Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Info page]

PROPOSED STANDARD
Network Working Group                                         S. FutemmaRequest for Comments: 5371                                    E. ItakuraCategory: Standards Track                                       A. Leung                                                                    Sony                                                            October 2008RTP Payload Format for JPEG 2000 Video StreamsStatus of This Memo   This document specifies an Internet standards track protocol for the   Internet community, and requests discussion and suggestions for   improvements.  Please refer to the current edition of the "Internet   Official Protocol Standards" (STD 1) for the standardization state   and status of this protocol.  Distribution of this memo is unlimited.Abstract   This memo describes an RTP payload format for the ISO/IEC   International Standard 15444-1 | ITU-T Rec. T.800, better known as   JPEG 2000.  JPEG 2000 features are considered in the design of this   payload format.  JPEG 2000 is a truly scalable compression technology   allowing applications to encode once and decode many different ways.   The JPEG 2000 video stream is formed by extending from a single image   to a series of JPEG 2000 images.Futemma, et al.             Standards Track                     [Page 1]

RFC 5371              JPEG 2000 RTP Payload Format          October 2008Table of Contents1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .31.1.  Conventions Used in This Document  . . . . . . . . . . . .62.  JPEG 2000 Video Features . . . . . . . . . . . . . . . . . . .63.  Payload Design . . . . . . . . . . . . . . . . . . . . . . . .64.  Payload Format . . . . . . . . . . . . . . . . . . . . . . . .74.1.  RTP Fixed Header Usage . . . . . . . . . . . . . . . . . .74.2.  RTP Payload Header Format  . . . . . . . . . . . . . . . .85.  RTP Packetization  . . . . . . . . . . . . . . . . . . . . . .106.  Media Type Registration  . . . . . . . . . . . . . . . . . . .117.  SDP Parameters . . . . . . . . . . . . . . . . . . . . . . . .147.1.  SDP Mapping  . . . . . . . . . . . . . . . . . . . . . . .147.2.  Usage with the SDP Offer/Answer Model  . . . . . . . . . .157.2.1.  Examples . . . . . . . . . . . . . . . . . . . . . . .167.2.2.  Examples: Non-90kHz Timestamp  . . . . . . . . . . . .168.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . .179.  Security Considerations  . . . . . . . . . . . . . . . . . . .1710. Congestion Control . . . . . . . . . . . . . . . . . . . . . .1811. References . . . . . . . . . . . . . . . . . . . . . . . . . .1911.1. Normative References . . . . . . . . . . . . . . . . . . .1911.2. Informative References . . . . . . . . . . . . . . . . . .19Appendix A.  Informative Appendix  . . . . . . . . . . . . . . . .21A.1.  Recommended Practices  . . . . . . . . . . . . . . . . . .21A.2.  Sample Headers in Detail . . . . . . . . . . . . . . . . .22       A.2.1.  Sample 1: Progressive Image with Single Tile, 3500               Bytes (i.e., thumbnail)  . . . . . . . . . . . . . . .22A.2.2.  Sample 2: Image with 4 Tiles . . . . . . . . . . . . .24       A.2.3.  Sample 3: Packing Multiple Tiles in Single               Payload, Fragmented Header . . . . . . . . . . . . . .25A.2.4.  Sample 4: Interlace Image, Single Tile . . . . . . . .27Futemma, et al.             Standards Track                     [Page 2]

RFC 5371              JPEG 2000 RTP Payload Format          October 20081.  Introduction   This document specifies a payload format for JPEG 2000 video streams   over the Real-time Transport Protocol (RTP).  JPEG 2000 is an ISO/IEC   International Standard and ITU-T Recommendation (ISO/IEC   International Standard 15444-1 | ITU-T Rec. T.800) developed for   next-generation, still-image compression.  JPEG stands for the Joint   Photographers Experts Group, an international group made of academia   and industry to develop image compression standards.  JPEG 2000 basic   compression technology is defined in detail in ISO JPEG 2000 Part 1:   Core Coding System [JPEG2000Pt_1], with motion defined in ISO JPEG   2000 Part 3: Motion JPEG 2000 [JPEG2000Pt_3].   Part 3 of the JPEG 2000 standard defines Motion JPEG 2000   [JPEG2000Pt_3].  However, Motion JPEG 2000 defines a file format, not   a transmission format for the network.  This document specifies a   transmission format for the network for a series of JPEG 2000 images.   JPEG 2000 supports many powerful features [JPEG2000Pt_1]   [JPEG2000Pt_3] that are not supported in the current JPEG standard,   such as:   o  Higher compression efficiency than JPEG with less visual      distortion especially at extreme compression ratios.   o  A single codestream that offers both lossy and lossless      compression.   o  Better error resiliency than JPEG.   o  Progressive transmission by pixel accuracy (Signal-to-Noise Ratio      (SNR) scalability) and resolution (resolution scalability).   o  Random codestream access and processing.Futemma, et al.             Standards Track                     [Page 3]

RFC 5371              JPEG 2000 RTP Payload Format          October 2008   The JPEG 2000 algorithm is briefly explained.  Figure 1 shows a block   diagram of the JPEG 2000 encoding method.                                                    +-----+                                                    | ROI |                                                    +-----+                                                       |                                                       V                  +----------+   +----------+   +------------+                  |DC, comp. |   | Wavelet  |   |            |   Raw Image  ==> |transform-|==>|transform-|==>|Quantization|==+                  |  ation   |   |  ation   |   |            |  |                  +----------+   +----------+   +------------+  |                                                                |                 +-----------+   +----------+   +------------+  |                 |           |   |          |   |            |  |    JPEG 2000 <==| Data      |<==| Rate     |<==| EBCOT      |<=+    codestream   | Ordering  |   | Control  |   |            |                 +-----------+   +----------+   +------------+             Figure 1: Block diagram of the JPEG 2000 encoder   The image is first transformed into wavelet coefficients.  The image   is sampled into various levels, vertically and horizontally, from   high frequencies (which contain sharp details) to low frequencies   (which contain smooth areas).  Quantization is performed on the   coefficients within each sub-band.   After quantization, code blocks are formed from within the precincts   within the tiles.  (Precincts are a finer separation than tiles, and   code blocks are the smallest separation of the image data.)  EBCOT   coding (Embedded Block Coding Optimized for Truncation) is performed   within each code block and arithmetically encoded by bit plane.  Rate   control is performed to achieve the highest quality image for a   specified rate.   As a result, for a given tile, data units called JPEG 2000 packets   are generated, which contain data from a specific layer, specific   component, specific resolution, or specific precinct, depending on   the data ordering.   Finally, the JPEG 2000 packets are interleaved according to the   progression along four axes: layer, resolution, component, and   precinct.  A JPEG 2000 header is added to become a fully compliant   JPEG 2000 codestream.Futemma, et al.             Standards Track                     [Page 4]

RFC 5371              JPEG 2000 RTP Payload Format          October 2008   To decompress a JPEG 2000 codestream, one would follow the reverse   order of the encoding order, without the rate control.   It is outside the scope of this document to further describe in   detail this procedure.  Please refer to various JPEG 2000 related   texts for further details [JPEG2000Pt_1].   Figure 2 shows a JPEG 2000 codestream in detail.  A JPEG 2000   codestream is structured from the main header, beginning with the SOC   (Start Of Codestream) marker, one or more tiles, and the EOC (End Of   Codestream) marker to indicate the end of the codestream.  Each tile   consists of a tile-part header that starts with the SOT (Start of   Tile) marker and ends with a SOD (Start of Data) marker, and   bitstream (a series of JPEG 2000 packets).           +--  +------------+     Main  |    |    SOC     |  Required as the first marker     header|    +------------+           |    |    main    |  Main header marker segments           +--  +------------+           |    |    SOT     |  Required at the beginning of each     Tile- |    +------------+    tile-part header     part  |    |   T0,TP0   |  Tile 0, tile-part 0 header marker     header|    +------------+    segments           |    |    SOD     |  Required at the end of each tile-part           +--  +------------+    header                | bitstream  |  Tile-part bitstream           +--  +------------+           |    |    SOT     |     Tile- |    +------------+     part  |    |   T1,TP0   |     header|    +------------+           |    |    SOD     |           +--  +------------+                | bit stream |                +------------+                      .                      .                      .                +------------+                |    EOC     |  Required as the last marker in the                +------------+  codestream         Figure 2: Basic construction of the JPEG 2000 codestreamFutemma, et al.             Standards Track                     [Page 5]

RFC 5371              JPEG 2000 RTP Payload Format          October 20081.1.  Conventions Used in This Document   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this   document are to be interpreted as described inRFC 2119 [RFC2119].2.  JPEG 2000 Video Features   JPEG 2000 video streams are formed as a continuous series of JPEG   2000 still images.  Previously described features of JPEG 2000 may be   used effectively in streaming applications for a JPEG 2000 video.  A   JPEG 2000 video stream has the following qualities:   o  At low bit rates, the SNR is improved dramatically over JPEG and      Motion JPEG.   o  This is a full intra-frame format -- each frame is independently      compressed -- and therefore has a low encoding and decoding delay.   o  JPEG 2000 has flexible and accurate rate control.   o  This is suitable for traffic control and congestion control during      network transmission.   o  JPEG 2000 can provide its own codestream error resilience markers      to aid in codestream recovery outside of this specification.3.  Payload Design   To design a payload format that maximizes JPEG 2000 features, the   following are taken into consideration:   o  Provisions for packet loss:      On the Internet, 5% packet loss is common and this percentage may      vary up to 20% or more.  To split JPEG 2000 video streams into RTP      packets, efficient packetization of the codestream is required to      minimize problems in decoding due to missing packets.  If the main      header is lost, the image cannot be decoded.   o  JPEG 2000 Scalability      JPEG 2000 has powerful scalability features and markers in the      payload header to indicate the specific meaning of the payload,      such as:      *  Special markers for the headers, fragments of headers, etc.Futemma, et al.             Standards Track                     [Page 6]

RFC 5371              JPEG 2000 RTP Payload Format          October 2008      *  Tile numbering for association of packets.      *  Since this is primarily for video applications, special markers         are used to indicate format (i.e., interlace odd/even fields).      *  Priority importance of the packet using methods described inRFC 5372 [RFC5372].      *  Main header recovery using methods described inRFC 5372         [RFC5372].      Additional usage of the payload header is described inRFC 5372      [RFC5372].4.  Payload Format4.1.  RTP Fixed Header Usage   For each RTP packet, the RTP fixed header is followed by the JPEG   2000 RTP payload header, which is followed by the payload, a piece of   a JPEG 2000 codestream, which is usually a JPEG 2000 packet.   The RTP header fields that have a meaning specific to a JPEG 2000   video stream are described as follows:   Marker bit (M):  The marker bit of the RTP fixed header MUST be set      to 1 for the last RTP packet of a video frame; otherwise, it MUST      be 0.  When transmission is performed by multiple RTP sessions,      this bit is 1 in the last packet of the frame in each session.   Payload type (PT):  The payload type is dynamically assigned by means      outside the scope of this document.  A payload type in the dynamic      range shall be chosen by means of an out-of-band signaling      protocol (i.e., Real Time Streaming Protocol (RTSP), SIP, etc.).   Timestamp:  Timestamp indicates the presentation time of the frame      contained in the RTP packet.  The same timestamp value MUST appear      in each RTP packet carrying a fragment of a given frame.  When a      JPEG 2000 image is in interlace format, the odd field and the      corresponding even field MUST have the same timestamp value.      Following the RTP specification [RFC3550], the initial value of      the timestamp should be randomly chosen.      As for the clock rate, senders and receivers MUST support the      90kHz RTP timestamp rate, and MAY support other rates.  RTP      timestamp rates below 1000 Hz SHOULD NOT be used because they will      result in insufficient resolution for RTP Control Protocol (RTCP)      measurements based on the RTP timestamp, such as the interarrivalFutemma, et al.             Standards Track                     [Page 7]

RFC 5371              JPEG 2000 RTP Payload Format          October 2008      jitter.  The clock rate MUST be negotiated at the start of the      session.  When using the Session Description Protocol (SDP), it      MUST be expressed using the "rtpmap" attributes.  If a non-90kHz      clock rate is to be used, it is RECOMMENDED to present not only a      preferable clock rate but also 90kHz clock rate with a different      RTP payload type.4.2.  RTP Payload Header Format   The RTP payload header format for JPEG 2000 video stream is as   follows:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |tp |MHF|mh_id|T|     priority  |           tile number         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |reserved       |             fragment offset                   |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+             Figure 3: RTP payload header format for JPEG 2000   tp (type): 2 bits      This field indicates how a JPEG 2000 image is scanned (progressive      or interlace).         0: The payload is progressively scanned.         1: The payload is part of an odd field of an interlaced video         frame.  The height specified in the JPEG 2000 main header is         half of the height of the entire displayed image.  In a         receiver, an odd field should be de-interlaced with the even         field following it so that lines from each image are displayed         alternately.         2: The payload is part of an even field of an interlaced video         signal.   MHF (Main Header Flag): 2 bits      MHF indicates whether a main header or packet of a main header is      in the RTP packet.Futemma, et al.             Standards Track                     [Page 8]

RFC 5371              JPEG 2000 RTP Payload Format          October 2008       If there is no header, MHF has a value of 0.  If there is just a       part of a fragmented header, MHF has a value of 1.  If there is      the last part of a fragmented header, MHF has value of 2.  If the             whole header is in the packet, MHF has a value of 3.             +-----------+----------------------------------+             | MHF Value | Description                      |             +-----------+----------------------------------+             |     0     | no main header in the payload    |             |     1     | piece of fragmented header       |             |     2     | last part of a fragmented header |             |     3     | a whole main header              |             +-----------+----------------------------------+                          Table 1: MHF Usage Values   mh_id (Main Header Identification): 3 bits      Main header identification value.  This is used for JPEG 2000 main      header recovery.      For implementations following only this specification, the sender      SHOULD set this value to 0 and the receiver SHOULD ignore this      field on processing.   T (Tile field invalidation flag): 1 bit      The T bit indicates whether the tile number field is valid or      invalid.  A sender MUST set the T bit to 1 when invalid and 0 when      valid.      There are two cases where the tile number field is invalid:      *  When an RTP packet holds only the main header.  A sender cannot         set any number in the tile number field, as no JPEG 2000 tile-         part bitstream is included in the RTP packet.      *  Multiple tile-parts are packed together in a single payload.         If there are multiple tiles packed into a single payload, there         is no meaning to assign a number to the tile number field.   priority: 8 bits      The priority field indicates the importance of the JPEG 2000      packet included in the payload.  Typically, a higher priority      value is set in the packets containing JPEG 2000 packets that      contain the lower sub-bands.Futemma, et al.             Standards Track                     [Page 9]

RFC 5371              JPEG 2000 RTP Payload Format          October 2008      For implementations following only this specification, the sender      SHOULD set this value to 255 and the receiver SHOULD ignore this      field on processing.   tile number: 16 bits      This field shows the tile number of the payload.  This field is      only valid when the T bit is 0.  If the T bit is set to 1, the      receiver MUST ignore this field.   R (Reserved): 8 bits      This bit is reserved for future use.  Senders MUST set this to 0.      Receivers MUST ignore this field.   fragment offset: 24 bits      This value MUST be set to the byte offset of the current payload      in relation to the very beginning of each JPEG 2000 codestream      (JPEG 2000 frame).      Byte offsets are calculated from the start of each JPEG 2000      codestream up to the current position where the current payload      would fit into the complete JPEG 2000 codestream.      To perform scalable video delivery by using multiple RTP sessions,      the offset value from the first byte of the same frame is set for      fragment offset.  It is then possible to deliver layered video      using multiple RTP sessions; the fragment offset might not start      from 0 in some RTP sessions even if the packet is the first one      received in the RTP session.5.  RTP Packetization   The sender must packetize the JPEG 2000 appropriately according to   initial media type parameters and/or details from SDP offer/answer   parameters.   A "packetization unit" is defined as either a JPEG 2000 main header,   a tile-part header, or a JPEG 2000 packet.Futemma, et al.             Standards Track                    [Page 10]

RFC 5371              JPEG 2000 RTP Payload Format          October 2008   First, a sender divides the JPEG 2000 codestream into packetization   units by parsing the codestream or by getting information from the   encoder, and packs the packetization units into RTP packets.  A   sender can put an arbitrary number of packetization units into an RTP   packet, but it MUST preserve the codestream order.  An example of   this kind of RTP packet format is shown in Figure 4:   +------+-------+---------------+---------------+   |RTP   |payload| packetization | packetization |   |header|header | unit          | unit          |   +------+-------+---------------+---------------+          Figure 4: An example with multiple packetization units   If a packetization unit with headers (IP header, RTP header, and   payload header) is larger than the MTU size, it MAY be fragmented.   To pack a fragmented packetization unit, the fragmented unit MUST NOT   be packed with the succeeding packetization unit within the same RTP   packet.  An example of this kind of RTP packet format is shown in   Figure 5:   +------+-------+-------------------------------------------------+   |RTP   |payload| packetization unit fragment                     |   |header|header |                                                 |   +------+-------+-------------------------------------------------+   +------+-------+-------------------------------------------------+   |RTP   |payload| packetization unit fragment                     |   |header|header |                                                 |   +------+-------+-------------------------------------------------+              .              .              .   +------+-------+------------------------------------+   |RTP   |payload| end of packetization unit fragment |   |header|header |                                    |   +------+-------+------------------------------------+         Figure 5: An example with a fragmented packetization unit6.  Media Type Registration   This registration uses the template defined in [RFC4288] and follows   [RFC4855].   Type name: videoFutemma, et al.             Standards Track                    [Page 11]

RFC 5371              JPEG 2000 RTP Payload Format          October 2008   Subtype name: jpeg2000   Required parameters:      rate:  The RTP timestamp clock rate.  The default rate is 90000,         but other rates MAY be specified.  Rates below 1000 Hz SHOULD         NOT be used.      sampling:  A list of values specifying the color space of the         payload data.         Acceptable values:            RGB:  standard Red, Green, Blue color space.            BGR:  standard Blue, Green, Red color space.            RGBA:  standard Red, Green, Blue, Alpha color space.            BGRA:  standard Blue, Green, Red, Alpha color space.            YCbCr-4:4:4:  standard YCbCr color space; no subsampling.            YCbCr-4:2:2:  standard YCbCr color space; Cb and Cr are               subsampled horizontally by 1/2.            YCbCr-4:2:0:  standard YCbCr color space; Cb and Cr are               subsampled horizontally and vertically by 1/2.            YCbCr-4:1:1:  standard YCbCr color space; Cb and Cr are               subsampled vertically by 1/4.            GRAYSCALE:  basically, a single component image of just               multilevels of grey.            EXTENSION VALUE:  Additional color samplings can be               registered with the current listing of registered color               samplings at: Color Sampling Registration Authority.               Please refer to RTP Format for Uncompressed Video               [RFC4175].   Optional parameters:      interlace:  Interlace scanning.  If the payload is in interlace         format, the acceptable value is "1"; otherwise, the value         should be "0".  Each complete image forms, vertically, half the         display.  The tp value MUST properly specify the field the         image represents: odd(tp=1) or even(tp=2).  If this option isFutemma, et al.             Standards Track                    [Page 12]

RFC 5371              JPEG 2000 RTP Payload Format          October 2008         not present, the payload MUST be in progressive format and the         tp MUST be set to 0.      width:  A parameter describing the maximum width of the video         stream.  This parameter MUST appear when height is present.         Acceptable values: -- an integer value between 0 --         4,294,967,295.      height:  A parameter describing the maximum height of the video         stream.  This parameter MUST appear when width is present.         Acceptable values: -- an integer value between 0 --         4,294,967,295.   The receiver MUST ignore any unspecified parameters.   Encoding considerations:      This media type is framed and binary, seeSection 4.8 of      [RFC4288].   Security considerations: SeeSection 9 of this document.   Interoperability considerations:      The JPEG 2000 video stream is a sequence of JPEG 2000 still      images.  An implementation compliant with [JPEG2000Pt_1] can      decode and attempt to display the encoded JPEG 2000 video stream.   Published specification: ISO/IEC 15444-1 | ITU-T Rec. T.800   Applications that use this media type:      video streaming and communication   Person and email address to contact for further information:      Eisaburo Itakura, Satoshi Futemma, Andrew Leung      Email: itakura@sm.sony.co.jp, satosi-f@sm.sony.co.jp,      andrew@ualberta.net   Intended usage: COMMON   Restrictions on Usage:      This media type depends on RTP framing, and hence is only defined      for the transfer via RTP [RFC3550].  Transport within other      framing protocols is not defined at the time.Futemma, et al.             Standards Track                    [Page 13]

RFC 5371              JPEG 2000 RTP Payload Format          October 2008   Author/Change Controller:      Author:         Eisaburo Itakura, Satoshi Futemma, Andrew Leung         Email: itakura@sm.sony.co.jp, satosi-f@sm.sony.co.jp,         andrew@ualberta.net      Change controller:         IETF Audio/Video Transport Working Group delegated from the         IESG.7.  SDP Parameters7.1.  SDP Mapping   The media type video/jpeg2000 string is mapped to fields in the   Session Description Protocol (SDP) [RFC4566] as follows:   o  The media name in the "m=" line of SDP MUST be video.   o  The encoding name in the "a=rtpmap" line of SDP MUST be jpeg2000      (the subtype).   o  The clock rate in the "a=rtpmap" line is set according to the      "rate" parameter.  Senders that wish to use a non-90kHz rate      SHOULD also offer the same stream using a 90kHz timestamp rate      with a different RTP payload type, allowing graceful fallback to      90kHz for compatibility.   o  The REQUIRED parameter, "sampling", MUST be included in the      "a=fmtp" line of SDP.   o  The OPTIONAL parameters, if presented, MUST be included in the      "a=fmtp" line of SDP.   These parameters are expressed as a media type string, in the form of   a semicolon separated list of parameter=value pairs.   Therefore, an example of media representation in SDP using typical   parameters is as follows:      m=video 49170/2 RTP/AVP 98      a=rtpmap:98 jpeg2000/90000      a=fmtp:98 sampling=YCbCr-4:2:0;width=128;height=128Futemma, et al.             Standards Track                    [Page 14]

RFC 5371              JPEG 2000 RTP Payload Format          October 2008   An example for using non-90kHz timestamp is as follows:      m=video 49170/2 RTP/AVP 98 99      a=rtpmap:98 jpeg2000/27000000      a=rtpmap:99 jpeg2000/90000      a=fmtp:98 sampling=YCbCr-4:2:0;width=128;height=128      a=fmtp:99 sampling=YCbCr-4:2:0;width=128;height=1287.2.  Usage with the SDP Offer/Answer Model   When offering JPEG 2000 over RTP using SDP in an Offer/Answer model   [RFC3264], the following rules and limitations apply:   o  All parameters MUST have an acceptable value for the parameter.   o  All parameters MUST correspond to the parameters of the payload.   o  The parameter "sampling" with an acceptable answer MUST appear in      the offer and in the answer if accepted by the receiver.  The      receiver SHOULD do its best to handle the received codestream in      the color space offered.  If the receiver cannot handle the      offered color space for whatever reason, it should reply with its      preferred color space in the answer and gracefully end the      session.  Senders do not need to conform to the color space in the      answer, but they should take note that the session ended due to      color sampling issues.   o  For optional parameter "interlace", if this option is used, it      MUST appear in the offer and, if accepted, it SHOULD appear in the      answer.  Receivers should do their best to handle interlace or      progressive codestreams but, if for some reason, receivers cannot      accommodate, receivers should reply with preferred settings in the      answer, then gracefully end the session.  Senders do not need to      adjust settings upon this answer, but they should take note that      the session ended due to interlace or progressive issues.   o  For optional parameters "width" and "height", the following      applies:      *  if "width" appears in the offer or answer, "height" MUST be         present.      *  if "height" appears in the offer or answer, "width" MUST be         present.   o  Width and height should appear in the offer as the maximum      dimensions the sender can offer.  In the answer, it SHOULD      represent the maximum the receiver can accommodate.  If there is aFutemma, et al.             Standards Track                    [Page 15]

RFC 5371              JPEG 2000 RTP Payload Format          October 2008      difference between the offer and answer, the sender should re-      offer a new width and height and appropriately scale down the      codestream for the receiver.   o  In a multicast environment, [RFC1112] receivers should do their      best to conform to parameters in the offer from the sender.      Senders should use recommended settings in multicast environments      and take note of answers.  For width and height, the sender should      accommodate to the lowest values it receives from all answers.   o  Any unknown options in the offer should be ignored and deleted      from the answer.7.2.1.  Examples   Example offer/answer exchanges are provided.   Alice offers YCbCr 4:2:2 color space, interlace image with 720-pixel   width and 480-pixel height as below:      v=0      o=alice 2890844526 2890844526 IN IP4 host.example      s=      c=IN IP4 host.example      t=0 0      m=video 49170 RTP/AVP 98      a=rtpmap:98 jpeg2000/90000      a=fmtp:98 sampling=YCbCr-4:2:2; interlace=1; width=720;height=480   Bob accepts YCbCr-4:2:2 color space, interlace image and replies:      v=0      o=bob 2890844730 2890844731 IN IP4 host.example      s=      c=IN IP4 host.example      t=0 0      m=video 49920 RTP/AVP 98      a=rtpmap:98 jpeg2000/90000      a=fmtp:98 sampling=YCbCr-4:2:2; interlace=1; width=720;height=4807.2.2.  Examples: Non-90kHz Timestamp   Example offer/answer exchanges, where an offerer wishes to use non-   90kHz timestamp, are provided.   Alice offers an RTP payload type with 27MHz clock rate as well as   with 90kHz clock rate, and each payload type includes: YCbCr 4:2:2   color space, interlace image, 720-pixel width and 480-pixel height.Futemma, et al.             Standards Track                    [Page 16]

RFC 5371              JPEG 2000 RTP Payload Format          October 2008   She puts 27MHz clock rate attributes prior to 90kHz because she wants   to use 27 MHz rather than 90kHz.      v=0      o=alice 2890844526 2890844526 IN IP4 host.example      s=      c=IN IP4 host.example      t=0 0      m=video 49170 RTP/AVP 98 99      a=rtpmap:98 jpeg2000/27000000      a=rtpmap:99 jpeg2000/90000      a=fmtp:98 sampling=YCbCr-4:2:2; interlace=1; width=720;height=480      a=fmtp:99 sampling=YCbCr-4:2:2; interlace=1; width=720;height=480   If Bob can accept 27MHz clock rate, he replies as below:      v=0      o=bob 2890844730 2890844731 IN IP4 host.example      s=      c=IN IP4 host.example      t=0 0      m=video 49920 RTP/AVP 98      a=rtpmap:98 jpeg2000/27000000      a=fmtp:98 sampling=YCbCr-4:2:2; interlace=1; width=720;height=480   If Bob doesn't accept 27MHz clock rate, he replies as below:      v=0      o=bob 2890844730 2890844731 IN IP4 host.example      s=      c=IN IP4 host.example      t=0 0      m=video 49920 RTP/AVP 99      a=rtpmap:99 jpeg2000/90000      a=fmtp:99 sampling=YCbCr-4:2:2; interlace=1; width=720;height=4808.  IANA Considerations   A new media subtype (video/jpeg2000) has been registered by IANA.   For details, seeSection 6 of this document.9.  Security Considerations   RTP packets using the payload format defined in this specification   are subject to the security considerations discussed in the RTP   specification [RFC3550], and in any applicable RTP profile.  The main   security considerations for the RTP packet carrying the RTP payload   format defined within this memo are confidentiality, integrity, andFutemma, et al.             Standards Track                    [Page 17]

RFC 5371              JPEG 2000 RTP Payload Format          October 2008   source authenticity.  Confidentiality is achieved by encryption of   the RTP payload.  Integrity of the RTP packets is through the use of   suitable cryptographic integrity protection mechanism.  A   cryptographic system may also allow the authentication of the source   of the payload.  A suitable security mechanism for this RTP payload   format should provide confidentiality, integrity protection, and at   least a source authentication method capable of determining whether   or not an RTP packet is from a member of the RTP session.   Note that the appropriate mechanism to provide security to RTP and   payloads following this memo may vary.  It is dependent on the   application, the transport, and the signaling protocol employed.   Therefore, a single mechanism is not sufficient, although if   suitable, the usage of SRTP [RFC3711] is recommended.  Other   mechanism that may be used are IPsec [RFC4301] and Transport Layer   Security (TLS) [RFC5246] (RTP over TCP), but other alternatives may   also exist.10.  Congestion Control   If Quality of Service (QoS) enhanced service is used, RTP receivers   SHOULD monitor packet loss to ensure that the service that was   requested is actually being delivered.  If it is not, then they   SHOULD assume that they are receiving best-effort service and behave   accordingly.   If best-effort service is being used, users of this payload format   MUST monitor packet loss to ensure that the packet loss rate is   within acceptable parameters.  Packet loss is considered acceptable   if a TCP flow across the same network path, experiencing the same   network conditions, would achieve an average throughput, measured on   a reasonable timescale, that is not less than the RTP flow is   achieving.  This condition can be satisfied by implementing   congestion control mechanisms to adapt the transmission rate (or the   number of layers subscribed for a layered multicast session), or by   arranging for a receiver to leave the session if the loss rate is   unacceptably high.Futemma, et al.             Standards Track                    [Page 18]

RFC 5371              JPEG 2000 RTP Payload Format          October 200811.  References11.1.  Normative References   [JPEG2000Pt_1]  ISO/IEC JTC1/SC29, ISO/IEC 15444-1 | ITU-T Rec.                   T.800, "Information Technology - JPEG 2000 Image                   Coding System - Part 1: Core Coding System",                   December 2000.   [RFC2119]       Bradner, S., "Key words for use in RFCs to Indicate                   Requirement Levels",BCP 14,RFC 2119, March 1997.   [RFC3550]       Schulzrinne, H., Casner, S., Frederick, R., and V.                   Jacobson, "RTP: A Transport Protocol for Real-Time                   Applications", STD 64,RFC 3550, July 2003.   [RFC3711]       Baugher, M., McGrew, D., Naslund, M., Carrara, E.,                   and K. Norrman, "The Secure Real-time Transport                   Protocol (SRTP)",RFC 3711, March 2004.   [RFC4288]       Freed, N. and J. Klensin, "Media Type Specifications                   and Registration Procedures",BCP 13,RFC 4288,                   December 2005.   [RFC4855]       Casner, S., "Media Type Registration of RTP Payload                   Formats",RFC 4855, February 2007.   [RFC4566]       Handley, M., Jacobson, V., and C. Perkins, "SDP:                   Session Description Protocol",RFC 4566, July 2006.   [RFC3264]       Rosenberg, J. and H. Schulzrinne, "An Offer/Answer                   Model with Session Description Protocol (SDP)",RFC 3264, June 2002.11.2.  Informative References   [JPEG2000Pt_3]  ISO/IEC JTC1/SC29, ISO/IEC 15444-1 | ITU-T Rec.                   T.800, "Information Technology - JPEG 2000 Image                   Coding System -  Part 3: Motion JPEG 2000",                   July 2002.   [RFC5372]       Leung, A., Futemma, S., and E. Itakura, "Payload                   Format for JPEG 2000 Video: Extensions for                   Scalability and Main  Header Recovery",RFC 5372,                   October 2008.   [RFC4301]       Kent, S. and K. Seo, "Security Architecture for the                   Internet Protocol",RFC 4301, December 2005.Futemma, et al.             Standards Track                    [Page 19]

RFC 5371              JPEG 2000 RTP Payload Format          October 2008   [RFC5246]       Dierks, T. and E. Rescorla, "The Transport Layer                   Security (TLS) Protocol Version 1.2",RFC 5246,                   August 2008.   [RFC4175]       Gharai, L. and C. Perkins, "RTP Payload Format for                   Uncompressed Video",RFC 4175, September 2005.   [RFC1112]       Deering, S., "Host extensions for IP multicasting",                   STD 5,RFC 1112, August 1989.Futemma, et al.             Standards Track                    [Page 20]

RFC 5371              JPEG 2000 RTP Payload Format          October 2008Appendix A.  Informative AppendixA.1.  Recommended Practices   As the JPEG 2000 coding standard is highly flexible, many different   but compliant data streams may be produced and still be compliant   JPEG 2000 codestreams.   The following is a set of recommendations set forth from our   experience in developing JPEG 2000 and this payload specification.   Implementations of this standard must handle all possibilities   mentioned in this specification.  The following is a listing of items   an implementation may optimize.   Error Resilience Markers:  The use of error resilience markers in the      JPEG 2000 data stream is highly recommended in all situations.      Error recovery with these markers is helpful to the decoder and      saves external resources (e.g., markers such as RESET, RESTART,      and ERTERM).   YCbCr Color Space:  The YCbCr color space provides the greatest      amount of compression in color with respect to the human visual      system.  When used with JPEG 2000, this color space can provide      excellent visual results at low bit rates.   Progression Ordering:  JPEG 2000 offers many different ways to order      the final code stream to optimize the transfer with the      presentation.  We have found that the most useful codestream      ordering is layer progression and resolution progression ordering.   Tiling and Packets:  JPEG 2000 packets are formed regardless of the      encoding method.  The encoder has little control over the size of      these JPEG 2000 packets as they may be large or small.      Tiling splits the image into smaller areas and each is encoded      separately.  With tiles, the JPEG 2000 packet sizes are also      reduced.  When using tiling, almost all JPEG 2000 packet sizes are      an acceptable size for transmission (i.e., smaller than the MTU      size of most networks).   Sender Processing:  There are no limitations as to how the sender      should pack the payload.  In general, the sender should pack      headers separately from the rest of the codestream to make header      recovery simple.  Payloads should generally begin with a Start of      Packet (SOP) marker and end with an End of Packet Header (EPH)      marker for easier decoder processing.Futemma, et al.             Standards Track                    [Page 21]

RFC 5371              JPEG 2000 RTP Payload Format          October 2008A.2.  Sample Headers in Detail   This section has various sample headers in various configurations for   reference.   For reference, the payload header is as follows:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |tp |MHF|mh_id|T|     priority  |           tile number         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |reserved       |             fragment offset                   |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                    Figure 6: JPEG 2000 Payload HeaderA.2.1.  Sample 1: Progressive Image with Single Tile, 3500 Bytes (i.e.,        thumbnail)   First Packet: This packet will have the whole main header 210 bytes    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | 0 | 3 |  0  |1|      255      |               0               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |       0       |                       0                       |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |FF4F FF51 002F 000 ....                                        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                Figure 7: Header Sample 1-1 (First Packet)Futemma, et al.             Standards Track                    [Page 22]

RFC 5371              JPEG 2000 RTP Payload Format          October 2008   Second Packet: This packet will have a tile header and the first tile   part LLband 1500 bytes    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | 0 | 3 |  0  |0|      255      |               0               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |       0       |                      210                      |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |FF90 000A 0000 0000 2DB3 0001 FF93 ...                         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                Figure 8: Header Sample 1-2 (Second Packet)   Third Packet: This packet will have the next part in the tile, no   tile header 1500 bytes    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | 0 | 0 |  0  |0|      255      |               0               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |       0       |                     1710                      |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |E841 4526 4556 9850 C2EA ...                                   |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                Figure 9: Header Sample 1-3 (Third Packet)   Fourth Packet: Last packet for the image 290 bytes    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | 0 | 0 |  0  |0|      255      |               0               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |       0       |                     3210                      |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |A55D 8B73 3B25 25C7 B9EB ...                          2FBE B153|   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                 Figure 10: Header Sample 1-4 (4th Packet)Futemma, et al.             Standards Track                    [Page 23]

RFC 5371              JPEG 2000 RTP Payload Format          October 2008A.2.2.  Sample 2: Image with 4 Tiles   First Packet: This packet will have the whole main header. 210 bytes    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | 0 | 3 |  0  |1|      255      |               0               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |       0       |                       0                       |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |FF4F FF51 002F 000 ...                                         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                Figure 11: Header Sample 2-1 (First Packet)   Second Packet: This packet will have a first tile part (tile 0) 1400   bytes    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | 0 | 0 |  0  |0|      255      |               0               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |       0       |                      210                      |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |FF90 000A 0000 0000 0578 0001 FF93 ...                         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+               Figure 12: Header Sample 2-2 (Second Packet)   Third Packet: This packet will have a second tile part (tile 1) 1423   bytes    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | 0 | 0 |  0  |0|      255      |               1               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |       0       |                     1610                      |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |FF90 000A 0001 0000 058F 0001 FF93 ...                         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                Figure 13: Header Sample 2-3 (Third Packet)Futemma, et al.             Standards Track                    [Page 24]

RFC 5371              JPEG 2000 RTP Payload Format          October 2008   Fourth Packet: This packet will have a third tile part (tile 2) 1355   bytes    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | 0 | 0 |  0  |0|      255      |               2               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |       0       |                     3033                      |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |FF90 000A 0002 0000 054B 0001 FF93 ...                         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                 Figure 14: Header Sample 2-4 (4th Packet)   Fifth Packet: This packet will have a fourth tile part (tile 3) 1290   bytes    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | 0 | 0 |  0  |0|      255      |               3               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |       0       |                     4388                      |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |FF90 000A 0003 0000 050A 0001 FF93 ...                         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                 Figure 15: Header Sample 2-5 (5th Packet)A.2.3.  Sample 3: Packing Multiple Tiles in Single Payload, Fragmented        Header   First Packet: This packet will have the first part of the main header   110 bytes    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | 0 | 1 |  0  |1|      255      |               0               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |       0       |                       0                       |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |FF4F FF51 002F 000 ...                                         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+Futemma, et al.             Standards Track                    [Page 25]

RFC 5371              JPEG 2000 RTP Payload Format          October 2008                Figure 16: Header Sample 3-1 (First Packet)   Second Packet: This packet has the second part of the header 1400   bytes    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | 0 | 2 |  0  |1|      255      |               0               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |       0       |                      110                      |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |FF64 00FF ...                                                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+               Figure 17: Header Sample 3-2 (Second Packet)   Third Packet: This packet has two tiles, tile 0 and tile 1 1400 bytes    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | 0 | 0 |  0  |1|      255      |               0               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |       0       |                     1510                      |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |FF90 000A 0000 0000 02BC 0001 FF93 ...                         |   //                                                             //   |FF90 000A 0001 0000 02BC 0001 FF93 ...                         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                Figure 18: Header Sample 3-3 (Third Packet)Futemma, et al.             Standards Track                    [Page 26]

RFC 5371              JPEG 2000 RTP Payload Format          October 2008   Fourth Packet: This packet has one tile, tile 2 1395 bytes    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | 0 | 0 |  0  |0|      255      |               2               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |       0       |                     2910                      |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |FF90 000A 0002 0000 0573 0001 FF93 ...                         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                 Figure 19: Header Sample 3-4 (4th Packet)A.2.4.  Sample 4: Interlace Image, Single Tile   First packet: This packet will have the whole main header for the odd   field 210 bytes    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | 1 | 3 |  0  |1|      255      |               0               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |       0       |                       0                       |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |FF4F FF51 002F 000 ...                                         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                Figure 20: Header Sample 4-1 (First Packet)   Second packet: This packet will have the first part of the odd   field's tile 1400 bytes    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | 1 | 0 |  0  |1|      255      |               0               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |       0       |                      210                      |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |FF90 000A 0000 0000 0578  0001 FF93 ...                        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+               Figure 21: Header Sample 4-2 (Second Packet)Futemma, et al.             Standards Track                    [Page 27]

RFC 5371              JPEG 2000 RTP Payload Format          October 2008   Third packet: This packet will have the second part of the odd   field's tile 1400 bytes    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | 1 | 0 |  0  |1|      255      |               0               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |       0       |                     1610                      |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |7F04 E708 27D9 D11D 22CB ...                                   |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                Figure 22: Header Sample 4-3 (Third Packet)   Fourth packet: This packet will have the third part of the odd   field's tile 1300 bytes    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | 1 | 0 |  0  |1|      255      |               0               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |       0       |                     3010                      |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |98BD EC9B 2826 DC62 D4AB ...                                   |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                 Figure 23: Header Sample 4-4 (4th Packet)   Fifth packet: This packet will have the whole main header for the   even field 210 bytes    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | 2 | 3 |  0  |1|      255      |               0               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |       0       |                       0                       |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |FF4F FF51 002F 000 ...                                         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                 Figure 24: Header Sample 4-5 (5th Packet)Futemma, et al.             Standards Track                    [Page 28]

RFC 5371              JPEG 2000 RTP Payload Format          October 2008   Sixth packet: This packet will have the first part of the even   field's tile 1400 bytes    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | 2 | 0 |  0  |1|      255      |               0               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |       0       |                      210                      |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |FF90 000A 0000 0000 0578  0001 FF93 ...                        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                 Figure 25: Header Sample 4-6 (6th Packet)   Seventh packet: This packet will have the second part of the even   field's tile 1400 bytes    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | 2 | 0 |  0  |1|      255      |               0               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |       0       |                     1610                      |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |626C 42F0 166B 6BD0 F8E1 ...                                   |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                 Figure 26: Header Sample 4-7 (7th Packet)   Eighth packet: This packet will have the third part of the even   field's tile 1300 bytes    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | 2 | 0 |  0  |1|      255      |               0               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |       0       |                     3010                      |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |8114 41D5 18AB 4A1B ...                                        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                 Figure 27: Header Sample 4-8 (8th Packet)Futemma, et al.             Standards Track                    [Page 29]

RFC 5371              JPEG 2000 RTP Payload Format          October 2008Authors' Addresses   Satoshi Futemma   Sony Corporation   1-7-1 Konan   Minato-ku   Tokyo  108-0075   Japan   Phone: +81 3 6748-2111   EMail: satosi-f@sm.sony.co.jp   URI:http://www.sony.net/   Eisaburo Itakura   Sony Corporation   1-7-1 Konan   Minato-ku   Tokyo  108-0075   Japan   Phone: +81 3 6748-2111   EMail: itakura@sm.sony.co.jp   URI:http://www.sony.net/   Andrew Leung   Sony Corporation   EMail: andrew@ualberta.netFutemma, et al.             Standards Track                    [Page 30]

RFC 5371              JPEG 2000 RTP Payload Format          October 2008Full Copyright Statement   Copyright (C) The IETF Trust (2008).   This document is subject to the rights, licenses and restrictions   contained inBCP 78, and except as set forth therein, the authors   retain all their rights.   This document and the information contained herein are provided on an   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND   THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS   OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF   THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.Intellectual Property   The IETF takes no position regarding the validity or scope of any   Intellectual Property Rights or other rights that might be claimed to   pertain to the implementation or use of the technology described in   this document or the extent to which any license under such rights   might or might not be available; nor does it represent that it has   made any independent effort to identify any such rights.  Information   on the procedures with respect to rights in RFC documents can be   found inBCP 78 andBCP 79.   Copies of IPR disclosures made to the IETF Secretariat and any   assurances of licenses to be made available, or the result of an   attempt made to obtain a general license or permission for the use of   such proprietary rights by implementers or users of this   specification can be obtained from the IETF on-line IPR repository athttp://www.ietf.org/ipr.   The IETF invites any interested party to bring to its attention any   copyrights, patents or patent applications, or other proprietary   rights that may cover technology that may be required to implement   this standard.  Please address the information to the IETF at   ietf-ipr@ietf.org.Futemma, et al.             Standards Track                    [Page 31]

[8]ページ先頭

©2009-2025 Movatter.jp