Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Info page]

PROPOSED STANDARD
Network Working Group                                         V. GurbaniRequest for Comments:  4904            Bell Laboratories, Alcatel-LucentCategory: Standards Track                                    C. Jennings                                                           Cisco Systems                                                               June 2007Representing Trunk Groups in tel/sipUniform Resource Identifiers (URIs)Status of This Memo   This document specifies an Internet standards track protocol for the   Internet community, and requests discussion and suggestions for   improvements.  Please refer to the current edition of the "Internet   Official Protocol Standards" (STD 1) for the standardization state   and status of this protocol.  Distribution of this memo is unlimited.Copyright Notice   Copyright (C) The IETF Trust (2007).Abstract   This document describes a standardized mechanism to convey trunk   group parameters in sip and tel Uniform Resource Identifiers (URIs).   An extension to the tel URI is defined for this purpose.Gurbani & Jennings          Standards Track                     [Page 1]

RFC 4904              Trunk Groups in tel/sip URIs             June 2007Table of Contents1.  Background . . . . . . . . . . . . . . . . . . . . . . . . . .32.  Problem Statement  . . . . . . . . . . . . . . . . . . . . . .43.  Conventions  . . . . . . . . . . . . . . . . . . . . . . . . .54.  Requirements and Rationale . . . . . . . . . . . . . . . . . .54.1.  sip URI or tel URI?  . . . . . . . . . . . . . . . . . . .54.2.  Trunk Group Namespace: Global or Local?  . . . . . . . . .54.3.  Originating Trunk Group and Terminating Trunk Group  . . .64.4.  Intermediary Processing of Trunk Groups  . . . . . . . . .65.  Trunk Group Identifier: ABNF and Examples  . . . . . . . . . .66.  Normative Behavior of SIP Entities Using Trunk Groups  . . . .86.1.  User Agent Client Behavior . . . . . . . . . . . . . . . .96.2.  User Agent Server Behavior . . . . . . . . . . . . . . . .106.3.  Proxy Behavior . . . . . . . . . . . . . . . . . . . . . .107.  Example Call Flows . . . . . . . . . . . . . . . . . . . . . .117.1.  Reference Architecture . . . . . . . . . . . . . . . . . .117.2.  Basic Call Flow  . . . . . . . . . . . . . . . . . . . . .127.3.  Inter-Domain Call Flow . . . . . . . . . . . . . . . . . .148.  Security Considerations  . . . . . . . . . . . . . . . . . . .159.  IANA considerations  . . . . . . . . . . . . . . . . . . . . .1610. Acknowledgments  . . . . . . . . . . . . . . . . . . . . . . .1611. References . . . . . . . . . . . . . . . . . . . . . . . . . .1711.1. Normative References . . . . . . . . . . . . . . . . . . .1711.2. Informative References . . . . . . . . . . . . . . . . . .17Gurbani & Jennings          Standards Track                     [Page 2]

RFC 4904              Trunk Groups in tel/sip URIs             June 20071.  Background   Call routing in the Public Switched Telephone Network (PSTN) is   accomplished by routing calls over specific circuits (commonly   referred to as "trunks") between Time Division Multiplexed (TDM)   circuit switches.  In switches, a group of trunks that connect to the   same target switch or network is called a "trunk group".   Consequently, trunk groups have labels, which are used as the main   indication for the previous and next TDM switch participating in   routing the call.   Formally, we define a trunk and trunk group and related terminology   as follows (definition of "trunk" and "trunk group" is from [5]).      Trunk:  In a network, a communication path connecting two      switching systems used in the establishment of an end-to-end      connection.  In selected applications, it may have both its      terminations in the same switching system.      Trunk Group:  A set of trunks, traffic engineered as a unit, for      the establishment of connections within or between switching      systems in which all of the paths are interchangeable.  A single      trunk group can be shared across multiple switches for redundancy      purposes.      Digital Signal 0 (DS0):  Digital Signal X is a term for a series      of standard digital transmission rates based on DS0, a      transmission rate of 64 kbps (the bandwidth normally used for one      telephone voice channel).  The European E-carrier system of      transmission also operates using the DS series as a base multiple.   Since the introduction of ubiquitous digital trunking, which resulted   in the allocation of DS0s between end offices in minimum groups of 24   (in North America), it has become common to refer to bundles of DS0s   as a trunk.  Strictly speaking, however, a trunk is a single DS0   between two PSTN end offices; however, for the purposes of this   document, the PSTN interface of a gateway acts effectively as an end   office (i.e., if the gateway interfaces with Signaling System 7   (SS7), it has its own SS7 point code, and so on).  A trunk group,   then, is a bundle of DS0s (that need not be numerically contiguous in   an SS7 Trunk Circuit Identification Code numbering scheme) that are   grouped under a common administrative policy for routing.   A Session Initiation Protocol (SIP) [3] to PSTN gateway may have   trunks that are connected to different carriers.  It is entirely   reasonable for a SIP proxy to choose -- based on factors not   enumerated in this document -- which carrier a call is sent to when   it proxies a session setup request to the gateway.  Since multipleGurbani & Jennings          Standards Track                     [Page 3]

RFC 4904              Trunk Groups in tel/sip URIs             June 2007   carriers can transport a call to a particular phone number, the phone   number itself is not sufficient to identify the carrier at the   gateway.  An additional piece of information in the form of a trunk   group can be used to further pare down the choices at the gateway.   As used in this document, trunks are necessarily tied to gateways,   and a proxy that uses trunk groups during routing of the request to a   particular gateway knows and controls which gateway the call will be   routed to, and knows what trunking resources are present on that   gateway.   As another example, consider the case where an IP network is being   used as a transit network between two PSTN networks.  Here, a SIP   proxy can apply the originating trunk group to its routing logic to   ensure that the same ingress and egress carrier is chosen.   How the proxy picked a particular trunk group is outside the scope of   this document ([6] provides one such way); however, once trunk group   has been decided upon, this document provides a standardized means to   represent it in the signaling messages.2.  Problem Statement   Currently, there isn't any standardized manner of transporting trunk   groups between Internet signaling entities.  This leads to ambiguity   on at least two fronts:   1.  Positional ambiguity:  A SIP proxy that wants to send a call to       an egress Voice over IP (VoIP) gateway may insert the trunk group       as a parameter in the user portion of the Request-URI (R-URI), or       it may insert it as a parameter to the R-URI itself.  This       ambiguity persists in the reverse direction as well, that is,       when an ingress VoIP gateway wants to send an incoming call       notification to its default outbound proxy.   2.  Semantic ambiguity:  The lack of any standardized grammar to       represent trunk groups leads to the unfortunate choice of ad hoc       names and values.   VoIP routing entities in the Internet, such as SIP proxies, may be   interested in using trunk groups for normal operations.  To that   extent, any standards-driven requirements will enable proxies from   one vendor to interoperate with gateways from yet another vendor.   Absent such guidelines, interoperability will suffer, as a proxy   vendor must conform to the expectations of a gateway as to where it   expects trunk group parameters to be present (and vice versa).Gurbani & Jennings          Standards Track                     [Page 4]

RFC 4904              Trunk Groups in tel/sip URIs             June 2007   The aim of this specification is to outline how to structure and   represent the trunk group parameters as an extension to the tel URI   [4] in a standardized manner.3.  Conventions   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this   document are to be interpreted as described inRFC 2119 [1].4.  Requirements and Rationale   This section captures the motivations for the design decisions for   the specification of a trunk group.  These motivations are captured   as a set of requirements that are used to guide the eventual trunk   group specification in this document.4.1.  sip URI or tel URI?   REQ 1:  Trunk group parameters must be defined as an extension to the   tel URI [4].   The trunk group parameters can be carried in either the sip URI or   the tel URI.  Since trunk groups are intimately associated with the   PSTN, it seems reasonable to define them as extensions to the tel URI   (any SIP request that goes to a gateway could reasonably be expected   to have a tel URI, in whole or in part, in its R-URI anyway).   Furthermore, using the tel URI also allows this format to be reused   by non-SIP VoIP protocols (which could include anything from MGCP or   Megaco to H.323, if the proper information elements are created).   Finally, once the trunk group is defined for a tel URI, the normative   procedures of Section 19.1.6 of [3] can be used to derive an   equivalent sip URI from a tel URI, complete with the trunk group   parameters.4.2.  Trunk Group Namespace: Global or Local?   REQ 2:  Inter-domain trunk group name collisions must be prevented.   Under normal operations, trunk groups are pertinent only within an   administrative domain (i.e., local scope).  However, given that   inadvertent cross-domain trunk group name collisions may occur, it is   desirable to prevent them.  The judicious use of namespaces is a   solution to this problem.  Thus, it seems appropriate to scope the   trunk group through a namespace.Gurbani & Jennings          Standards Track                     [Page 5]

RFC 4904              Trunk Groups in tel/sip URIs             June 2007      Note:  At first glance, it would appear that the use of the tel      URI's "phone-context" parameter provides a satisfactory means of      imposing a namespace on a trunk group.  The "phone-context"      parameter identifies the scope of validity of a local telephone      number.  And therein lies the problem.  Semantically, a "phone-      context" tel URI parameter is applicable only to a local telephone      number and not a global one (i.e., one preceded by a '+').  Trunk      groups, on the other hand, may appear in local or global telephone      numbers.  Thus, what is needed is a new parameter with equivalent      functionality of the "phone-context" parameter of the tel URI, but      one that is equally applicable to local and global telephone      numbers.4.3.  Originating Trunk Group and Terminating Trunk Group   REQ 3:  Originating trunk group and destination trunk group must be   able to appear separately and concurrently in a SIP message.   SIP routing entities can make informed routing decisions based on   either the originating or the terminating trunk groups.  Thus, it is   required that both of these trunk groups be carried in SIP requests.4.4.  Intermediary Processing of Trunk Groups   REQ 4:  SIP network intermediaries (proxy servers and redirect   servers) should be able to add the destination trunk group attribute   to SIP sessions as a route is selected for a call.5.   Trunk Group Identifier: ABNF and Examples   The Augmented Backus Naur Form [2] syntax for a trunk group   identifier is given below and extends the "par" production rule of   the tel URI defined in [4]:    par = parameter / extension / isdn-subaddress / trunk-group /          trunk-context    trunk-group = ";tgrp=" trunk-group-label    trunk-context = ";trunk-context=" descriptor    trunk-group-label = 1*( unreserved / escaped /                            trunk-group-unreserved )    trunk-group-unreserved = "/" / "&" / "+" / "$"      descriptor is defined in [4].      unreserved is defined in [3] and [4].      escaped is defined in [3].Gurbani & Jennings          Standards Track                     [Page 6]

RFC 4904              Trunk Groups in tel/sip URIs             June 2007   Trunk groups are identified by two parameters:  "tgrp" and "trunk-   context"; both parameters MUST be present in a tel URI to identify a   trunk group.  Collectively, these two parameters are called "trunk   group parameters" in this specification.   All implementations conforming to this specification MUST generate   both of these parameters when using trunk groups.  If an   implementation receives a tel URI with only one of the "tgrp" or   "trunk-context" parameter, it MUST act as if there were not any trunk   group parameters present at all in that URI.  Whether or not to   further process such an URI is up to the discretion of the   implementation; however, if a decision is made to process it, the   implementation MUST act as if there were not any trunk group   parameters present in the URI.   The "trunk-context" parameter imposes a namespace on the trunk group   by specifying a global number or any number of its leading digits   (e.g., +33), or a domain name.  Syntactically, it is modeled after   the "phone-context" parameter of the tel URI [4], except that unlike   the "phone-context" parameter, the "trunk-context" parameter can   appear in either a local or global tel URI.   Semantically, the "trunk-context" parameter establishes a scope of   the trunk group specified in the "tgrp" parameter, i.e., whether it   is valid at a single gateway, a set of gateways, or an entire domain   managed by a service provider.  The "trunk-context" can contain four   discrete value types:   1.  The value in the "trunk-context" literally identifies a host (a       gateway), in which case, the trunk groups are scoped to the       specific host.   2.  The value in the "trunk-context" is a subdomain (e.g.,       "north.example.com"), which identifies a subset of the gateways       in a domain across which the trunk groups are shared.   3.  The value in the "trunk-context" is a service provider domain       (e.g., "example.com"), which identifies all gateways in the       specific domain.   4.  The value in the "trunk-context" is a global number or any number       of its leading digits; this is useful for provider-wide scoping       and does not lend itself very well to specifying trunk groups       across a gateway or a set of gateways.Gurbani & Jennings          Standards Track                     [Page 7]

RFC 4904              Trunk Groups in tel/sip URIs             June 2007   For equivalency purposes, two URIs containing trunk group parameters   are equivalent according to the base comparison rules of the URIs.   The base comparison rules of a tel URI are specified in Section 4 of   [4], and the base comparison rules of a sip URI are specified in   Section 19.1.4 of [3].   Examples:     1.  Trunk group in a local number, with a phone-context parameter         (line breaks added for readability):     tel:5550100;phone-context=+1-630;tgrp=TG-1;       trunk-context=example.com     Transforming this tel URI to a sip URI yields:     sip:5550100;phone-context=+1-630;tgrp=TG-1;       trunk-context=example.com@isp.example.net;user=phone     2.  Trunk group in a global number, with a domain name         trunk-context:     tel:+16305550100;tgrp=TG-1;trunk-context=example.com     Transforming this tel URI to a sip URI yields:     sip:+16305550100;tgrp=TG-1;       trunk-context=example.com@isp.example.net;user=phone     3.  Trunk group in a global number, with a number prefix trunk-         context:     tel:+16305550100;tgrp=TG-1;trunk-context=+1-630     Transforming this tel URI to a sip URI yields:     sip:+16305550100;tgrp=TG-1;       trunk-context=+1-630@isp.example.net;user=phone6.  Normative Behavior of SIP Entities Using Trunk Groups   The terminating (or egress) trunk group parameters MUST be specified   in the R-URI.  This is an indication from a SIP entity to the next   downstream entity that a specific terminating (or egress) trunk group   should be used.Gurbani & Jennings          Standards Track                     [Page 8]

RFC 4904              Trunk Groups in tel/sip URIs             June 2007      Note:  This is consistent with using the R-URI as a routing      element; SIP routing entities may use the trunk group parameter in      the R-URI to make intelligent routing decisions.  Furthermore,      this also satisfies REQ 4, since a SIP network intermediary can      modify the R-URI to include the trunk group parameters.   Conversely, the appearance of the trunk group parameters in the   Contact header URI signifies the trunk group over which the call   arrived on, i.e., the originating (or ingress) trunk group.  Thus,   the originating (or ingress) trunk group MUST appear in the Contact   header of a SIP request.   The behavior described in this section effectively addresses REQ 3.6.1.  User Agent Client Behavior   A User Agent Client (UAC) initiating a call that uses trunk groups   and supports this specification MUST include the trunk group   parameters in the Contact header URI (a Contact URI MUST be a sip or   sips URI; thus, what appears in the Contact header is a SIP   translation of the tel URI, complete with the trunk group   parameters).  The trunk group parameters in the Contact header   represent the originating trunk group.  As a consequence of the   processing rules for the Contact header defined inRFC 3261 [3],   subsequent requests in the dialog towards this user agent will   contain this Contact URI in the R-URI.  Note that the user part of   this URI, which contains the trunk group parameters, will be copied   as a consequence of this processing.      Note:  Arguably, the originating trunk group can be part of the      From URI.  However, semantically, the URI in a From header is an      abstract identifier that represents the resource thus identified      on a long-term basis.  The presence of a trunk group, on the other      hand, signifies a binding that is valid for the duration of the      session only; a trunk group has no significance once the session      is over.  Thus, the Contact URI is the best place to impart this      information since it has exactly those semantics.   If the UAC is aware of the routing topology, it MAY insert the   destination trunk group parameters in the R-URI of the request.   However, in most deployments, the UAC will use the services of a   proxy to further route the request, and it will be up to the proxy to   insert such parameters in the R-URI (seeSection 6.3).Gurbani & Jennings          Standards Track                     [Page 9]

RFC 4904              Trunk Groups in tel/sip URIs             June 20076.2.  User Agent Server Behavior   To the processing User Agent Server (UAS) associated with a gateway,   the trunk group parameters in the R-URI implies that it should use   the named trunk group for the outbound call.  If a UAS supports trunk   groups, but finds that all the trunk circuit identification codes for   that particular trunk group are occupied, it MAY send a 603 Decline   final response.   If a UAS supports trunk groups but is not configured with the   particular trunk group identified in the R-URI, it SHOULD NOT use any   other trunk group other than the one specified in the parameters.  In   such a case, it MAY reject the request with a 404 final response; or   if it makes a decision to process the request in any case, it MUST   disregard the values in the "trunk-context" and the "tgrp"   parameters.   If the receiver of a SIP request is not authoritatively responsible   for the value specified in the "trunk-context", it MUST treat the   value in the "tgrp" parameter as if it were not there.  Whether or   not to process the request further is up to the discretion of the   processing entity; the request MAY be rejected with a 404 final   response.  Alternatively, if a decision is made to process the   request further, the processing entity MUST disregard the values in   the "trunk-context" and the "tgrp" parameters since it is not   authoritatively responsible for the value specified in "trunk-   context".6.3.  Proxy Behavior   A proxy server receiving a request that contains the trunk group   parameter in the Contact header SHOULD NOT change these parameters as   the request traverses through it.  Changing these parameters may have   adverse consequences, since the UAC that populated the parameters did   so on some authoritative knowledge that the proxy may not be privy   to.  Instead, the proxy SHOULD pass the trunk group parameters in the   Contact header unchanged to the client transaction that the proxy   creates to send the request downstream.   A proxy that is aware of the routing topology and supports this   specification MAY insert destination trunk group parameters in the   R-URI if none are present (see Sections7.1 and7.2 for an example).   However, if destination trunk group parameters are already present in   the R-URI, the proxy SHOULD NOT change them unless it has further   authoritative information about the routing topology than the   upstream client did when it originally inserted the trunk group   parameters in the R-URI.Gurbani & Jennings          Standards Track                    [Page 10]

RFC 4904              Trunk Groups in tel/sip URIs             June 2007      Depending on the specific situation, it is perfectly reasonable      for a proxy not to insert the destination trunk group parameters      in the R-URI.  Consider, for instance, a proxy that understands      the originating trunk group parameters and, in accordance with      local policy, uses these to route the request to a destination      other than a PSTN gateway.7.  Example Call Flows7.1.  Reference Architecture   Consider Figure 1, which depicts a SIP proxy in a routing   relationship with three gateways in its domain, GW1, GW2, and GW3.   Requests arrive at the SIP proxy through GW1.  Gateways GW2 and GW3   are used as egress gateways from the domain.  GW2 has two trunk   groups configured, TG2-1 and TG2-2.  GW3 also has two trunk groups   configured, TG3-1 and TG2-2 (TG2-2 is shared between gateways GW2 and   GW3).                                              +-----+ TG2-1                                              |     |-------->  To        TG1-1  +-----+    +-------+     +---->| GW2 | TG2-2     PSTN   From  ----->|     |    | SIP   |     |     |     |-------->   PSTN        | GW1 |--->| Proxy |-----+     +-----+         ----->|     |    +-------+     |     +-----+ TG3-1               +-----+                  |     |     |-------->  To                                        +---->| GW3 | TG2-2     PSTN                                              |     |-------->                                              +-----+                          Reference Architecture   GW1 in Figure 1 is always cognizant of any requests that arrive over   trunk group TG1-1.  If it wishes to propagate the ingress trunk group   to the proxy, it must arrange for the trunk group to appear in the   Contact header of the SIP request destined to the proxy.  The proxy   will, in turn, propagate the ingress trunk group in the Contact   header further downstream.   The proxy uses GW2 and GW3 as egress gateways to the PSTN.  It is   assumed that the proxy has access to a routing table for GW2 and GW3   that includes the appropriate trunk groups to use when sending a call   to the PSTN (exactly how this table is constructed is out of scope   for this specification; [6] is one way to do so, a manually created   and maintained routing table is another).  When the proxy sends a   request to either of the egress gateways, and the gateway routingGurbani & Jennings          Standards Track                    [Page 11]

RFC 4904              Trunk Groups in tel/sip URIs             June 2007   table is so configured that a trunk group is required by the gateway,   the proxy must arrange for the trunk group to appear in the SIP R-URI   of the request destined to that gateway.7.2.  Basic Call Flow   This example uses the reference architecture of Figure 1.  Gateways   GW1, GW2, and GW3, and the SIP proxy are assumed to be owned by a   service provider whose domain is example.com.         GW1           SIP Proxy           GW2   From   |               |                 |   PSTN-->|               |                 |          +---F1--------->|                 |          |               +---F2----------->|         ...             ...               ...          |               |                 |     Send to PSTN          |               |                 | --> and receive Answer          |               |                 |     Complete Message         -----------------------------------------         Call in progress         -----------------------------------------          |               |                 |          |               |<-----------F3---+          +<--------------+                 |         ...             ...               ...                              Basic Call Flow   In the call flow below, certain headers and messages have been   omitted for brevity.  In F1, GW1 receives a call setup request from   the PSTN over a certain trunk group.  GW1 arranges for this trunk   group to appear in the Contact header of the request destined to the   SIP proxy.   F1:   INVITE sip:+16305550100@example.com;user=phone SIP/2.0   ...   Contact: <sip:0100;phone-context=example.com;tgrp=TG1-1;      trunk-context=example.com@gw1.example.com;user=phone>   ...   In F2, the SIP proxy translates the R-URI and adds a destination   trunk group to the R-URI.  The request is then sent to GW2.Gurbani & Jennings          Standards Track                    [Page 12]

RFC 4904              Trunk Groups in tel/sip URIs             June 2007   F2:   INVITE sip:+16305550100;tgrp=TG2-1;     trunk-context=example.com@gw2.example.com;user=phone SIP/2.0   ...   Record-Route: <sip:proxy.example.com;lr>   Contact: <sip:0100;phone-context=example.com;tgrp=TG1-1;      trunk-context=example.com@gw1.example.com;user=phone>   ...   Once the call is established, either end can tear the call down.  For   illustrative purposes, F3 depicts GW2 tearing the call down.  Note   that the Contact from F1, including the trunk group parameters, is   now the R-URI of the request.  When GW1 gets this request, it can   associate the call with the appropriate trunk group to deallocate   resources.   F3:   BYE sip:0100;phone-context=example.com;tgrp=TG1-1;     trunk-context=example.com@gw1.example.com;user=phone SIP/2.0   Route: <sip:proxy.example.com;lr>   ...   It is worth documenting the behavior when an incoming call from the   PSTN is received at a gateway without a calling party number.   Consider Figure 1, and assume that GW1 gets a call request from the   PSTN without a calling party number.  This is not an uncommon case,   and may happen for a variety of reasons, including privacy and   interworking between different signaling protocols before the request   reached GW1.  Under normal circumstances (i.e., instances where the   calling party number is present in signaling), GW1 would derive a sip   URI to insert into the Contact header.  This sip URI will contain, as   its user portion, the calling party number from the incoming SS7   signaling information.  The trunk group parameters then becomes part   of the user portion as discussed previously.   If a gateway receives an incoming call where the calling party number   is not available, it MUST create a tel URI containing a token that is   generated locally and has local significance to the gateway.  Details   of generating such a token are implementation dependent; potential   candidates include the gateway line number or port number where the   call was accepted.  This tel URI is subsequently converted to a sip   URI to be inserted in the Contact header of the SIP request going   downstream from the gateway.Gurbani & Jennings          Standards Track                    [Page 13]

RFC 4904              Trunk Groups in tel/sip URIs             June 2007      Note:  The tel scheme does not allow for an empty URI; thus, the      global-number or local-number production rule of the tel URI [4]      cannot contain an empty string.  Consequently, the behavior in the      above paragraph is mandated for cases where the incoming SS7      signaling message does not contain a calling party number.7.3.  Inter-Domain Call Flow   This example demonstrates the advantage of namespaces in trunk   groups.  In the example flow below, GW1 and SIP Proxy 1 belong to the   example.com domain, and SIP Proxy 2 belongs to another domain,   example.net.  A call arrives at GW1 (F1) and is routed to the   example.net domain.  In the call flow below, certain headers and   messages have been omitted for brevity.              example.com             example.net       /-------------------------\   /-----------\         GW1          SIP Proxy 1     SIP Proxy 2   From   |               |                 |   PSTN-->|               |                 |          +---F1--------->|                 |          |               +---F2----------->|          |               |                 |         ...             ...               ...          |               +<--F3------------+         ...             ...               ...                          Inter-Domain Call Flow   F1:   INVITE sip:+16305550100@example.com;user=phone SIP/2.0   ...   Contact: <sip:0100;phone-context=example.com;tgrp=TG1-1;      trunk-context=example.com@gw1.example.com;user=phone>   ...   In F2, the SIP proxy executes its routing logic and re-targets the   R-URI to refer to a resource in example.net domain.   F2:   INVITE sip:+16305550100@example.net;user=phone SIP/2.0   ...   Record-Route: <sip:proxy.example.com;lr>   Contact: <sip:0100;phone-context=example.com;tgrp=TG1-1;      trunk-context=example.com@gw1.example.com;user=phone>   ...Gurbani & Jennings          Standards Track                    [Page 14]

RFC 4904              Trunk Groups in tel/sip URIs             June 2007   In F3, the example.net domain sends a request in the backwards   direction.  The example.net domain does not interpret the trunk group   parameters in the Contact header since they do not belong to that   domain.  The Contact header, including the trunk group parameters, is   simply used as the R-URI in a subsequent request going towards the   example.com domain.   F3:   BYE sip:0100;phone-context=example.com;tgrp=TG1-1;      trunk-context=example.com@gw1.example.com;user=phone   Route: <sip:proxy.example.com;lr>   ...8.  Security Considerations   The trunk group parameters are carried in R-URIs and Contact headers;   they are simply a modifier of an address.  Any existing trust   relationship between the originator of a request and an intermediary   (or final recipient) that processes the request is not affected by   such a modifier.   Maliciously modifying a trunk group of a R-URI in transit may cause   the receiving entity (say, a gateway) to prefer one trunk over   another, thus leading to attacks that use resources not privy to the   call.  For example, an attacker who knows the name of a toll-free   trunk on a gateway may modify the trunk group in the R-URI to   effectively receive free service, or he may modify the trunk group in   a R-URI to affect the flow of traffic across trunks.  Similarly,   modifying the trunk group in a Contact header may cause the routing   intermediary to erroneously associate a call with a different source   than it would normally be associated with.   Although this specification imparts more information to the R-URI and   the Contact header in the form of trunk groups, the class of attacks   and possible protection mechanism are the same as that specified for   baseline SIP systems [3].  The Security Session Initiation Protocol   Secure (SIPS) scheme and the resulting Transport Layer Security (TLS)   mechanism SHOULD be used to provide integrity protection, thereby   mitigating these attacks.   A question naturally arises:  how does the receiver determine whether   the sender is authorized to use the resources represented by the   trunk group parameters?  There are two cases to consider:  intra-   domain signaling exchange as discussed inSection 7.2, and inter-   domain signaling exchange as discussed inSection 7.3.Gurbani & Jennings          Standards Track                    [Page 15]

RFC 4904              Trunk Groups in tel/sip URIs             June 2007   In the intra-domain case, a proxy receiving trunk group parameters   from an upstream user agent (typically a gateway) should only accept   them using the SIPS URI scheme; furthermore, it should use HTTP   Digest to challenge and properly authorize the sender.  A user agent   (or a gateway) receiving the trunk group parameters from a proxy will   not be able to challenge the proxy using HTTP Digest, but it should   examine the X.509 certificate of the proxy to determine whether the   proxy is authorized to insert the resources represented by the trunk   group parameters into the signaling flow.   In the inter-domain case, a receiving proxy may depend on the   identity stored in the X.509 certificate of the sending proxy to   determine whether the sender is authorized to insert the resources   represented by the trunk group parameters in the signaling message.   Because of these considerations, the trunk group parameters are only   applicable within a set of network nodes among which there is mutual   trust.  If a node receives a call signaling request from an upstream   node that it does not trust, it SHOULD remove the trunk group   parameters.   The privacy information revealed with a trunk group does not   generally advertise much information about a particular (human) user.   It does, however, convey two pieces of potentially private   information that may be considered sensitive by carriers.  First, it   may reveal how a carrier may be performing least-cost routing and   peering; and secondly, it does introduce an additional means for   network topology and information of a carrier.  It is up to the   discretionary judgment of the carrier if it wants to include the   trunk group parameters and reveal potentially sensitive information   on its network topology.  If confidentiality is desired, TLS SHOULD   be used to protect this information while in transit.9.  IANA considerations   This specification does not require any IANA considerations.   The tel URI parameters introduced in this document are registered   with IANA through the tel URI parameter registry document [7].10.  Acknowledgments   The authors would like to acknowledge the efforts of the participants   of the SIPPING and IPTEL working group, especially Jeroen van Bemmel,   Bryan Byerly, John Hearty, Alan Johnston, Shan Lu, Rohan Mahy, Jon   Peterson, Mike Pierce, Adam Roach, Brian Rosen, Jonathan Rosenberg,   Dave Oran, Takuya Sawada, Tom Taylor, and Al Varney.Gurbani & Jennings          Standards Track                    [Page 16]

RFC 4904              Trunk Groups in tel/sip URIs             June 2007   Jon Peterson was also instrumental in the original formulation of   this work.   Alex Mayrhofer brought up the issue of lexicographic ordering of tel   URI parameters when it is converted to a sip or sips URI.   Ted Hardie, Sam Hartman, and Russ Housley took pains to ensure that   the text around URI comparisons and security considerations was as   unambiguous as possible.11.  References11.1.  Normative References   [1]  Bradner, S., "Key words for use in RFCs to Indicate Requirement        Levels",BCP 14,RFC 2119, March 1997.   [2]  Crocker, D. and P. Overell, "Augmented BNF for Syntax        Specifications: ABNF",RFC 4234, October 2005.   [3]  Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,        Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:        Session Initiation Protocol",RFC 3261, June 2002.   [4]  Schulzrinne, H., "The tel URI for Telephone Calls",RFC 3966,        December 2004.11.2.  Informative References   [5]  "Telcordia Notes on the Network", Telcordia SR-2275, Issue 04,        October 2000, <http://telecom-info.telcordia.com>.   [6]  Bangalore, M., Kumar, R., Rosenberg, J., Salama, H., and D.        Shah, "A Telephony Gateway REgistration Protocol (TGREP)", Work        in Progress, January 2007.   [7]  Jennings, C. and V. Gurbani, "The Internet Assigned Number        Authority (IANA) tel Uniform Resource Identifier (URI) Parameter        Registry", Work in Progress, December 2006.Gurbani & Jennings          Standards Track                    [Page 17]

RFC 4904              Trunk Groups in tel/sip URIs             June 2007Authors' Addresses   Vijay K. Gurbani   Bell Laboratories, Alcatel-Lucent   2701 Lucent Lane   Rm 9F-546   Lisle, IL  60532   USA   Phone:  +1 630 224 0216   EMail:  vkg@alcatel-lucent.com   Cullen Jennings   Cisco Systems   170 West Tasman Drive   Mailstop SJC-21/3   San Jose, CA  95134   USA   Phone:  +1 408 421 9990   EMail:  fluffy@cisco.comGurbani & Jennings          Standards Track                    [Page 18]

RFC 4904              Trunk Groups in tel/sip URIs             June 2007Full Copyright Statement   Copyright (C) The IETF Trust (2007).   This document is subject to the rights, licenses and restrictions   contained inBCP 78, and except as set forth therein, the authors   retain all their rights.   This document and the information contained herein are provided on an   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND   THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS   OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF   THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.Intellectual Property   The IETF takes no position regarding the validity or scope of any   Intellectual Property Rights or other rights that might be claimed to   pertain to the implementation or use of the technology described in   this document or the extent to which any license under such rights   might or might not be available; nor does it represent that it has   made any independent effort to identify any such rights.  Information   on the procedures with respect to rights in RFC documents can be   found inBCP 78 andBCP 79.   Copies of IPR disclosures made to the IETF Secretariat and any   assurances of licenses to be made available, or the result of an   attempt made to obtain a general license or permission for the use of   such proprietary rights by implementers or users of this   specification can be obtained from the IETF on-line IPR repository athttp://www.ietf.org/ipr.   The IETF invites any interested party to bring to its attention any   copyrights, patents or patent applications, or other proprietary   rights that may cover technology that may be required to implement   this standard.  Please address the information to the IETF at   ietf-ipr@ietf.org.Acknowledgement   Funding for the RFC Editor function is currently provided by the   Internet Society.Gurbani & Jennings          Standards Track                    [Page 19]

[8]ページ先頭

©2009-2025 Movatter.jp