Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Info page]

INFORMATIONAL
Network Working Group                                         P. ThubertRequest for Comments: 4887                                 Cisco SystemsCategory: Informational                                      R. Wakikawa                                                Keio University and WIDE                                                          V. Devarapalli                                                         Azaire Networks                                                               July 2007Network Mobility Home Network ModelsStatus of This Memo   This memo provides information for the Internet community.  It does   not specify an Internet standard of any kind.  Distribution of this   memo is unlimited.Copyright Notice   Copyright (C) The IETF Trust (2007).Abstract   This paper documents some of the usage patterns and the associated   issues when deploying a Home Network for Network Mobility (NEMO)-   enabled Mobile Routers, conforming to the NEMO Basic Support.  The   aim here is specifically to provide some examples of organization of   the Home Network, as they were discussed in NEMO-related mailing   lists.Thubert, et al.              Informational                      [Page 1]

RFC 4887          Home Network Models with NEMO Basic          July 2007Table of Contents1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .32.  Terminology and Concepts . . . . . . . . . . . . . . . . . . .43.  General Expectations . . . . . . . . . . . . . . . . . . . . .44.  MIP Home Network . . . . . . . . . . . . . . . . . . . . . . .55.  NEMO Extended Home Network . . . . . . . . . . . . . . . . . .55.1.  Configuration  . . . . . . . . . . . . . . . . . . . . . .55.2.  Returning Home . . . . . . . . . . . . . . . . . . . . . .65.3.  Home Address from MNP  . . . . . . . . . . . . . . . . . .75.4.  Deployment Caveats . . . . . . . . . . . . . . . . . . . .85.4.1.  Mobile Router Side . . . . . . . . . . . . . . . . . .85.5.  Applicability  . . . . . . . . . . . . . . . . . . . . . .86.  NEMO Aggregated Home Network . . . . . . . . . . . . . . . . .86.1.  Configuration  . . . . . . . . . . . . . . . . . . . . . .86.2.  Returning Home . . . . . . . . . . . . . . . . . . . . . .96.2.1.  Returning Home with the Egress Interface . . . . . . .106.2.2.  Returning Home with the Ingress Interface  . . . . . .106.3.  Applicability  . . . . . . . . . . . . . . . . . . . . . .116.4.  Deployment Caveats . . . . . . . . . . . . . . . . . . . .116.4.1.  Home Agent Side  . . . . . . . . . . . . . . . . . . .116.4.2.  Mobile Router Side . . . . . . . . . . . . . . . . . .117.  NEMO Virtual Home Network  . . . . . . . . . . . . . . . . . .127.1.  Configuration  . . . . . . . . . . . . . . . . . . . . . .127.2.  Applicability  . . . . . . . . . . . . . . . . . . . . . .148.  NEMO Mobile Home Network . . . . . . . . . . . . . . . . . . .148.1.  Configuration  . . . . . . . . . . . . . . . . . . . . . .148.2.  Applicability  . . . . . . . . . . . . . . . . . . . . . .179.  Security Considerations  . . . . . . . . . . . . . . . . . . .1710. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . .1711. References . . . . . . . . . . . . . . . . . . . . . . . . . .1711.1. Normative References . . . . . . . . . . . . . . . . . . .1711.2. Informative References . . . . . . . . . . . . . . . . . .18Thubert, et al.              Informational                      [Page 2]

RFC 4887          Home Network Models with NEMO Basic          July 20071.  Introduction   This document assumes that the reader is familiar with IPv6 Mobility   as defined by Mobile IPv6 and the Network Mobility (NEMO) Basic   Support.  In order to read this document properly, it is important to   realize that in NEMO, the Home Network can encompass much more than   the Home Link, as it spans the Home Link and all the Links that the   Mobile Routers (MRs) carry with them.  Exactly how the two concepts   relate in a given deployment depends on the organization of the Home   Network, as described below.   Five different organizations of the Home Network including a   hierarchical construction are documented:   MIPv6 Home Network:  A short reminder of what the Home Network is      with Mobile IP, in order to help the reader figure out the      evolution toward NEMO.   NEMO Extended Home Network:  In this arrangement, the Home Network is      only one subnet of a larger aggregation that encompasses the      Mobile Networks, called Extended Home Network.  When at home, a      Mobile Router performs normal routing between the Home Link and      the Mobile Networks.  More inSection 5.   NEMO Aggregated Home Network:  In this arrangement, the Home Network      actually overlaps with the Mobile Networks.  When at home, a      Mobile Router acts as a bridge between the Home Link and the      Mobile Networks.  More inSection 6.   Virtual Home Network:  In this arrangement, there is no physical Home      Link at all for the Mobile Routers to come back home to.  More inSection 7.   NEMO Mobile Home Network:  In this arrangement, there is a bitwise      hierarchy of Home Networks.  A global Home Network is advertised      to the infrastructure by a head Home Agent (HA) and further      subnetted into Mobile Networks.  Each subnet is owned by a Mobile      Router that registers it in a NEMO fashion while acting as a Home      Agent for that network.  More inSection 8.   In all cases, the Home Agents collectively advertise only the   aggregation of the Mobile Networks.  The subnetting is kept within   the Home Agents and the Mobile Routers, as opposed to advertised by   means of routing protocols to other parties.   The examples provided here aim at illustrating the NEMO Basic Support   [5] but do not aim at limiting its scope of application; additional   cases may be added in the future.Thubert, et al.              Informational                      [Page 3]

RFC 4887          Home Network Models with NEMO Basic          July 20072.  Terminology and Concepts   The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,   SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL in this document are to be   interpreted as described inRFC 2119 [2].   Most of the mobility-related terms used in this document are defined   in the Mobility Related Terminology document [3] and in the Mobile   IPv6 (MIP6) specification [4].   In addition, some terms were created or extended for NEMO.  These   specific terms are defined in the Mobile Network Terminology document   [6]:      Home Link      Home Network      Home Address      MRHA Tunnel      Mobile Aggregated Prefix      Aggregated Home Network      Extended Home Network      Virtual Home Network      Mobile Home Network3.  General Expectations   With Mobile IPv6, the Home Network is generally a physical network   interconnecting the Home Agents and the Mobile Nodes that are at   home.  NEMO extends the concept of home so that it is not only a flat   subnet composed of Home Addresses but an aggregation that is itself   subnetted in Mobile and Home Networks.  This aggregation is still   referred to as home.   As an example, consider the case where the aggregation has a global   routing prefix of m = 48 bits (A:B:C::/48), with a subnet ID size of   n = 16 bits (n + m = 64):Thubert, et al.              Informational                      [Page 4]

RFC 4887          Home Network Models with NEMO Basic          July 2007   When a Mobile Router, MR1, uses the Mobile Network Prefix (MNP) A:B:   C:1::/64 with the NEMO Basic Support, MR1 may register using a Home   Address from the Home network (i.e., A:B:C:0::1) or a Home Address   from one of its MNPs (i.e., A:B:C:1::1) depending on the deployment.   In a given deployment, one subnet may be reserved for the Home Link   (A:B:C:0::/64) while the others are attributed to Mobile Routers as   Mobile Networks (as A:B:C:1::/64 for MR1).  Another approach could be   to configure the aggregation of Mobile Networks as the subnet on the   Home Link, and let the Mobile Routers manage the overlapping   networks.  Finally, the aggregation could be configured on a virtual   network, with no physical Home Link at all, in which case home means   topologically and administratively close to the Home Agent that   advertises the virtual network.   The following sections provide additional information on these forms   of Home Network.4.  MIP Home Network   In the Mobile IPv6 (MIP6) specification [4], Mobile Nodes are at home   when they are connected to their Home Link, where they recognize   their Home Prefix in Router Advertisement messages.  Also, a binding   is checked using Duplicate Address Detection (DAD) on the Home Link,   and Home Agents discover each other by means of Neighbor Discovery   (ND) extensions over that link.   The Home Prefix that is advertized on the Home Link is a final   prefix, as opposed to an aggregation, and it may be used by hosts on   the Home Link for autoconfiguration purposes.   As we see, the concept of a Home Network for Mobile IPv6 is really a   prefix on a link, served by one or more Home Agents as opposed to a   routed mesh.  We will see in the next sections that NEMO needs   additional prefixes for use by the Mobile Networks.  For that reason,   NEMO extends the concept of Home Network into a more complex,   aggregated structure.5.  NEMO Extended Home Network5.1.  Configuration   One simple way of extending the MIP Home Network is to use additional   prefixes, contiguous to the Home Link Prefix inherited from MIPv6, as   Mobile Network Prefixes.  As this model trivially extends the MIP   Home Network, the resulting aggregation is called a NEMO Extended   Home Network.  It is depicted in Figure 1.Thubert, et al.              Informational                      [Page 5]

RFC 4887          Home Network Models with NEMO Basic          July 2007                        |              route     v  /48                        A:B:C::/48                        HA                        | /64         Home Link: A:B:C:0::/64             --+-----+--+- . -+- . -+--               |     |        |     |               MR1   MR2      MRi   MRN               |     |        |     |            ------  ------  ------ ------              /64   /64      /64   /64   MNP:  A:B:C:i::/64                             Extended Home Network           <----------------------------------------------------------->             Home Net      Mobile Net    Mobile Net   ...   Mobile Net           <------------><------------><------------> ... <------------>                      Figure 1: Extended Home Network   In that arrangement:   o  There is one physical Home Network and multiple Mobile Networks   o  The Home Prefix and the MNPs are tailored to allow for IPv6      Stateless Address Autoconfiguration with typical interface      identifier length for the type of interface (for example, can be      /64).   o  The prefix length of the Extended Home Network is shorter than      that of the Home Network and the MNPs, since it is an aggregation      (for example, can be /48).   o  Since the Extended Home Network operations inherit trivially from      MIPv6, it can be seen as natural that the Mobile Routers be      assigned their Home Addresses from the prefix on the Home Link.      In that case, a Home Agent can perform DAD on the Home Link as      prescribed by Mobile IPv6 for the Mobile Router Home Addresses      (MRHAs).5.2.  Returning Home   In the Extended Home Network model, the Home Network is configured on   a physical interface of the Home Agent, the Home Link.   A Mobile Router returns home by connecting directly to the Home Link,   and dropping the MRHA tunnel.Thubert, et al.              Informational                      [Page 6]

RFC 4887          Home Network Models with NEMO Basic          July 2007   When at home, the Mobile Router ensures the connectivity of the   Mobile Network using standard router operations.   In implicit mode, the Home Agent has the necessary information to   continue routing to the MNPs in the absence of registration, assuming   that the Mobile Router is at home, and the participation of the   Mobile Router to the home Interior Gateway Protocol (IGP) is not   required.   But in explicit mode, or if the Mobile Router uses an IGP over the   MRHA tunnel, then it needs to resume its IGP operations on the Home   Link in order to advertise its Mobile Networks to the HA, unless some   other means such as static routes are deployed to cover the case.   Alternative procedures for ensuring the connectivity of the Mobile   Networks when at home are described inSection 7.5.3.  Home Address from MNP   We saw that a natural extension of the MIP procedure is to derive the   Home Address of a Mobile Router from the prefix on the Home Link.   Alternatively, NEMO basic support allows that a Mobile Router forms   its Home Address from one of its Mobile Network Prefixes.   In that case, the Home Address does not match the Home Link Prefix,   and there is a need to configure the Home Agent in a specific mode   with the support for the Extended Home Network and the range of the   Mobile Network Prefixes.  Based on that new configuration, the Home   Agent can accept a Home Address that is not from the Home Link, and   it will know that it should not perform any DAD.   Also, if the Mobile Router uses a Home Address that is derived from   its MNP, some specific support is required on the Mobile Router as   well.  In order to determine that it is at home, the Mobile Router   recognizes the well-known prefix of its Home Agent as opposed to   matching the prefix on the Home Link with that of its Home Address.   When connecting to the Home Link, the Mobile Router also need to   autoconfigure an address on the Egress interface as opposed to   assigning its home Address to the interface.   For all these reasons, this submode of Extended Home Network is not a   trivial extension of the MIPv6 Home Model, and it might not be   compatible with all implementations.Thubert, et al.              Informational                      [Page 7]

RFC 4887          Home Network Models with NEMO Basic          July 20075.4.  Deployment Caveats5.4.1.  Mobile Router Side   In explicit mode, the routing to the MNP via the Mobile Router must   be restored when the Mobile Router is at home.  This is normally   performed by the Mobile Router by means of the existing IGP.  In that   case, a specific support is required on the Mobile Router to control   the routing protocol operation, enabling the participation in the IGP   if and only if the Mobile Router is at home.   The NEMO Basic Support does not mandate a specific routing protocol   though the support for some well-known routing protocols can be   expected from many implementations.  An implementation might provide   an automatic toggle to start/stop routing on an egress interface when   the mobile router comes back/leaves home.  When such a toggle is   unavailable, then a specific interface should be reserved to attach   to home with the appropriate settings for security and routing.5.5.  Applicability   The Extended Home Network keeps the MIP6 concept of a Home Network   for both Mobile Nodes and Mobile Routers to take their Home Address   from.  Since there is no overlap between the prefixes that are   assigned to MNPs and prefix(es) that are dedicated to the Home Link,   it is possible for MNs and Mobile Routers to coexist with that model.   Also, when the Home Address is derived from the prefix on the Home   Link, the Home Agent behavior on the link trivially extends that of   MIP and the support for that configuration should be available with   all implementations.   There are a number of issues with returning home when a Mobile Router   configures its Home Address from the MNP as described inSection 5.3.   Therefore, we do not recommend this mechanism if the Mobile Routers   attach to the Home Network.6.  NEMO Aggregated Home Network6.1.  Configuration   One other approach is to consider that the aggregation of all the   MNPs is used plainly as the Home Link Prefix.  In this model, the   Home Network is referred to as a NEMO Aggregated Home Network.  This   means that the Mobile Aggregated Prefix is configured on the Home   Link and advertised by the Home Agent as a subnet, as depicted in   Figure 2.Thubert, et al.              Informational                      [Page 8]

RFC 4887          Home Network Models with NEMO Basic          July 2007                    HA                     | /56                       Aggreg /56          --+-----+--+- . -+- . -+--            |     |        |     |           MR1   MR2      MRi   MRN            |     |        |     |        ------  ------  ------ ------            /64   /64     /64   /64         Aggreg|i /64  0 < i <= N                  Aggregated Home Network == Home Network        <----------------------------------------------------------->         Mobile Net    Mobile Net    Mobile Net    ...   Mobile Net        <------------><------------><------------> ... <------------>                     Figure 2: Aggregated Home Network   In that model, it seems natural to subnet the whole range of   addresses into Mobile Network prefixes, as opposed to reserving one   prefix for the Home Link, which would boil down to the Extended Home   Network model.  If the prefix on the Home Link is really an   aggregation and not a final prefix, it should not be allowed for   autoconfiguration or Home Address allocation.   Note that in that case, it makes sense for a Mobile Router to   register using a Home Address from one of its own MNPs.  Taking the   Home Address from its own range guarantees the uniqueness of the   suffix.  That uniqueness can be checked by the Mobile Router on its   Ingress network (see [3]) using DAD.6.2.  Returning Home   The Aggregated Home Prefix is configured on a physical interface of   the Home Agent, the Home Link.  As a consequence, the Home Agent has   a connected route to the Aggregated Home Network over the Home Link.   A Mobile Router returns home by connecting directly to the Home Link,   and dropping the MRHA tunnel.  The Mobile Router recognizes its Home   Link by a prefix match with its Home Agent.   When the Mobile Router forms its Home Address out of one of its MNPs,   since the Home Network prefix is an aggregation that encompasses all   the MNPs, the Home Address actually matches both prefixes.  To   properly identify the Home Network as it returns home, the MR must   expect a shorter prefix length than that of the MNP from which the   Home Address was formed.Thubert, et al.              Informational                      [Page 9]

RFC 4887          Home Network Models with NEMO Basic          July 20076.2.1.  Returning Home with the Egress Interface   A Mobile Router coming home via its Egress interface sees overlapping   prefixes between the Ingress and the Egress interfaces and some   specific support may be needed:   When a Mobile Router connects to the Home Link using its Egress   Interface, it might set up a bridge between its Ingress interface(s)   and the Home Link, if the interfaces are compatible.   Alternatively, the Mobile Router might perform ND proxying for all   addresses in its MNPs, between the Egress interface and the related   Ingress interface, as described in [8].  Since the prefixes on the   Egress and Ingress interfaces are overlapping, routing is disallowed.   The Mobile Router does not need to join the local IGP when returning   home, even if it is using the explicit Prefix Mode.  When the Mobile   Router is not registered, the Home Agent simply expects that all   Mobile Network Nodes (MNNs) will be reachable over the Home Link.                    HA                     |           -------+--+--- /56                  |           Egress |                 MR at home                  |                --+---  /64               Figure 3: Bridging between Egress and Ingress6.2.2.  Returning Home with the Ingress Interface   Alternatively, if the Mobile Router has a single Ingress interface,   the Mobile Router may use the NEMO-Link to connect to the Home Link,   merging the two links in a single consistent network.                    HA                    |           -------+-+---- /56                  |               ---+-- /64                  |                 MR at home           Egress |            Figure 4: Merging the Home and the Mobile NetworksThubert, et al.              Informational                     [Page 10]

RFC 4887          Home Network Models with NEMO Basic          July 2007   This fits the connected route model, since the Aggregated Home   Network is truly located on that network.  Note that in that case, it   makes sense for a Mobile Router to register using a Home Address from   one of its own MNPs.6.3.  Applicability   With this model, there is no specific space for independent nodes, as   any address in the aggregation belongs to a MNP, and thus to a Mobile   Router.  This configuration excludes the cohabitation with MIP6 MNs   on the Home Link.6.4.  Deployment Caveats6.4.1.  Home Agent Side   A node on the Home Link receiving a Router Advertisement that   includes the Aggregated Home Network prefix might use that prefix for   Address Autoconfiguration.  Such a node would also install a   connected route to the Aggregated Home Network over the Home Link.   As a result, unless the node has a better (longest match) route to a   given Mobile Network Prefix, it would look up all MNNs on that MNP   using Neighbor Discovery over its interface to the Home Link, and   fail.   Thus, on the Home Link, the Home Agent must intercept all the packets   for ALL the Mobile Network Nodes on the registered prefixes; that is,   for ALL nodes attached to Mobile Routers that are away from home.   This should be a layer 2 operation, rather than layer 3.  The Home   Agent might, for example, perform some form of ND proxying for all   addresses in all registered Mobile Network Prefixes.   The Home Agent must also protect the MNP space from autoconfiguration   by uncontrolled visitors at Neighbor Discovery level.   There is a need to provide a specific configuration on the Home Agent   to specify that it operates in Aggregated Mode.  If a Home Agent   implementation is simply derived from that of MIP, then the   capability to perform the required proxying might not exist, and the   Aggregated Mode will not operate properly for nodes on the Home Link.6.4.2.  Mobile Router Side   If the Mobile Router returns home by Egress, a specific support is   required to control the bridging operation depending on whether or   not a Mobile Router is at home.  This support might not be present in   all implementations.Thubert, et al.              Informational                     [Page 11]

RFC 4887          Home Network Models with NEMO Basic          July 2007   The NEMO Basic Support does not mention a specific behavior for   bridging though bridging capabilities can be expected from many   implementations.  An implementation might provide an automatic toggle   to start/stop bridging on an Egress interface when the Mobile Router   comes back/leaves home.  When such a toggle is unavailable, then a   specific interface should be reserved to attach to home with the   appropriate settings for security and bridging.   Also, note that NEMO authorizes multiple registrations for a same MNP   by different Mobile Routers.  This is a case of multihoming, and it   normally means that the Mobile Routers are interconnected by the   Ingress network that bears the common MNP.  But there is no provision   in NEMO Basic Support to test that this condition is met at binding   time and maintained over time.   It is thus possible for 2 different Mobile Routers to register the   same prefix with different Home Addresses, and this will cause an   undetected problem if the corresponding Ingress interfaces are not   connected.   When the Home Address of a Mobile Router is derived from its MNP,   there is thus an additional risk of an undetected misconfiguration if   the Home Address is autoconfigured from the Ingress interface as   opposed to statically assigning an address and MNP.   A Mobile Router that is at home must own an address from the   aggregation on its Egress interface and an address from its MNP -- a   subnet of that aggregation -- on its Ingress interface.  A pure   router will reject that configuration, and the Mobile Router needs to   act as a bridge to use it.  In order to deploy the Aggregated Home   Network model, one must check whether that support is available in   the Mobile Routers if returning home is required.7.  NEMO Virtual Home Network7.1.  Configuration   The Home Link can be configured on the Home Agent on a virtual link,   in which case there is no physical Home Link for Mobile Routers to   return home to, or for Home Agents to discover each other and perform   the ND-level interactions on, as described in Mobile IPv6 [4].Thubert, et al.              Informational                     [Page 12]

RFC 4887          Home Network Models with NEMO Basic          July 2007                    /48                       e.g.: A:B:C::/48                    HA                    | /64                         A:B:C::/64         --+-----+--+- . -+- . -+--           |     |        |     |           MR1   MR2      MRi   MRN           /64   /64      /64   /64            A:B:C:i::/64  0 < i <= N                      Figure 5: Virtual Home Network   The Extended Home Network and the Aggregated Home Network models can   be adapted for virtual links.   As in the case of a physical link, the Home Address of a Mobile   Router can be constructed based on a dedicated subnet of the Home   Prefix or one of the Mobile Router MNPs.   Note that since the Home Address is never checked for DAD, it makes   the configuration easier to take it from the MNP as opposed to a   specific subnet.   There are certain advantages to making the Home Link a virtual link:      A virtual link may not experience any disruption related to      physical maintenance or to hardware problems, so it is more      available than a physical link.  The high availability of the Home      Link is critical for the mobility service.      The Home Agent does not have to defend the Mobile Router's Home      Address through Proxy Neighbor Discovery.  The Home Agent does not      also have to perform Duplicate Address Detection (DAD) for the      Mobile Router's Home Address when it receives a Binding Update      from the Mobile Router.      The Mobile Router does not have to implement the Returning Home      procedure (Section 11.5.4 of Mobile IPv6 [4]).   There are also some drawbacks to the Virtual Home Link approach:RFC 3775 [4] andRFC 3963 [5] do not provide the specific support      for a Mobile Node to emulate returning home on a Virtual Home      Network.  In particular, in the case of NEMO, the routing      information from the Mobile Router being injected on the IGP might      adversely affect IPv6 route aggregation on the Home Network.      There can be only one Home Agent since Mobile IPv6 relies on      Neighbor Discovery on the Home Link for other Home Agent discovery      and for Duplicate Address Detection.Thubert, et al.              Informational                     [Page 13]

RFC 4887          Home Network Models with NEMO Basic          July 2007      The Home Agent must maintain a Binding Cache entry for a Mobile      Router and forwarding state for its Mobile Network even when the      Mobile Router is directly connected to it.  All traffic to and      from the Mobile Network is sent through the bi-directional tunnel      regardless of the Mobile Router location.  This results in a      tunneling overhead even though the Mobile Router is connected to      the Home Network.   Suggestions on how to perform an equivalent of returning home on a   Virtual Home Network have been proposed, but this topic is outside of   the scope of this document.7.2.  Applicability   NEMO operations rely on ND extensions over the Home Link for the Home   Agent to Home Agent communication.   Making the Home Link virtual bars the deployment of multiple Home   Agents, which may be desirable for reasons of load balancing.  Please   refer to the NEMO multihoming issues [9] for more on this.   Yet, for a deployment where a single Home Agent is enough, making the   Home Link virtual reduces the vulnerability to some attacks and to   some hardware failures, while making the Home Agent operation faster.   Note that NEMO basic does not mandate the support of Virtual Home   Networks.8.  NEMO Mobile Home Network8.1.  Configuration   In this arrangement, there is a bitwise hierarchy of Home Networks.   A global Home Network is advertised to the infrastructure by a head   Home Agent(s) and further subnetted into Mobile Networks.  As a   result, only the Home Agent(s) responsible for the most global   (shortest prefix) aggregation receive all the packets for all the   MNPs, which are leaves in the hierarchy tree.   Each subnet is owned by a Mobile Router that registers it in a NEMO   fashion while acting as a Home Agent for that network.  This Mobile   Router is at home at the upper level of hierarchy.  This   configuration is referred to as Mobile Home.   An example of this is the Cab Co configuration.  Cab Co is a taxi   company that uses a /32 prefix for its Home Network, this prefix   being advertised by the company headquarters (HQ).  Regional offices   are deployed around the country.  Even though these regional officesThubert, et al.              Informational                     [Page 14]

RFC 4887          Home Network Models with NEMO Basic          July 2007   are relatively stable in terms of location and prefix requirement --   say, this changes every few years -- making them mobile allows a   simpler management when a move has to take place, or should the ISP   service change.   To illustrate this configuration, we make up the prefixes to reflect   their role, like CAB:C0::/32 for the Home Network:         global Home Network   CAB:C0::/32  advertised by HQ    <------------------------------------------------------------------>      HQ Extended Home Net              Mobile Home for SFO office          (casa)      CAB:C0:CA5A::/48                          CAB:C0:5F0::/48    <----------------------------> ... <------------------------------->                                                       |      Home for offices        HQ                       |     CAB:C0:CA5A:CA5A::/64    MN                       |    <----------------------><---->                     |     CAB:C0:CA5A:CA5A::CA5A                            |     CAB:C0:CA5A:CA5A::CA5B                            |     are HAs on link with for each office a route like |                                                       |     CAB:C0:CA5A:CA5A::5F0    <---------------------- via       is the Home addr       of SFO office                  Figure 6:  CAB Company HQ Configuration   Finally, each regional office owns a number of taxis, each one   equipped with a mobile router and an associated /64 prefix.   For each Office, say San Francisco (SFO) as an example:Thubert, et al.              Informational                     [Page 15]

RFC 4887          Home Network Models with NEMO Basic          July 2007        Mobile Home Network CAB:C0:5F0::/48  owned by SFO office    <------------------------------------------------------------------>      SFO Home Network             Mobile Networks for taxis        for taxis        <---------------------...--------------------->     CAB:C0:5F0:5F0::/64  CAB:C0:5F0:CAB1::/64     CAB:C0:5F0:....::/64    <-------------------><-------------------> ... <------------------->     CAB:C0:5F0:5F0::5F0           |     is HA on link with for        |     each taxi a route like        |                                   |     CAB:C0:5F0:5F0::CAB1 <------ via       is the Home Address       of CAB 1               Figure 7:  CAB Company regional configuration   Note that this is a hierarchy in terms of MR-HA relationship, which   may not be reflected in the physical arrangement of nodes at a given   point of time.  For instance, in the Cab Co case, some SFO cabs might   attach to any hot spot or Cab Co office in a different city, and the   SFO office might be at home if it is co-located with the   headquarters.  But note that SFO should never attach to one of its   own cabs.  This would create a stalemate situation, as documented in   the NEMO Route Optimization (RO) problem statement [7].   But it is also possible to reflect the organizational hierarchy in a   moving cloud of Mobile Routers.  If a Mobile Home Agent acts as   root-MR for a nested configuration of its own Mobile Routers, then   the communication between Mobile Routers is confined within the   nested structure.   This can be illustrated in the case of a fleet at sea.  Assume that   SFO is a communication ship of a fleet, using a satellite link to   join the infrastructure, and that the cabs are Mobile Routers   installed on smaller ships, equipped with low-range radios.   If SFO is also the root-MR of a nested structure of its own cabs, the   communication between cabs is relayed by SFO and does not require the   satellite link.  As for traffic to the outside of the nested NEMO,   SFO recursively terminates the nested tunnels from its cabs and   reencapsulates all the packets between the nested cloud and   correspondents in the infrastructure in a single tunnel to CA5A.  As   a result, the unwanted effect of nesting of tunnels is avoided over   the Internet part of the packet path.Thubert, et al.              Informational                     [Page 16]

RFC 4887          Home Network Models with NEMO Basic          July 20078.2.  Applicability   This complex topology applies to a large distributed fleet, mostly if   there is a single interchange point with the Internet (e.g., a   Network Address Transition (NAT) or a SOCKS [1] server farm) where   the super Home Agent could be located.   One specific benefit is that when 2 Mobile Routers travel together   with a common Home Agent, the traffic between the 2 is not   necessarily routed via the infrastructure, but can stay confined   within the mobile cloud, the Mobile Home Agent acting as a rendezvous   point between the Mobile Routers.  This applies particularly well for   a fleet at sea when the long-haul access may be as expensive as a   satellite link.9.  Security Considerations   This document only explains how a Home Network can be deployed to   support Mobile Routers and does not introduce any additional security   concerns.  Please seeRFC 3963 [5] for security considerations for   the NEMO Basic Support protocol.10.  Acknowledgements   The authors wish to thank Erik Nordmark, Jari Arkko, Henrik   Levkowetz, Scott Hollenbeck, Ted Hardie, David Kessens, Pekka Savola,   Kent Leung, Thierry Ernst, TJ Kniveton, Patrick Wetterwald, Alexandru   Petrescu, and David Binet for their contributions.11.  References11.1.  Normative References   [1]  Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas, D., and L.        Jones, "SOCKS Protocol Version 5",RFC 1928, March 1996.   [2]  Bradner, S., "Key words for use in RFCs to Indicate Requirement        Levels",BCP 14,RFC 2119, March 1997.   [3]  Manner, J. and M. Kojo, "Mobility Related Terminology",RFC 3753, June 2004.   [4]  Johnson, D., Perkins, C., and J. Arkko, "Mobility Support in        IPv6",RFC 3775, June 2004.   [5]  Devarapalli, V., Wakikawa, R., Petrescu, A., and P. Thubert,        "Network Mobility (NEMO) Basic Support Protocol",RFC 3963,        January 2005.Thubert, et al.              Informational                     [Page 17]

RFC 4887          Home Network Models with NEMO Basic          July 2007   [6]  Ernst, T. and H. Lach, "Network Mobility Support Terminology",        July 2007.11.2.  Informative References   [7]  Ng, C., Thubert, P., Watari, M., and F. Zhao, "Network Mobility        Route Optimization Problem Statement",RFC 4888, July 2007.   [8]  Thaler, D., Talwar, M., and C. Patel, "Neighbor Discovery        Proxies (ND Proxy)",RFC 4389, April 2006.   [9]  Ng, C.,"Analysis of Multihoming in Network Mobility Support",        Work in Progress, February 2007.Authors' Addresses   Pascal Thubert   Cisco Systems   Village d'Entreprises Green Side   400, Avenue de Roumanille   Batiment T3, Biot - Sophia Antipolis  06410   FRANCE   Phone: +33 4 97 23 26 34   EMail: pthubert@cisco.com   Ryuji Wakikawa   Keio University and WIDE   5322 Endo Fujisawa Kanagawa   252-8520   JAPAN   EMail: ryuji@sfc.wide.ad.jp   Vijay Devarapalli   Azaire Networks   3121 Jay Street   Santa Clara, CA  94054   USA   EMail: vijay.devarapalli@azairenet.comThubert, et al.              Informational                     [Page 18]

RFC 4887          Home Network Models with NEMO Basic          July 2007Full Copyright Statement   Copyright (C) The IETF Trust (2007).   This document is subject to the rights, licenses and restrictions   contained inBCP 78, and except as set forth therein, the authors   retain all their rights.   This document and the information contained herein are provided on an   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND   THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS   OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF   THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.Intellectual Property   The IETF takes no position regarding the validity or scope of any   Intellectual Property Rights or other rights that might be claimed to   pertain to the implementation or use of the technology described in   this document or the extent to which any license under such rights   might or might not be available; nor does it represent that it has   made any independent effort to identify any such rights.  Information   on the procedures with respect to rights in RFC documents can be   found inBCP 78 andBCP 79.   Copies of IPR disclosures made to the IETF Secretariat and any   assurances of licenses to be made available, or the result of an   attempt made to obtain a general license or permission for the use of   such proprietary rights by implementers or users of this   specification can be obtained from the IETF on-line IPR repository athttp://www.ietf.org/ipr.   The IETF invites any interested party to bring to its attention any   copyrights, patents or patent applications, or other proprietary   rights that may cover technology that may be required to implement   this standard.  Please address the information to the IETF at   ietf-ipr@ietf.org.Acknowledgement   Funding for the RFC Editor function is currently provided by the   Internet Society.Thubert, et al.              Informational                     [Page 19]

[8]ページ先頭

©2009-2025 Movatter.jp