AVP   The Access Line Actual-Data-Rate-Upstream AVP, Attribute Type 129,   contains the actual upstream train rate of a subscriber's   synchronized Access link.   The Attribute Value field for this AVP has the following format:      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                  Actual-Data-Rate-Upstream     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                         ... in bps (64 bits)                        |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The Actual-Data-Rate-Upstream is an 8-octet value.   The Actual-Data-Rate-Upstream AVP contains an 8-octet unsigned   integer, indicating the subscriber's actual data rate upstream of a   synchronized Access link.  The rate is coded in bits per second.   The Length (before hiding) of this AVP is 14.Mammoliti, et al.            Informational                     [Page 12]

RFC 5515            L2TP Access Line AVP Extensions             May 20095.4.  Access Line Actual-Data-Rate-Downstream AVP   The Access Line Actual-Data-Rate-Downstream AVP, Attribute Type 130,   contains the actual downstream train rate of a subscriber's   synchronized Access link.   The Attribute Value field for this AVP has the following format:      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                  Actual-Data-Rate-Downstream     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                         ... in bps (64 bits)                        |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The Actual-Data-Rate-Downstream AVP contains an 8-octet unsigned   integer, indicating the subscriber's actual data rate downstream of a   synchronized Access link.  The rate is coded in bits per second.   The Length (before hiding) of this AVP is 14.5.5.  Access Line Minimum-Data-Rate-Upstream AVP   The Access Line Minimum-Data-Rate-Upstream AVP, Attribute Type 131,   contains the subscriber's operator-configured minimum upstream data   rate.   The Attribute Value field for this AVP has the following format:      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                  Minimum-Data-Rate-Upstream     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                         ... in bps (64 bits)                        |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The Minimum-Data-Rate-Upstream AVP contains an 8-octet unsigned   integer, indicating the subscriber's minimum upstream data rate (as   configured by the operator).  The rate is coded in bits per second.   The Length (before hiding) of this AVP is 14.Mammoliti, et al.            Informational                     [Page 13]

RFC 5515            L2TP Access Line AVP Extensions             May 20095.6.  Access Line Minimum-Data-Rate-Downstream AVP   The Access Line Minimum-Data-Rate-Downstream AVP, Attribute Type 132,   contains the subscriber's operator-configured minimum downstream data   rate.   The Attribute Value field for this AVP has the following format:      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                Minimum-Data-Rate-Downstream     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                         ... in bps (64 bits)                        |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The Minimum-Data-Rate-Downstream AVP contains an 8-octet unsigned   integer, indicating the subscriber's minimum downstream data rate (as   configured by the operator).  The rate is coded in bits per second.   The Length (before hiding) of this AVP is 14.5.7.  Access Line Attainable-Data-Rate-Upstream AVP   The Access Line Attainable-Data-Rate-Upstream AVP, Attribute Type   133, contains the subscriber's actual attainable upstream data rate.   The Attribute Value field for this AVP has the following format:      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                Attainable-Data-Rate-Upstream     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                         ... in bps (64 bits)                        |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The Attainable-Data-Rate-Upstream AVP contains an 8-octet unsigned   integer, indicating the subscriber's Access Line actual attainable   upstream data rate.  The rate is coded in bits per second.   The Length (before hiding) of this AVP is 14.5.8.  Access Line Attainable-Data-Rate-Downstream AVP   The Access Line Attainable-Data-Rate-Downstream AVP, Attribute Type   134, contains the subscriber's actual attainable downstream data   rate.Mammoliti, et al.            Informational                     [Page 14]

RFC 5515            L2TP Access Line AVP Extensions             May 2009   The Attribute Value field for this AVP has the following format:      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                Attainable-Data-Rate-Downstream     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                         ... in bps (64 bits)                        |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The Attainable-Data-Rate-Downstream AVP contains an 8-octet unsigned   integer, indicating the subscriber's Access Line actual DSL   attainable downstream data rate.  The rate is coded in bits per   second.   The Length (before hiding) of this AVP is 14.5.9.  Access Line Maximum-Data-Rate-Upstream AVP   The Access Line Maximum-Data-Rate-Upstream AVP, Attribute Type 135,   contains the subscriber's maximum upstream data rate, as configured   by the operator.   The Attribute Value field for this AVP has the following format:      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                  Maximum-Data-Rate-Upstream     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                         ... in bps (64 bits)                        |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The Maximum-Data-Rate-Upstream AVP contains an 8-octet unsigned   integer, indicating the numeric value of the subscriber's Access Line   maximum upstream data rate.  The rate is coded in bits per second.   The Length (before hiding) of this AVP is 14.5.10.  Access Line Maximum-Data-Rate-Downstream AVP   The Access Line Maximum-Data-Rate-Downstream AVP, Attribute Type 136,   contains the subscriber's maximum downstream data rate, as configured   by the operator.Mammoliti, et al.            Informational                     [Page 15]

RFC 5515            L2TP Access Line AVP Extensions             May 2009   The Attribute Value field for this AVP has the following format:      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                 Maximum-Data-Rate-Downstream     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                         ... in bps (64 bits)                        |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The Maximum-Data-Rate-Downstream AVP contains an 8-octet unsigned   integer, indicating the numeric value of the subscriber's Access Line   maximum downstream data rate.  The rate is coded in bits per second.   The Length (before hiding) of this AVP is 14.5.11.  Access Line Minimum-Data-Rate-Upstream-Low-Power AVP   The Access Line Minimum-Data-Rate-Upstream-Low-Power AVP, Attribute   Type 137, contains the subscriber's minimum upstream data rate in low   power state, as configured by the operator.   The Attribute Value field for this AVP has the following format:      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |              Minimum-Data-Rate-Upstream-Low-Power     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                         ... in bps (64 bits)                        |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The Minimum-Data-Rate-Upstream-Low-Power AVP contains an 8-octet   unsigned integer, indicating the numeric value of the subscriber's   Access Line minimum upstream data rate when in low power state   (L1/L2).  The rate is coded in bits per second.   The Length (before hiding) of this AVP is 14.5.12.  Access Line Minimum-Data-Rate-Downstream-Low-Power AVP   The Access Line Minimum-Data-Rate-Downstream-Low-Power AVP, Attribute   Type 138, contains the subscriber's minimum downstream data rate in   low power state, as configured by the operator.Mammoliti, et al.            Informational                     [Page 16]

RFC 5515            L2TP Access Line AVP Extensions             May 2009   The Attribute Value field for this AVP has the following format:      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |            Minimum-Data-Rate-Downstream-Low-Power     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                         ... in bps (64 bits)                        |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The Minimum-Data-Rate-Downstream-Low-Power AVP contains an 8-octet   unsigned integer, indicating the numeric value of the subscriber's   Access Line minimum downstream data rate when in low power state   (L1/L2).  The rate is coded in bits per second.   The Length (before hiding) of this AVP is 14.5.13.  Access Line Maximum-Interleaving-Delay-Upstream AVP   The Access Line Maximum-Interleaving-Delay-Upstream AVP, Attribute   Type 139, contains the subscriber's maximum one-way upstream   interleaving delay, as configured by the operator.   The Attribute Value field for this AVP has the following format:      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |             Maximum-Interleaving-Delay-Upstream               |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The Maximum-Interleaving-Delay-Upstream AVP contains a 4-octet   unsigned integer, indicating the numeric value in milliseconds of the   subscriber's Access Line maximum one-way upstream interleaving delay.   The Length (before hiding) of this AVP is 10.5.14.  Access Line Actual-Interleaving-Delay-Upstream AVP   The Access Line Actual-Interleaving-Delay-Upstream AVP, Attribute   Type 140, contains the subscriber's actual one-way upstream   interleaving delay.Mammoliti, et al.            Informational                     [Page 17]

RFC 5515            L2TP Access Line AVP Extensions             May 2009   The Attribute Value field for this AVP has the following format:      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |            Actual-Interleaving-Delay-Upstream                 |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The Actual-Interleaving-Delay-Upstream AVP contains a 4-octet   unsigned integer, indicating the numeric value in milliseconds of the   subscriber's Access Line actual upstream interleaving delay.   The Length (before hiding) of this AVP is 10.5.15.  Access Line Maximum-Interleaving-Delay-Downstream AVP   The Access Line Maximum-Interleaving-Delay-Downstream AVP, Attribute   Type 141, contains the subscriber's maximum one-way downstream   interleaving delay, as configured by the operator.   The Attribute Value field for this AVP has the following format:      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |           Maximum-Interleaving-Delay-Downstream               |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The Maximum-Interleaving-Delay-Downstream AVP contains a 4-octet   unsigned integer, indicating the numeric value in milliseconds of the   subscriber's Access Line maximum one-way downstream interleaving   delay.   The Length (before hiding) of this AVP is 10.5.16.  Access Line Actual-Interleaving-Delay-Downstream AVP   The Access Line Actual-Interleaving-Delay-Downstream AVP, Attribute   Type 142, contains the subscriber's actual one-way downstream   interleaving delay.Mammoliti, et al.            Informational                     [Page 18]

RFC 5515            L2TP Access Line AVP Extensions             May 2009   The Attribute Value field for this AVP has the following format:      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |            Actual-Interleaving-Delay-Downstream               |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The Actual-Interleaving-Delay-Downstream AVP contains a 4-octet   unsigned integer, indicating the numeric value in milliseconds of the   subscriber's Access Line actual downstream interleaving delay.   The Length (before hiding) of this AVP is 10.5.17.  Access Line Access-Loop-Encapsulation AVP   The Access Line Access-Loop-Encapsulation AVP, Attribute Type 144,   describes the encapsulation(s) used by the subscriber on the access   loop.   The Length (before hiding) of this AVP is 9.   The Access-Loop-Encapsulation value is comprised of three 1-octet   values representing the Data Link, Encapsulation 1, and Encapsulation   2, respectively.   The Access-Loop-Encapsulation value is 3 octets in length, logically   divided into three 1-octet sub-fields, each containing its own   enumeration value, as shown in the following diagram:              0                   1                   2              0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+             |   Data Link   |    Encaps 1   |    Encaps 2   |             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   Valid values for the sub-fields are as follows:      Data Link         0x00 ATM AAL5         0x01 EthernetMammoliti, et al.            Informational                     [Page 19]

RFC 5515            L2TP Access Line AVP Extensions             May 2009      Encaps 1         0x00 NA - Not Available         0x01 Untagged Ethernet         0x02 Single-Tagged Ethernet      Encaps 2         0x00 NA - Not Available         0x01 PPPoA LLC         0x02 PPPoA Null         0x03 IP over ATM (IPoA) LLC         0x04 IPoA Null         0x05 Ethernet over AAL5 LLC with Frame Check Sequence (FCS)         0x06 Ethernet over AAL5 LLC without FCS         0x07 Ethernet over AAL5 Null with FCS         0x08 Ethernet over AAL5 Null without FCS5.18.  ANCP Access Line Type AVP   The ANCP Access Line Type AVP, Attribute Type 145, describes the   transmission systems on access loop to the subscriber.   The Attribute Value field for this AVP has the following format:      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                      ANCP-Access-Line-Type                    |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The Length (before hiding) of this AVP is 10.  The ANCP Access Line   Type AVP defines the type of transmission system used.Mammoliti, et al.            Informational                     [Page 20]

RFC 5515            L2TP Access Line AVP Extensions             May 2009   The ANCP Access Line Type AVP contains a 1-octet field encoding the   Transmission System, followed by a 3-octet reserved field (MUST be   zero), and is 4 octets in length.  It indicates the transmission   systems on access loop to the subscriber.  The current valid values   only utilize the 1-octet field.   Valid values are as follows:      Transmission system:         0x01 ADSL1         0x02 ADSL2         0x03 ADSL2+         0x04 VDSL1         0x05 VDSL2         0x06 SDSL         0x07 UNKNOWN5.19.  Access Line IWF-Session AVP   The Access Line IWF-Session AVP, Attribute Type 254, indicates if an   Interworking Function has been performed with respect to the   subscriber's session.   The Attribute Value field for this AVP has the following format:      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                   Inter-Working Function                      |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The Inter-Working Function is a 4-octet value.      Valid values for this field are as follows:         0x00 IWF not performed         0x01 IWF performed   The Length (before hiding) of this AVP is 10.Mammoliti, et al.            Informational                     [Page 21]

RFC 5515            L2TP Access Line AVP Extensions             May 20096.  Connect Speed Update L2TP Attribute Value Pair Extensions   The following sections define Connect Speed Update related AVPs.   These AVPs (Section 6.1 andSection 6.2) use the IETF Vendor ID of 0.   The M bit for these AVPs SHOULD be set to 0.  However, if it is   desired to prevent the establishment or tear down the established   L2TP session if the peer LNS does not support the Connect Speed   Update AVP extensions, the M bit MAY be set to 1.  SeeSection 4.2 of   [RFC2661] andSection 5.2 of [RFC3931].6.1.  Connect Speed Update AVP (CSUN, CSURQ)   The Connect Speed Update AVP, Attribute Type 97, contains the updated   connection speeds for this session.  The format is consistent with   that of the Tx Connect Speed and Rx Connect Speed AVPs for L2TPv2   (Attribute Types 24 and 38, respectively) and L2TPv3 (Attribute Types   74 and 75, respectively).  Hence, there is a separate format defined   for L2TPv2 and L2TPv3.   The Attribute Value field for this AVP has the following format for   L2TPv2 Tunnels:      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |          Reserved             |      Remote Session Id        |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                Current Tx Connect Speed in bps                |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                Current Rx Connect Speed in bps                |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+Mammoliti, et al.            Informational                     [Page 22]

RFC 5515            L2TP Access Line AVP Extensions             May 2009   The Attribute Value field for this AVP has the following format for   L2TPv3 Tunnels:      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                     Remote Session Id                         |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                Current Tx Connect Speed in bps...     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                ...Current Tx Connect Speed in bps (64 bits)         |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                Current Rx Connect Speed in bps...     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                ...Current Rx Connect Speed in bps (64 bits)         |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The Remote Session Id is the remote session id relative to the sender   (i.e., the identifier that was assigned to this session by the peer).   The Current Tx Connect Speed is a 4-octet value (L2TPv2) or an   8-octet value (L2TPv3) representing the current transmit connect   speed, from the perspective of the LAC (e.g., data flowing from the   LAC to the remote system).  The rate is encoded in bits per second.   The Current Rx Connect Speed is a 4-octet value (L2TPv2) or an   8-octet value (L2TPv3) representing the current receive connect   speed, from the perspective of the LAC (e.g., data flowing from the   remote system to the LAC).  The rate is encoded in bits per second.   The Length (before hiding) of this AVP is 18 (L2TPv2) or 26 (L2TPv3).6.2.  Connect Speed Update Enable AVP (ICRQ)   The Connect Speed Update Enable AVP, Attribute Type 98, indicates   whether the LAC intends to send speed updates to the LNS during the   life of the session.  The Connect Speed Update Enable AVP is a   boolean AVP.  Presence of this AVP indicates that the LAC MAY send   speed updates using CSUN (seeSection 4.1) during the life of the   session, and the LNS SHOULD query for the current connection speed   via the CSURQ (seeSection 4.2) during failover synchronization.   Absence of this AVP indicates that the LAC will not be sending speed   updates using CSUN (seeSection 4.1) during the life of the session,   and the LNS MUST NOT query for the current connection speed via the   CSURQ (seeSection 4.2) during failover synchronization.   The Length (before hiding) of this AVP is 6.Mammoliti, et al.            Informational                     [Page 23]

RFC 5515            L2TP Access Line AVP Extensions             May 20097.  Access Line Information AVP Mapping   The Access Line information that is obtained from the Access Node/   DSLAM is required to be mapped into the Access Line AVPs.  The Access   Line information can be obtained via:   o  Vendor-Specific PPPoE Tags [RFC2516].   o  DHCP Relay Options [RFC3046] and Vendor-Specific Information      Suboptions [RFC4243].   o  ANCP [ANCP].7.1.  Summary of Access Line AVPs   Table 1 summarizes the Access Line AVPs defined in Sections5.1   through 5.19.       +-----------------+----------------------------------------+       | Access Line AVP | Name                                   |       +-----------------+----------------------------------------+       |        1 (0x01) | Agent-Circuit-Id                       |       |        2 (0x02) | Agent-Remote-Id                        |       |      129 (0x81) | Actual-Data-Rate-Upstream              |       |      130 (0x82) | Actual-Data-Rate-Downstream            |       |      131 (0x83) | Minimum-Data-Rate-Upstream             |       |      132 (0x84) | Minimum-Data-Rate-Downstream           |       |      133 (0x85) | Attainable-Data-Rate-Upstream          |       |      134 (0x86) | Attainable-Data-Rate-Downstream        |       |      135 (0x87) | Maximum-Data-Rate-Upstream             |       |      136 (0x88) | Maximum-Data-Rate-Downstream           |       |      137 (0x89) | Minimum-Data-Rate-Upstream-Low-Power   |       |      138 (0x8A) | Minimum-Data-Rate-Downstream-Low-Power |       |      139 (0x8B) | Maximum-Interleaving-Delay-Upstream    |       |      140 (0x8C) | Actual-Interleaving-Delay-Upstream     |       |      141 (0x8D) | Maximum-Interleaving-Delay-Downstream  |       |      142 (0x8E) | Actual-Interleaving-Delay-Downstream   |       |      144 (0x90) | Access-Loop-Encapsulation              |       |      145 (0x91) | ANCP Access Line Type                  |       |      254 (0xFE) | IWF-Session                            |       +-----------------+----------------------------------------+                     Table 1: Access Line AVP SummaryMammoliti, et al.            Informational                     [Page 24]

RFC 5515            L2TP Access Line AVP Extensions             May 20098.  IANA Considerations   Sections8.1 and8.2 describe request for new values in   [IANA.l2tp-parameters], for registries already managed by IANA   assignable through Expert Review according to [RFC3438].Section 8.3   describes number spaces not managed by IANA.8.1.  Message Type AVP Values   This number space is managed by IANA as per [RFC3438].  There are two   new message types, defined in Sections4.1 and4.2, to be allocated   for this specification.      Message Type AVP (Attribute Type 0) Values         28: (CSUN) Connect-Speed-Update-Notification         29: (CSURQ) Connect-Speed-Update-Request8.2.  Control Message Attribute Value Pairs (AVPs)   This number space is managed by IANA as per [RFC3438].  There are two   new AVPs, defined in Sections6.1 and6.2, to be allocated for this   specification.      Control Message Attribute Value Pairs (AVPs)         97: Connect Speed Update AVP         98: Connect Speed Update Enable AVP8.3.  Values for Access Line Information AVPs   The Access Line Information AVPs use the Vendor ID of 3561 for the   ADSL Forum (now Broadband Forum).  The number spaces in these Values   and their new allocations (e.g., enumerated values for the Access   Line Access-Loop-Encapsulation AVP and ANCP Access Line Type AVP) are   managed by the Broadband Forum.9.  Security Considerations   The security of these AVP relies on an implied trust relationship   between the Access Node/DSLAM and the BRAS/LAC, and between the LAC   and the LNS.  The identifiers that are inserted by the Access Node/   DSLAM are unconditionally trusted; the BRAS does not perform any   validity check on the information received before forwarding the   information.Mammoliti, et al.            Informational                     [Page 25]

RFC 5515            L2TP Access Line AVP Extensions             May 2009   These AVPs are intended to be used in environments in which the   network infrastructure (the Access Node/DSLAM, the BRAS/LAC, the LNS,   and the entire network in which those devices reside) is trusted and   secure.   Careful consideration should be given to the potential security   vulnerabilities that are present in this model before deploying this   option in actual networks.   The AVPs described in this document are used to carry identification   and characterization of subscriber Access Line, and to report   connection speed changes.  If used in a non-secure environment, they   could reveal such information.  The Tunnel (Control Connection)   security considerations are covered inSection 9.1 of [RFC2661] and   Section 8.l of [RFC3931].  Additionally, the hiding of AVP attribute   values mechanism can be used to hide the value of the AVPs described   in this document, if they are deemed sensitive in some environments.   AVP hiding is described inSection 4.3 of [RFC2661] andSection 5.3   of [RFC3931].   The Attributes described in this document neither increase nor   decrease the security of the L2TP protocol.   It is possible to utilize [RFC3193] "Securing L2TP with IPsec" to   increase the security by utilizing IPsec to provide for tunnel   authentication, privacy protection, integrity checking and replay   protection.10.  Acknowledgements   Many thanks to Wojciech Dec and the others of the Broadband Forum   (previously the DSL Forum) Architecture and Transport Working Group   for their help in putting together this document.11.  References11.1.  Normative References   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate              Requirement Levels",BCP 14,RFC 2119, March 1997.   [RFC2661]  Townsley, W., Valencia, A., Rubens, A., Pall, G., Zorn,              G., and B. Palter, "Layer Two Tunneling Protocol "L2TP"",RFC 2661, August 1999.   [RFC3438]  Townsley, W., "Layer Two Tunneling Protocol (L2TP)              Internet Assigned Numbers Authority (IANA) Considerations              Update",BCP 68,RFC 3438, December 2002.Mammoliti, et al.            Informational                     [Page 26]

RFC 5515            L2TP Access Line AVP Extensions             May 2009   [RFC3931]  Lau, J., Townsley, M., and I. Goyret, "Layer Two Tunneling              Protocol - Version 3 (L2TPv3)",RFC 3931, March 2005.   [TR-101]   DSL Forum, "Migration to Ethernet-Based DSL Aggregation",              TR 101, April 2006, <http://www.broadband-forum.org/technical/download/TR-101.pdf>.11.2.  Informative References   [ANCP]     Wadhwa, S., Moisand, J., Subramanian, S., Haag, T., Voigt,              N., and R. Maglione, "Protocol for Access Node Control              Mechanism in Broadband Networks", Work in Progress,              March 2009.   [IANA.enterprise-numbers]              Internet Assigned Numbers Authority, "PRIVATE ENTERPRISE              NUMBERS", <http://www.iana.org>.   [IANA.l2tp-parameters]              Internet Assigned Numbers Authority, "Layer Two Tunneling              Protocol 'L2TP'", <http://www.iana.org>.   [RFC2516]  Mamakos, L., Lidl, K., Evarts, J., Carrel, D., Simone, D.,              and R. Wheeler, "A Method for Transmitting PPP Over              Ethernet (PPPoE)",RFC 2516, February 1999.   [RFC3046]  Patrick, M., "DHCP Relay Agent Information Option",RFC 3046, January 2001.   [RFC3193]  Patel, B., Aboba, B., Dixon, W., Zorn, G., and S. Booth,              "Securing L2TP using IPsec",RFC 3193, November 2001.   [RFC3629]  Yergeau, F., "UTF-8, a transformation format of ISO              10646", STD 63,RFC 3629, November 2003.   [RFC4243]  Stapp, M., Johnson, R., and T. Palaniappan, "Vendor-              Specific Information Suboption for the Dynamic Host              Configuration Protocol (DHCP) Relay Agent Option",RFC 4243, December 2005.   [RFC4679]  Mammoliti, V., Zorn, G., Arberg, P., and R. Rennison, "DSL              Forum Vendor-Specific RADIUS Attributes",RFC 4679,              September 2006.   [RFC4951]  Jain, V., "Fail Over Extensions for Layer 2 Tunneling              Protocol (L2TP) "failover"",RFC 4951, August 2007.Mammoliti, et al.            Informational                     [Page 27]

RFC 5515            L2TP Access Line AVP Extensions             May 2009Authors' Addresses   Vince Mammoliti   Cisco Systems   181 Bay Street, Suite 3400   Toronto, ON  M5J 2T3   Canada   EMaill: vince@cisco.com   Carlos Pignataro   Cisco Systems   7200 Kit Creek Road   PO Box 14987   Research Triangle Park, NC  27709   USA   EMail: cpignata@cisco.com   Peter Arberg   Redback Networks   300 Holger Way   San Jose, CA  95134   USA   EMail: parberg@redback.com   John Gibbons   Juniper Networks   10 Technology Park Drive   Westford, MA  01886   USA   EMail: jgibbons@juniper.net   Paul Howard   EMail: howsoft@mindspring.comMammoliti, et al.            Informational                     [Page 28]

[8]ページ先頭

©2009-2025 Movatter.jp