Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Info page]

PROPOSED STANDARD
Updated by:5133
Network Working Group                                       K. MorneaultRequest for Comments: 4233                                 Cisco SystemsObsoletes:3057                                             S. RengasamiCategory: Standards Track                                   Tridea Works                                                                M. Kalla                                                  Telcordia Technologies                                                           G. Sidebottom                                                   Signatus Technologies                                                            January 2006Integrated Services Digital Network (ISDN)Q.921-User Adaptation LayerStatus of This Memo   This document specifies an Internet standards track protocol for the   Internet community, and requests discussion and suggestions for   improvements.  Please refer to the current edition of the "Internet   Official Protocol Standards" (STD 1) for the standardization state   and status of this protocol.  Distribution of this memo is unlimited.Copyright Notice   Copyright (C) The Internet Society (2006).Abstract   This document defines a protocol for backhauling of Integrated   Services Digital Network (ISDN) Q.921 User messages over IP using the   Stream Control Transmission Protocol (SCTP).  This protocol would be   used between a Signaling Gateway (SG) and Media Gateway Controller   (MGC).  It is assumed that the SG receives ISDN signaling over a   standard ISDN interface.   This document obsoletesRFC 3057.Morneault, et al.           Standards Track                     [Page 1]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006Table of Contents1. Introduction ....................................................31.1. Scope ......................................................31.2. Terminology ................................................31.3. IUA Overview ...............................................51.4. Services Provided by the IUA Layer .........................71.5. Functions Implemented by the IUA Layer ....................101.6. Definition of IUA Boundaries ..............................122. Conventions ....................................................153. Protocol Elements ..............................................153.1. Common Message Header .....................................153.2. IUA Message Header ........................................193.3. IUA Messages ..............................................214. Procedures .....................................................464.1. Procedures to Support Service inSection 1.4.1 ............464.2. Procedures to Support Service inSection 1.4.2 ............464.3. Procedures to Support Service inSection 1.4.3 ............485. Examples .......................................................58      5.1. Establishment of Association and Traffic between           SGs and ASPs ..............................................585.2. ASP Traffic Fail-over Examples ............................625.3. Q.921/Q.931 Primitives Backhaul Examples ..................635.4. Layer Management Communication Examples ...................646. Security .......................................................657. IANA Considerations ............................................657.1. SCTP Payload Protocol Identifier ..........................657.2. IUA Protocol Extensions ...................................658. Timer Values ...................................................679. Acknowledgements ...............................................6710. References ....................................................6710.1. Normative References .....................................6710.2. Informative References ...................................6711. Change Log ....................................................68Appendix A ........................................................69A.1. Signaling Network Architecture ............................69A.2. Application Server Process Redundancy .....................70Morneault, et al.           Standards Track                     [Page 2]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 20061.  Introduction   In this document, the term Q.921-User refers to an upper layer that   uses the services of Q.921, not the user side of ISDN interface [1].   Examples of the upper layer would be Q.931 and QSIG.   This section describes the need for ISDN Q.921-User Adaptation (IUA)   layer protocol as well as how this protocol shall be implemented.1.1.  Scope   There is a need for Switched Circuit Network (SCN) signaling protocol   delivery from an ISDN Signaling Gateway (SG) to a Media Gateway   Controller (MGC) as described in the Framework Architecture for   Signaling Transport [5].  The delivery mechanism SHOULD meet the   following criteria:   *  Support for transport of the Q.921/Q.931 boundary primitives   *  Support for communication between Layer Management modules on SG      and MGC   *  Support for management of SCTP active associations between SG      and MGC   This document supports both ISDN Primary Rate Access (PRA) as well as   Basic Rate Access (BRA) including the support for both point-to-point   and point-to-multipoint modes of communication.  This support   includes Facility Associated Signaling (FAS), Non-Facility Associated   Signaling (NFAS), and NFAS with backup D channel.  QSIG adaptation   layer requirements do not differ from Q.931 adaptation layer; hence,   the procedures described in this document are also applicable for a   QSIG adaptation layer.  For simplicity, only Q.931 will be mentioned   in the rest of this document.1.2.  Terminology   Application Server (AS) - A logical entity serving a specific   application instance.  An example of an Application Server is a MGC   handling the Q.931 and call processing for D channels terminated by   the Signaling Gateways.  Practically speaking, an AS is modeled at   the SG as an ordered list of one or more related Application Server   Processes (e.g., primary, secondary, tertiary).   Application Server Process (ASP) - A process instance of an   Application Server.  Examples of Application Server Processes are   primary or backup MGC instances.Morneault, et al.           Standards Track                     [Page 3]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006   Association - An association refers to an SCTP association.  The   association will provide the transport for the delivery of Q.921-User   protocol data units and IUA adaptation layer peer messages.   Backhaul - A SG terminates the lower layers of an SCN protocol and   backhauls the upper layer(s) to MGC for call processing.  For the   purposes of this document, the SG terminates Q.921 and backhauls   Q.931 to MGC.   Fail-over - The capability to re-route signaling traffic as required   between related ASPs in the event of failure or unavailability of the   currently used ASP (e.g., from primary MGC to backup MGC).  Fail-over   also applies upon the return to service of a previously unavailable   process.   Host - The computing platform that the ASP process is running on.   Interface - For the purposes of this document, an interface supports   the relevant ISDN signaling channel.  This signaling channel MAY be a   16-kbps D channel for an ISDN BRA as well as 64-kbps primary or   backup D channel for an ISDN PRA.  For QSIG, the signaling channel is   a Qc channel.   Interface Identifier - The Interface Identifier identifies the   physical interface at the SG for which the signaling messages are   sent/received.  The format of the Interface Identifier parameter can   be text or integer, the values of which are assigned according to   network operator policy.  The values used are of local significance   only, coordinated between the SG and ASP.  Significance is not   implied across SGs served by an AS.   Layer Management - Layer Management is a nodal function that handles   the inputs and outputs between the IUA layer and a local management   entity.   Network Byte Order - Most significant byte first, a.k.a big endian.   Stream - A stream refers to an SCTP stream: a uni-directional logical   channel established from one SCTP endpoint to another associated SCTP   endpoint, within which all user messages are delivered in sequence   except for those submitted to the un-ordered delivery service.   Q.921-User - Any protocol normally using the services of the ISDN   Q.921 (e.g., Q.931, QSIG, etc.).Morneault, et al.           Standards Track                     [Page 4]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 20061.3.  IUA Overview   The architecture that has been defined [5] for SCN signaling   transport over IP uses multiple components, including an IP transport   protocol, a signaling common transport protocol, and an adaptation   module to support the services expected by a particular SCN signaling   protocol from its underlying protocol layer.   This document defines an adaptation module that is suitable for the   transport of ISDN Q.921-User (e.g., Q.931) messages.1.3.1.  Example: SG to MGC   In a Signaling Gateway (SG), it is expected that the ISDN signaling   is received over a standard ISDN network termination.  The SG then   provides interworking of transport functions with IP Signaling   Transport, in order to transport the Q.931 signaling messages to the   MGC where the peer Q.931 protocol layer exists, as shown below:            ******   ISDN        ******      IP      *******            * EP *---------------* SG *--------------* MGC *            ******               ******              *******            +-----+                                  +-----+            |Q.931|              (NIF)               |Q.931|            +-----+           +----------+           +-----+            |     |           |     | IUA|           | IUA |            |     |           |     +----+           +-----+            |Q.921|           |Q.921|SCTP|           |SCTP |            |     |           |     +----+           +-----+            |     |           |     | IP |           | IP  |            +-----+           +-----+----+           +-----+            NIF  - Nodal Interworking Function            EP   - ISDN End Point            SCTP - Stream Control Transmission Protocol (Refer to [4,8])            IUA  - ISDN User Adaptation Layer Protocol           Figure 1.  IUA in the SG to MGC Application   It is recommended that the IUA use the services of the Stream Control   Transmission Protocol (SCTP) as the underlying reliable common   signaling transport protocol.  The use of SCTP provides the following   features:      -  explicit packet-oriented delivery (not stream-oriented)Morneault, et al.           Standards Track                     [Page 5]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006      -  sequenced delivery of user messages within multiple streams,         with an option for order-of-arrival delivery of individual user         messages,      -  optional multiplexing of user messages into SCTP datagrams,      -  network-level fault tolerance through support of multi-homing         at either or both ends of an association,      -  resistance to flooding and masquerade attacks, and      -  data segmentation to conform to discovered path MTU size.   There are scenarios without redundancy requirements and scenarios in   which redundancy is supported below the transport layer.  In these   cases, the SCTP functions above MAY be determined to not be required   and TCP MAY be used as the underlying common transport protocol.1.3.2.  Support for the Management of SCTP Associations between the SG        and ASPs   The IUA layer at the SG maintains the availability state of all   dynamically registered remote ASPs, in order to manage the SCTP   associations and the traffic between the SG and ASPs.  As well, the   active/inactive states of remote ASP(s) are maintained.  Active ASPs   are those currently receiving traffic from the SG.   The IUA layer MAY be instructed by local management to establish an   SCTP association to a peer IUA node.  This can be achieved using the   M-SCTP ESTABLISH primitive to request, indicate, and confirm the   establishment of an SCTP association with a peer IUA node.   The IUA layer MAY also need to inform local management of the status   of the underlying SCTP associations using the M-SCTP STATUS request   and indication primitive.  For example, the IUA MAY inform local   management of the reason for the release of an SCTP association,   determined either locally within the IUA layer or by a primitive from   the SCTP.1.3.3.  ASP Fail-over Model and Terminology   The IUA layer supports ASP fail-over functions in order to support a   high availability of call processing capability.  All Q.921-User   messages incoming to an SG are assigned to a unique Application   Server, based on the Interface Identifier of the message.   The Application Server is, in practical terms, a list of all ASPs   configured to process Q.921-User messages from certain Interface   Identifiers.  One or more ASPs in the list are normally active (i.e.,   handling traffic) while any others MAY be unavailable or inactive, to   be possibly used in the event of failure or unavailability of the   active ASP(s).Morneault, et al.           Standards Track                     [Page 6]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006   The IUA layer supports an n+k redundancy model (active-standby, load   sharing, broadcast) where n is the minimum number of redundant ASPs   required to handle traffic and k ASPs are available to take over for   a failed or unavailable ASP.  Note that 1+1 active/standby redundancy   is a subset of this model.  A simplex 1+0 model is also supported as   a subset, with no ASP redundancy.1.3.4.  Client/Server Model   It is recommended that the SG and ASP be able to support both client   and server operation.  The peer endpoints using IUA SHOULD be   configured so that one always takes on the role of client and the   other the role of server for initiating SCTP associations.  The   default orientation would be for the SG to take on the role of server   while the ASP is the client.  In this case, ASPs SHOULD initiate the   SCTP association to the SG.   The SCTP and TCP Registered User Port Number Assignment for IUA is   9900.1.4.  Services Provided by the IUA Layer1.4.1.  Support for Transport of Q.921/Q.931 Boundary Primitives   In the backhaul scenario, the Q.921/Q.931 boundary primitives are   exposed.  IUA layer needs to support all of the primitives of this   boundary to successfully backhaul Q.931.   This includes the following primitives [1]:   DL-ESTABLISH   The DL-ESTABLISH primitives are used to request, indicate, and   confirm the outcome of the procedures for establishing multiple frame   operation.   DL-RELEASE   DL-RELEASE primitives are used to request, indicate, and confirm the   outcome of the procedures for terminating a previously established   multiple frame operation, or for reporting an unsuccessful   establishment attempt.Morneault, et al.           Standards Track                     [Page 7]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006   DL-DATA   The DL-DATA primitives are used to request and indicate layer 3   (Q.931) messages that are to be transmitted, or have been received,   by the Q.921 layer using the acknowledged information transfer   service.   DL-UNIT DATA   The DL-UNIT DATA primitives are used to request and indicate layer 3   (Q.931) messages that are to be transmitted, by the Q.921 layer using   the unacknowledged information transfer service.1.4.2.  Support for Communication between Layer Management Modules on SG        and MGC   It is envisioned that the IUA layer needs to provide some services   that will facilitate communication between Layer Management modules   on the SG and MGC.  These primitives are shown below:   M-TEI STATUS   The M-TEI STATUS primitives are used to request, confirm, and   indicate the status (assigned/unassigned) of an ISDN Terminal   Endpoint Identifier (TEI).   M-ERROR   The M-ERROR primitive is used to indicate an error with a received   IUA message (e.g., interface identifier value is not known to the   SG).1.4.3.  Support for Management of Active Associations between SG and MGC   A set of primitives between the IUA layer and the Layer Management is   defined below to help the Layer Management manage the SCTP   association(s) between the SG and MGC.  The IUA layer can be   instructed by the Layer Management to establish an SCTP association   to a peer IUA node.  This procedure can be achieved using the M-SCTP   ESTABLISH primitive.   M-SCTP ESTABLISH   The M-SCTP ESTABLISH primitives are used to request, indicate, and   confirm the establishment of an SCTP association to a peer IUA node.Morneault, et al.           Standards Track                     [Page 8]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006   M-SCTP RELEASE   The M-SCTP RELEASE primitives are used to request, indicate, and   confirm the release of an SCTP association to a peer IUA node.   The IUA layer MAY also need to inform the status of the SCTP   associations to the Layer Management.  This can be achieved using the   M-SCTP STATUS primitive.   M-SCTP STATUS   The M-SCTP STATUS primitives are used to request and indicate the   status of the underlying SCTP association(s).   The Layer Management MAY need to inform the IUA layer of an AS/ASP   status (i.e., failure, active, etc.), so that messages can be   exchanged between IUA layer peers to stop traffic to the local IUA   user.  This can be achieved using the M-ASP STATUS primitive.   M-ASP STATUS   The ASP status is stored inside IUA layer on both the SG and MGC   sides.  The M-ASP STATUS primitive can be used by Layer Management to   request the status of the Application Server Process from the IUA   layer.  This primitive can also be used to indicate the status of the   Application Server Process.   M-ASP-UP   The M-ASP-UP primitive can be used by Layer Management to send a ASP   Up message for the Application Server Process.  It can also be used   to generate an ASP Up Acknowledgement.   M-ASP-DOWN   The M-ASP-DOWN primitive can be used by Layer Management to send a   ASP Down message for the Application Server Process.  It can also be   used to generate an ASP Down Acknowledgement.   M-ASP-ACTIVE   The M-ASP-UP primitive can be used by Layer Management to send a ASP   Active message for the Application Server Process.  It can also be   used to generate an ASP Active Acknowledgement.Morneault, et al.           Standards Track                     [Page 9]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006   M-ASP-INACTIVE   The M-ASP-UP primitive can be used by Layer Management to send a ASP   Inactive message for the Application Server Process.  It can also be   used to generate an ASP Inactive Acknowledgement.   M-AS STATUS   The M-AS STATUS primitive can be used by Layer Management to request   the status of the Application Server.  This primitive can also be   used to indicate the status of the Application Server.1.5.  Functions Implemented by the IUA Layer1.5.1.  Mapping   The IUA layer MUST maintain a map of the Interface Identifier to a   physical interface on the Signaling Gateway.  A physical interface   would be a T1 line, E1 line, etc., and could include the Time-   Division Multiplexing (TDM) timeslot.  In addition, for a given   interface the SG MUST be able to identify the associated signaling   channel.  IUA layers on both SG and MGC MAY maintain the status of   ISDN Terminal Endpoint Identifiers (TEIs) and Service Access Point   Identifiers (SAPIs).   The SG maps an Interface Identifier to an SCTP association/stream   only when an ASP sends an ASP Active message for a particular   Interface Identifier.  It MUST be noted, however, that this mapping   is dynamic and could change at any time due to a change of ASP state.   This mapping could even temporarily be invalid, for example, during   fail-over of one ASP to another.  Therefore, the SG MUST maintain the   states of AS/ASP and reference them during the routing of an messages   to an AS/ASP.   One example of the logical view of relationship between D channel,   Interface Identifier, AS, and ASP in the SG is shown below:          /---------------------------------------------------+         /   /------------------------------------------------|--+        /   /                                                 v  |       /   /    +----+             act+-----+    +-------+ -+--+-|+--+-D chan1-------->|IID |-+          +-->| ASP |--->| Assoc |       v         /      +----+ |  +----+  |   +-----+    +-------+ -+--+--+--+-        /              +->| AS |--+                        Streams       /        +----+ |  +----+   stb+-----+D chan2-------->|IID |-+              | ASP |                +----+                +-----+Morneault, et al.           Standards Track                    [Page 10]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006   where IID = Interface Identifier   Note that an ASP can be in more than one AS.1.5.2.  Status of ASPs   The IUA layer on the SG MUST maintain the state of the ASPs it is   supporting.  The state of an ASP changes because of reception of   peer-to-peer messages (ASPM messages as described inSection 3.3.2)   or reception of indications from the local SCTP association.  ASP   state transition procedures are described inSection 4.3.1.   At a SG, an Application Server list MAY contain active and inactive   ASPs to support ASP load-sharing and fail-over procedures.  When, for   example, both a primary and a backup ASP are available, IUA peer   protocol is required to control which ASP is currently active.  The   ordered list of ASPs within a logical Application Server is kept   updated in the SG to reflect the active Application Server   Process(es).   Also the IUA layer MAY need to inform the local management of the   change in status of an ASP or AS.  This can be achieved using the   M-ASP STATUS or M-AS STATUS primitives.1.5.3.  SCTP Stream Management   SCTP allows a user-specified number of streams to be opened during   the initialization.  It is the responsibility of the IUA layer to   ensure proper management of these streams.  Because of the   unidirectional nature of streams, an IUA layer is not aware of the   stream number to Interface Identifier mapping of its peer IUA layer.   Instead, the Interface Identifier is in the IUA message header.   The use of SCTP streams within IUA is recommended in order to   minimize transmission and buffering delay, therefore improving the   overall performance and reliability of the signaling elements.  It is   recommended that a separate SCTP stream is used for each D channel.1.5.4.  Seamless Network Management Interworking   The IUA layer on the SG SHOULD pass an indication of unavailability   of the IUA-User (Q.931) to the local Layer Management, if the   currently active ASP moves from the ACTIVE state.  The Layer   Management could instruct Q.921 to take some action, if it deems   appropriate.Morneault, et al.           Standards Track                    [Page 11]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006   Likewise, if an SCTP association fails, the IUA layer on both the SG   and ASP sides MAY generate Release primitives to take the data links   out-of-service.1.5.5.  Congestion Management   If the IUA layer becomes congested (implementation dependent), it MAY   stop reading from the SCTP association to flow control from the peer   IUA.1.6.  Definition of IUA Boundaries1.6.1.  Definition of IUA/Q.921 Boundary   DL-ESTABLISH   DL-RELEASE   DL-DATA   DL-UNIT DATA1.6.2.  Definition of IUA/Q.931 Boundary   DL-ESTABLISH   DL-RELEASE   DL-DATA   DL-UNIT DATA1.6.3.  Definition of SCTP/IUA Boundary   An example of the upper layer primitives provided by SCTP are   available inSection 10 of RFC 2960 [4].1.6.4.  Definition of IUA/Layer-Management Boundary   M-SCTP ESTABLISH request   Direction: LM -> IUA   Purpose: LM requests ASP to establish an SCTP association with an SG.   M-STCP ESTABLISH confirm   Direction: IUA -> LM   Purpose: ASP confirms to LM that it has established an SCTP            association with an SG.   M-SCTP ESTABLISH indication   Direction: IUA -> LM   Purpose: SG informs LM that an ASP has established an SCTP            association.Morneault, et al.           Standards Track                    [Page 12]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006   M-SCTP RELEASE request   Direction: LM -> IUA   Purpose: LM requests ASP to release an SCTP association with SG.   M-SCTP RELEASE confirm   Direction: IUA -> LM   Purpose: ASP confirms to LM that it has released SCTP association            with SG.   M-SCTP RELEASE indication   Direction: IUA -> LM   Purpose: SG informs LM that ASP has released an SCTP association.   M-SCTP STATUS request   Direction: LM -> IUA   Purpose: LM requests IUA to report status of SCTP association.   M-SCTP STATUS indication   Direction: IUA -> LM   Purpose: IUA reports status of SCTP association.   M-ASP STATUS request   Direction: LM -> IUA   Purpose: LM requests SG to report status of remote ASP.   M-ASP STATUS indication   Direction: IUA -> LM   Purpose: SG reports status of remote ASP.   M-AS-STATUS request   Direction: LM -> IUA   Purpose: LM requests SG to report status of AS.   M-AS-STATUS indication   Direction: IUA -> LM   Purpose: SG reports status of AS.   M-NOTIFY indication   Direction: IUA -> LM   Purpose: ASP reports that it has received a NOTIFY message            from its peer.   M-ERROR indication   Direction: IUA -> LM   Purpose: ASP or SG reports that it has received an ERROR            message from its peer.Morneault, et al.           Standards Track                    [Page 13]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006   M-ASP-UP request   Direction: LM -> IUA   Purpose: LM requests ASP to start its operation and send an ASP UP            message to the SG.   M-ASP-UP confirm   Direction: IUA -> LM   Purpose: ASP reports that is has received an ASP UP Acknowledgement            message from the SG.   M-ASP-DOWN request   Direction: LM -> IUA   Purpose: LM requests ASP to stop its operation and send an ASP DOWN            message to the SG.   M-ASP-DOWN confirm   Direction: IUA -> LM   Purpose: ASP reports that is has received an ASP DOWN            Acknowledgement message from the SG.   M-ASP-ACTIVE request   Direction: LM -> IUA   Purpose: LM requests ASP to send an ASP ACTIVE message to the SG.   M-ASP-ACTIVE confirm   Direction: IUA -> LM   Purpose: ASP reports that is has received an ASP ACTIVE            Acknowledgement message from the SG.   M-ASP-INACTIVE request   Direction: LM -> IUA   Purpose: LM requests ASP to send an ASP INACTIVE message to the SG.   M-ASP-INACTIVE confirm   Direction: IUA -> LM   Purpose: ASP reports that is has received an ASP INACTIVE            Acknowledgement message from the SG.   M-TEI STATUS request   Direction: LM -> IUA   Purpose: LM requests ASP to send a TEI status request to the SG.   M-TEI STATUS indication   Direction: IUA -> LM   Purpose: ASP reports that is has received a TEI status indication            from the SG.Morneault, et al.           Standards Track                    [Page 14]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006   M-TEI STATUS confirm   Direction: IUA -> LM   Purpose: ASP reports that is has received a TEI status confirm from            the SG.2.  Conventions   The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,   SHOULD NOT, RECOMMENDED, NOT RECOMMENDED, MAY, and OPTIONAL, when   they appear in this document, are to be interpreted as described in   [6].3.  Protocol Elements   This section describes the format of various messages used in this   protocol.3.1.  Common Message Header   The protocol messages for Q.921-User Adaptation require a message   header that contains the adaptation layer version, the message type,   and message length.    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |    Version    |   Reserved    | Message Class | Message Type  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                        Message Length                         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                  Figure 2.  Common Header Format   All fields in an IUA message MUST be transmitted in the network byte   order, unless otherwise stated.3.1.1.  Version   The version field contains the version of the IUA adaptation layer.   The supported versions are the following:      Value    Version      -----    -------        1      Release 1.0Morneault, et al.           Standards Track                    [Page 15]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 20063.1.2.  Message Classes and Types   The following list contains the valid Message Classes:   Message Class: 8 bits (unsigned integer)       0       Management (MGMT) Message       1       Reserved for Other SIGTRAN Adaptation Layer       2       Reserved for Other SIGTRAN Adaptation Layers       3       ASP State Maintenance (ASPSM) Messages       4       ASP Traffic Maintenance (ASPTM) Messages       5       Q.921/Q.931 Boundary Primitives Transport (QPTM) Messages       6       Reserved for Other SIGTRAN Adaptation Layer       7       Reserved for Other SIGTRAN Adaptation Layer       8       Reserved for Other SIGTRAN Adaptation Layer     9 to 127  Reserved by the IETF   128 to 255  Reserved for IETF-Defined Message Class extensions   The following list contains the message names for the defined   messages.    Q.921/Q.931 Boundary Primitives Transport (QPTM) Messages       0        Reserved       1        Data Request Message       2        Data Indication Message       3        Unit Data Request Message       4        Unit Data Indication Message       5        Establish Request       6        Establish Confirm       7        Establish Indication       8        Release Request       9        Release Confirm      10        Release Indication    11 to 127   Reserved by the IETF   128 to 255   Reserved for IETF-Defined QPTM extensions    Application Server Process State Maintenance (ASPSM) messages       0        Reserved       1        ASP Up (UP)       2        ASP Down (DOWN)       3        Heartbeat (BEAT)       4        ASP Up Ack (UP ACK)       5        ASP Down Ack (DOWN ACK)       6        Heatbeat Ack (BEAT ACK)     7 to 127   Reserved by the IETF   128 to 255   Reserved for IETF-Defined ASPSM extensionsMorneault, et al.           Standards Track                    [Page 16]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006    Application Server Process Traffic Maintenance (ASPTM) messages       0        Reserved       1        ASP Active (ACTIVE)       2        ASP Inactive (INACTIVE)       3        ASP Active Ack (ACTIVE ACK)       4        ASP Inactive Ack (INACTIVE ACK)     5 to 127   Reserved by the IETF   128 to 255   Reserved for IETF-Defined ASPTM extensions    Management (MGMT) Messages       0        Error (ERR)       1        Notify (NTFY)       2        TEI Status Request       3        TEI Status Confirm       4        TEI Status Indication       5        TEI Query Request     6 to 127   Reserved by the IETF   128 to 255   Reserved for IETF-Defined MGMT extensions3.1.3.  Reserved   The Reserved field is 8 bits.  It SHOULD be set to all '0's and   ignored by the receiver.3.1.4.  Message Length   The Message Length defines the length of the message in octets,   including the Common Header.  The Message Length MUST include   parameter padding bytes, if any.   Note: A receiver SHOULD accept the message whether or not the final   parameter padding is included in the message length.3.1.5.  Variable-Length Parameter Format   IUA messages consist of a Common Header followed by zero or more   variable-length parameters, as defined by the message type.  The   variable-length parameters contained in a message are defined in a   Type-Length-Value (TLV) format as shown below.Morneault, et al.           Standards Track                    [Page 17]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |          Parameter Tag        |       Parameter Length        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   \                                                               \   /                       Parameter Value                         /   \                                                               \   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   Mandatory parameters MUST be placed before optional parameters in a   message.   Parameter Tag: 16 bits (unsigned integer)   The Tag field is a 16-bit identifier of the type of parameter.  It   takes a value of 0 to 65534.  Common parameters used by adaptation   layers are in the range of 0x00 to 0x3f.  The parameter Tags defined   are as follows:   Common Parameters.  These TLV parameters are common across the   different adaptation layers:   Parameter Name                     Parameter ID   ==============                     ============   Reserved                              0x0000   Interface Identifier (integer)        0x0001   Not Used in IUA                       0x0002   Interface Identifier (text)           0x0003   INFO String                           0x0004   DLCI                                  0x0005   Not Used in IUA                       0x0006   Diagnostic Information                0x0007   Interface Identifier Range            0x0008   Heartbeat Data                        0x0009   Not Used in IUA                       0x000a   Traffic Mode Type                     0x000b   Error Code                            0x000c   Status                                0x000d   Protocol Data                         0x000e   Release Reason                        0x000f   TEI Status                            0x0010   ASP Identifier                        0x0011   Not Used in IUA                       0x0012 - 0x003f   The value of 65535 is reserved for IETF-defined extensions.  Values   other than those defined in specific parameter description are   reserved for use by the IETF.Morneault, et al.           Standards Track                    [Page 18]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006   Parameter Length: 16 bits (unsigned integer)   The Parameter Length field contains the size of the parameter in   bytes, including the Parameter Tag, Parameter Length, and Parameter   Value fields.  The Parameter Length does not include any padding   bytes.   Parameter Value: variable-length   The Parameter Value field contains the actual information to be   transferred in the parameter.   The total length of a parameter (including Tag, Parameter Length, and   Value fields) MUST be a multiple of 4 bytes.  If the length of the   parameter is not a multiple of 4 bytes, the sender pads the Parameter   at the end (i.e., after the Parameter Value field) with all zero   bytes.  The length of the padding is NOT included in the Parameter   Length field.  A sender SHOULD NEVER pad with more than 3 bytes.  The   receiver MUST ignore the padding bytes.3.2.  IUA Message Header   In addition to the common message header, there will be a specific   message header for QPTM and the TEI Status MGMT messages.  The IUA   message header will immediately follow the Common header in these   messages.   This message header will contain the Interface Identifier and Data   Link Connection Identifier (DLCI).  The Interface Identifier   identifies the physical interface terminating the signaling channel   at the SG for which the signaling messages are sent/received.  The   format of the Interface Identifier parameter can be text or integer.   The Interface Identifiers are assigned according to network operator   policy.  The integer values used are of local significance only,   coordinated between the SG and ASP.   The integer-formatted Interface Identifier MUST be supported.  The   text-formatted Interface Identifier MAY optionally be supported.Morneault, et al.           Standards Track                    [Page 19]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |           Tag (0x1)           |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                 Interface Identifier (integer)                |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |           Tag (0x5)           |             Length=8          |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |            DLCI               |              Spare            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    Figure 3.  IUA Message Header (Integer-based Interface Identifier)   The Tag value for the Integer-based Interface Identifier is 0x1.  The   length is always set to a value of 8.    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |           Tag (0x3)           |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   \                                                               /   /                   Interface Identifier (text)                 \   \                                                               /   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |           Tag (0x5)           |             Length=8          |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |            DLCI               |             Spare             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     Figure 4.  IUA Message Header (Text-based Interface Identifier)   The Tag value for the Text-based [2] Interface Identifier is 0x3.   The length is variable.   The DLCI format is shown below in Figure 5.        most                                     least     significant                              significant         bit                                      bit      +-----+-----+-----+-----+-----+-----+-----+-----+      |            SAPI                   | SPR |  0  |      +-----------------------------------------------+      |            TEI                          |  1  |      +-----------------------------------------------+                          Figure 5.  DLCI FormatMorneault, et al.           Standards Track                    [Page 20]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006   SPR:  Spare 2nd bit in octet 1 (1 bit)   SAPI: Service Access Point Identifier (6 bits)   TEI:  Terminal Endpoint Identifier (7 bits)   As an example, SAPI = 0, TEI = 64, SPR = 0 would be encoded as   follows:   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |           Tag (0x5)           |             Length=8          |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |      0x0      |      0x81     |               0x0             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The DLCI field (including the SAPI and TEI) is coded in accordance   with Q.921.3.3.  IUA Messages   The following section defines the messages and parameter contents.   The IUA messages will use the common message header (Figure 2) and   the IUA message header (Figure 3 and Figure 4).3.3.1.  Q.921/Q.931 Boundary Primitives Transport (QPTM) Messages3.3.1.1.  Establish Messages (Request, Confirm, Indication)   The Establish Messages are used to establish a data link on the   signaling channel or to confirm that a data link on the signaling   channel has been established.  The MGC controls the state of the D   channel.  When the MGC desires the D channel to be in-service, it   will send the Establish Request message.   When the MGC sends an IUA Establish Request message, the MGC MAY   start a timer.  This timer would be stopped upon receipt of an IUA   Establish Confirm or Establish Indication.  If the timer expires, the   MGC would resend the IUA Establish Request message and restart the   timer.  In other words, the MGC MAY continue to request the   establishment of the data link on a periodic basis until the desired   state is achieved or take some other action (notify the Management   Layer).   When the SG receives an IUA Establish Request from the MGC, the SG   shall send the Q.921 Establish Request primitive to the Q.921 entity.   In addition, the SG shall map any response received from the Q.921   entity to the appropriate message to the MGC.  For example, if the   Q.921 entity responds with a Q.921 Establish Confirm primitive, theMorneault, et al.           Standards Track                    [Page 21]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006   IUA layer shall map this to an IUA Establish Confirm message.  As   another example, if the IUA Layer receives a Q.921 Release Confirm or   Release Indication as an apparent response to the Q.921 Establish   Request primitive, the IUA Layer shall map these to the corresponding   IUA Release Confirm or Release Indication messages.   The Establish messages contain the common message header followed by   IUA message header.  It does not contain any additional parameters.3.3.1.2.  Release Messages (Request, Indication, Confirmation)   The Release Request message is used to release the data link on the   signaling channel.  The Release Confirm and Indication messages are   used to indicate that the data link on the signaling channel has been   released.   If a response to the Release Request message is not received, the MGC   MAY resend the Release Request message.  If no response is received,   the MGC can consider the data link as being released.  In this case,   signaling traffic on that D channel is not expected from the SG and   signaling traffic will not be sent to the SG for that D channel.   The Release messages contain the common message header followed by   IUA message header.  The Release Confirm message is in response to a   Release Request message and it does not contain any additional   parameters.  The Release Request and Indication messages contain the   following parameter:      Reason   The format for Release Message parameters is as follows:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |           Tag (0xf)           |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                              Reason                           |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+Morneault, et al.           Standards Track                    [Page 22]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006   The valid values for Reason are shown in the following table.      Define     Value           Description   RELEASE_MGMT   0x0     Management layer generated release.   RELEASE_PHYS   0x1     Physical layer alarm generated release.   RELEASE_DM     0x2     Specific to a request.  Indicates Layer 2                          SHOULD release and deny all requests from                          far end to establish a data link on the                          signaling channel (i.e., if SABME is                          received, send a DM)   RELEASE_OTHER  0x3     Other reasons   Note:  Only RELEASE_MGMT, RELEASE_DM, and RELEASE_OTHER are valid   reason codes for a Release Request message.3.3.1.3.  Data Messages (Request, Indication)   The Data message contains an ISDN Q.921-User Protocol Data Unit (PDU)   corresponding to acknowledged information transfer service.   The Data messages contain the common message header followed by IUA   message header.  The Data message contains the following parameter:      Protocol Data   The format for Data Message parameters is as follows:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |           Tag (0xe)           |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   \                                                               \   /                        Protocol Data                          /   \                                                               \   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The protocol data contains upper layer signaling message, e.g.,   Q.931, QSIG.3.3.1.4.  Unit Data Messages (Request, Indication)   The Unit Data message contains an ISDN Q.921-User Protocol Data Unit   (PDU) corresponding to unacknowledged information transfer service.   The Unit Data messages contain the common message header followed by   IUA message header.  The Unit Data message contains the following   parameter:Morneault, et al.           Standards Track                    [Page 23]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006       Protocol Data   The format for Unit Data Message parameters is as follows:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |           Tag (0xe)           |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   \                                                               \   /                        Protocol Data                          /   \                                                               \   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+3.3.2.  Application Server Process Maintenance (ASPM) Messages   The ASPM messages will use only the common message header.3.3.2.1.  ASP Up (ASPUP)   The ASP Up (ASPUP) message is sent by an ASP to indicate to an SG   that it is ready to receive traffic or maintenance messages.   The ASPUP message contains the following parameters:     ASP Identifier           (Optional)     INFO String              (Optional)   The format for ASPUP Message parameters is as follows:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |         Tag = 0x0011          |           Length = 8          |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                         ASP Identifier                        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |         Tag = 0x0004          |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   \                                                               \   /                         INFO String                           /   \                                                               \   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   ASP Identifier: 32-bit unsigned integerMorneault, et al.           Standards Track                    [Page 24]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006   The optional ASP Identifier parameter contains a unique value that is   locally significant among the ASPs that support an AS.  The SG should   save the ASP Identifier to be used, if necessary, with the Notify   message (seeSection 3.3.3.2).   The optional INFO String parameter can carry any meaningful 8-bit   ASCII [2] character string along with the message.  Length of the   INFO String parameter is from 0 to 255 characters.  No procedures are   presently identified for its use, but the INFO String MAY be used for   debugging purposes.3.3.2.2.  ASP Up Ack   The ASP Up Ack message is used to acknowledge an ASP Up message   received from a remote IUA peer.   The ASPUP Ack message contains the following parameters:      INFO String (optional)   The format for ASPUP Ack Message parameters is as follows:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |         Tag = 0x0004          |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   \                                                               \   /                         INFO String                           /   \                                                               \   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The format and description of the optional INFO String parameter are   the same as for the ASP Up message (seeSection 3.3.2.1).3.3.2.3.  ASP Down (ASPDN)   The ASP Down (ASPDN) message is sent by an ASP to indicate to an SG   that it is NOT ready to receive traffic or maintenance messages.   The ASPDN message contains the following parameters:      INFO String (Optional)Morneault, et al.           Standards Track                    [Page 25]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006   The format for the ASPDN message parameters is as follows:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |         Tag = 0x0004          |            Length             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   \                                                               \   /                         INFO String                           /   \                                                               \   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The format and description of the optional INFO String parameter are   the same as for the ASP Up message (seeSection 3.3.2.1).3.3.2.4.  ASP Down Ack   The ASP Down Ack message is used to acknowledge an ASP Down message   received from a remote IUA peer.   The ASP Down Ack message contains the following parameters:      INFO String (Optional)   The format for the ASP Down Ack message parameters is as follows:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |         Tag = 0x0004          |            Length             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   \                                                               \   /                         INFO String                           /   \                                                               \   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The format and description of the optional INFO String parameter are   the same as for the ASP Up message (seeSection 3.3.2.1).3.3.2.5.  ASP Active (ASPAC)   The ASPAC message is sent by an ASP to indicate to an SG that it is   Active and ready to be used.Morneault, et al.           Standards Track                    [Page 26]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006   The ASPAC message contains the following parameters:      Traffic Mode Type (Mandatory)      Interface Identifiers (Optional)         - Combination of integer and integer ranges, OR         - string (text-formatted)      INFO String (Optional)Morneault, et al.           Standards Track                    [Page 27]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006   The format for the ASPAC message using integer-formatted Interface   Identifiers is as follows:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |         Tag = 0x000b          |           Length = 8          |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                     Traffic Mode Type                         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |     Tag (0x1=integer)         |            Length             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   \                                                               \   /                     Interface Identifiers                     /   \                                                               \   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |    Tag (0x8=integer range)    |            Length             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                 Interface Identifier Start1*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Interface Identifier Stop1*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                 Interface Identifier Start2*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Interface Identifier Stop2*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+           .                                       .           .                                       .           .                                       .   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                 Interface Identifier StartN*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Interface Identifier StopN*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   \                                                               \   /            Additional Interface Identifier Parameters         /   \                  of Tag Type 0x1 or 0x8                       \   /                                                               /   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |         Tag (0x4)             |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   \                                                               \   /                         INFO String                           /   \                                                               \   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+Morneault, et al.           Standards Track                    [Page 28]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006   The format for the ASPAC message using text-formatted (string)   Interface Identifiers is as follows:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |         Tag = 0x000b          |           Length = 8          |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                     Traffic Mode Type                         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |       Tag (0x3=string)        |            Length             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   \                                                               \   /                     Interface Identifiers                     /   \                                                               \   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   \                                                               \   /           Additional Interface Identifier Parameters          /   \                      of Tag Type 0x3                          \   /                                                               /   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |         Tag (0x4)             |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   \                                                               \   /                         INFO String                           /   \                                                               \   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The Traffic Mode Type parameter identifies the traffic mode of   operation of the ASP within an AS.  The valid values for Type are   shown in the following table:     Value          Description      0x1            Over-ride      0x2            Load-share   Within a particular AS, only one Traffic Mode Type can be used.  The   Over-ride value indicates that the ASP is operating in Over-ride   mode, where the ASP takes over all traffic in an Application Server   (i.e., primary/backup operation), over-riding any currently active   ASPs in the AS.  In Load-share mode, the ASP will share in the   traffic distribution with any other currently active ASPs.   The optional Interface Identifiers parameter contains a list of   Interface Identifier integers (Type 0x1 or Type 0x8) or text strings   (Type 0x3) indexing the Application Server traffic that the sending   ASP is configured/registered to receive.  If integer-formattedMorneault, et al.           Standards Track                    [Page 29]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006   Interface Identifiers are being used, the ASP can also send ranges of   Interface Identifiers (Type 0x8).  Interface Identifier types Integer   (0x1) and Integer Range (0x8) are allowed in the same message.   Text-formatted Interface Identifiers (0x3) cannot be used with either   Integer (0x1) or Integer Range (0x8) types.   If no Interface Identifiers are included, the message is for all   provisioned Interface Identifiers within the AS or ASes in which the   ASP is provisioned.  If only a subset of Interface Identifiers is   included, the ASP is noted as Active for all the Interface   Identifiers provisioned for that AS.   Note:  If the optional Interface Identifier parameter is present, the   integer-formatted Interface Identifier MUST be supported, whereas the   text-formatted Interface Identifier MAY be supported.   The format and description of the optional INFO String parameter are   the same as for the ASP Up message (seeSection 3.3.2.1.).   An SG that receives an ASPAC with an incorrect Traffic Mode Type for   a particular Interface Identifier will respond with an Error Message   (Cause: Unsupported Traffic Handling Mode).3.3.2.6.  ASP Active Ack   The ASPAC Ack message is used to acknowledge an ASP Active message   received from a remote IUA peer.   The ASPAC Ack message contains the following parameters:      Traffic Mode Type (Mandatory)      Interface Identifier (Optional)         - Combination of integer and integer ranges, OR         - string (text formatted)      INFO String (Optional)Morneault, et al.           Standards Track                    [Page 30]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006   The format for the ASPAC Ack message with integer-formatted Interface   Identifiers is as follows:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |         Tag = 0x000b          |           Length = 8          |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                     Traffic Mode Type                         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |     Tag (0x1=integer)         |            Length             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   \                                                               \   /                     Interface Identifiers                     /   \                                                               \   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |    Tag (0x8=integer range)    |            Length             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                 Interface Identifier Start1*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Interface Identifier Stop1*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                 Interface Identifier Start2*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Interface Identifier Stop2*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+           .                                       .           .                                       .           .                                       .   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                 Interface Identifier StartN*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Interface Identifier StopN*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   \                                                               \   /            Additional Interface Identifier Parameters         /   \                  of Tag Type 0x1 or 0x8                       \   /                                                               /   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |         Tag (0x4)             |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   \                                                               \   /                         INFO String                           /   \                                                               \   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+Morneault, et al.           Standards Track                    [Page 31]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006   The format for the ASP Active Ack message using text-formatted   (string) Interface Identifiers is as follows:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |         Tag = 0x000b          |           Length = 8          |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                     Traffic Mode Type                         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |       Tag (0x3=string)        |            Length             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   \                                                               \   /                     Interface Identifiers                     /   \                                                               \   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   \                                                               \   /           Additional Interface Identifier Parameters          /   \                      of Tag Type 0x3                          \   /                                                               /   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |         Tag (0x4)             |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   \                                                               \   /                         INFO String                           /   \                                                               \   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The format of the Traffic Mode Type and Interface Identifier   parameters is the same as for the ASP Active message (seeSection3.3.2.5).   The format and description of the optional INFO String parameter are   the same as for the ASP Up message (seeSection 3.3.2.1).3.3.2.7.  ASP Inactive (ASPIA)   The ASPIA message is sent by an ASP to indicate to an SG that it is   no longer an active ASP to be used from within a list of ASPs.  The   SG will respond with an ASPIA Ack message and either discard incoming   messages or buffer for a timed period and then discard.Morneault, et al.           Standards Track                    [Page 32]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006   The ASPIA message contains the following parameters:      Interface Identifiers (Optional)         - Combination of integer and integer ranges, OR         - string (text formatted)      INFO String (Optional)   The format for the ASP Inactive message parameters using integer-   formatted Interface Identifiers is as follows:Morneault, et al.           Standards Track                    [Page 33]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |     Tag (0x1=integer)         |            Length             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   \                                                               \   /                     Interface Identifiers                     /   \                                                               \   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |    Tag (0x8=integer range)    |            Length             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                 Interface Identifier Start1*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Interface Identifier Stop1*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                 Interface Identifier Start2*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Interface Identifier Stop2*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+           .                                       .           .                                       .           .                                       .   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                 Interface Identifier StartN*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Interface Identifier StopN*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   \                                                               \   /            Additional Interface Identifier Parameters         /   \                  of Tag Type 0x1 or 0x8                       \   /                                                               /   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |         Tag (0x4)             |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   \                                                               \   /                         INFO String                           /   \                                                               \   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+Morneault, et al.           Standards Track                    [Page 34]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006   The format for the ASP Inactive message using text-formatted (string)   Interface Identifiers is as follows:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |       Tag (0x3=string)        |            Length             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   \                                                               \   /                     Interface Identifiers                     /   \                                                               \   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   \                                                               \   /           Additional Interface Identifier Parameters          /   \                      of Tag Type 0x3                          \   /                                                               /   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |         Tag (0x4)             |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   \                                                               \   /                         INFO String                           /   \                                                               \   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The optional Interface Identifiers parameter contains a list of   Interface Identifier integers or text strings indexing the   Application Server traffic that the sending ASP is   configured/registered to receive, but does not want to receive at   this time.   The format and description of the optional Interface Identifiers and   INFO String parameters are the same as for the ASP Active message   (seeSection 3.3.2.5).3.3.2.8.  ASP Inactive Ack   The ASP Inactive (ASPIA) Ack message is used to acknowledge an ASP   Inactive message received from a remote IUA peer.   The ASPIA Ack message contains the following parameters:      Interface Identifiers (Optional)         - Combination of integer and integer ranges, OR         - string (text formatted)      INFO String (Optional)Morneault, et al.           Standards Track                    [Page 35]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006   The format for the ASP Inactive Ack message parameters using   integer-formatted Interface Identifiers is as follows:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |     Tag (0x1=integer)         |            Length             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   \                                                               \   /                     Interface Identifiers                     /   \                                                               \   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |    Tag (0x8=integer range)    |            Length             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                 Interface Identifier Start1*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Interface Identifier Stop1*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                 Interface Identifier Start2*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Interface Identifier Stop2*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+           .                                       .           .                                       .           .                                       .   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                 Interface Identifier StartN*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Interface Identifier StopN*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   \                                                               \   /            Additional Interface Identifier Parameters         /   \                  of Tag Type 0x1 or 0x8                       \   /                                                               /   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |         Tag (0x4)             |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   \                                                               \   /                         INFO String                           /   \                                                               \   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+Morneault, et al.           Standards Track                    [Page 36]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006   The format for the ASP Inactive Ack message using text-formatted   (string) Interface Identifiers is as follows:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |       Tag (0x3=string)        |            Length             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   \                                                               \   /                     Interface Identifiers                     /   \                                                               \   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   \                                                               \   /           Additional Interface Identifier Parameters          /   \                      of Tag Type 0x3                          \   /                                                               /   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |         Tag (0x4)             |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   \                                                               \   /                         INFO String                           /   \                                                               \   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The format and description of the optional Interface Identifiers and   INFO String parameters are the same as for the ASP Active message   (seeSection 3.3.2.5).3.3.2.9.  Heartbeat (BEAT)   The Heartbeat message is optionally used to ensure that the IUA peers   are still available to each other.  It is recommended for use when   the IUA runs over a transport layer other than the SCTP, which has   its own heartbeat.   The BEAT message contains the following parameters:      Heartbeat Data    (Optional)Morneault, et al.           Standards Track                    [Page 37]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006   The format for the BEAT message is as follows:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |         Tag = 0x0009          |            Length             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   \                                                               \   /                       Heartbeat Data                          /   \                                                               \   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The Heartbeat Data parameter contents are defined by the sending   node.  The Heartbeat Data could include, for example, a Heartbeat   Sequence Number and/or Timestamp.  The receiver of a Heartbeat   message does not process this field as it is only of significance to   the sender.  The receiver MUST respond with a Heartbeat Ack message.3.3.2.10.  Heartbeat Ack (BEAT-Ack)   The Heartbeat Ack message is sent in response to a received Heartbeat   message.  It includes all the parameters of the received Heartbeat   message, without any change.3.3.3.  Layer Management (MGMT) Messages3.3.3.1.  Error (ERR)   The Error message is used to notify a peer of an error event   associated with an incoming message.  For example, the message type   might be unexpected given the current state, or a parameter value   might be invalid.   The Error message will have only the common message header.  The   Error message contains the following parameters:      Error Code      Diagnostic Information (Optional)Morneault, et al.           Standards Track                    [Page 38]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |          Tag = 0x000c         |          Length = 8           |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                          Error Code                           |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |          Tag = 0x0007         |            Length             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   \                                                               /   /                     Diagnostic Information                    \   \                                                               /   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The Error Code parameter indicates the reason for the Error message.   The Error parameter value can be one of the following values:      Invalid Version                               0x01      Invalid Interface Identifier                  0x02      Unsupported Message Class                     0x03      Unsupported Message Type                      0x04      Unsupported Traffic Handling Mode             0x05      Unexpected Message                            0x06      Protocol Error                                0x07      Unsupported Interface Identifier Type         0x08      Invalid Stream Identifier                     0x09      Unassigned TEI                                0x0a      Unrecognized SAPI                             0x0b      Invalid TEI, SAPI combination                 0x0c      Refused - Management Blocking                 0x0d      ASP Identifier Required                       0x0e      Invalid ASP Identifier                        0x0f   The "Invalid Version" error would be sent if a message was received   with an invalid or unsupported version.  The Error message would   contain the supported version in the Common header.  The Error   message could optionally provide the supported version in the   Diagnostic Information area.   The "Invalid Interface Identifier" error would be sent by an SG if an   ASP sends a message with an invalid (unconfigured) Interface   Identifier value.  For this error, the Diagnostic Information MUST   contain enough of the offending message to identify the invalid   Interface Identifier.  For example, in the case of QPTM and TEI   Status management messages, the Common and IUA message headers of the   offending message would be placed in the Diagnostic Information at a   minimum.Morneault, et al.           Standards Track                    [Page 39]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006   The "Unsupported Traffic Handling Mode" error would be sent by an SG   if an ASP sends an ASP Active with an unsupported Traffic Handling   Mode.  An example would be a case in which the SG did not support   load-sharing.   The "Unexpected Message" error would be sent by an ASP if it received   a QPTM message from an SG while it was in the Inactive state (the ASP   could optionally drop the message and not send an error).  It would   also be sent by an ASP if it received a defined and recognized   message that the SG is not expected to send (e.g., if the MGC   receives an IUA Establish Request message).   The "Protocol Error" error would be sent for any protocol anomaly   (i.e., a bogus message).   The "Invalid Stream Identifier" error would be sent if a message was   received on an unexpected SCTP stream (e.g., a MGMT message was   received on a stream other than "0").   The "Unsupported Interface Identifier Type" error would be sent by an   SG if an ASP sends a text-formatted Interface Identifier and the SG   only supports integer-formatted Interface Identifiers.  When the ASP   receives this error, it will need to resend its message with an   integer-formatted Interface Identifier.   The "Unsupported Message Type" error would be sent if a message with   an unexpected or unsupported Message Type is received.   The "Unsupported Message Class" error would be sent if a message with   an unexpected or unsupported Message Class is received.   The "Unassigned TEI" error may be used when the SG receives an IUA   message that includes a TEI that has not been assigned or recognized   for use on the indicated ISDN D-channel.   The "Unrecognized SAPI" error would handle the case of using an SAPI   that is not recognized by the SG.  The "Invalid TEI, SAPI   combination" error identifies errors where the TEI is assigned and   the SAPI is recognized, but the combination is not valid for the   interface (e.g., on a Basic Rate Interface (BRI), the MGC tries to   send Q.921 Management messages via IUA when Layer Management at the   SG SHOULD be performing this function).   The "Refused - Management Blocking" error is sent when an ASP Up or   ASP Active message is received and the request is refused for   management reasons (e.g., management lockout).Morneault, et al.           Standards Track                    [Page 40]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006   The "ASP Identifier Required" is sent by an SG in response to an ASP   Up message that does not contain an ASP Identifier parameter when the   SG requires one.  The ASP SHOULD resend the ASP Up message with an   ASP Identifier.   The "Invalid ASP Identifier" is sent by a SG in response to an ASP Up   message with an invalid (i.e., non-unique) ASP Identifier.   Diagnostic Information: variable length      When included, the optional Diagnostic information can be any      information germane to the error condition, to assist in      identification of the error condition.  The Diagnostic information      SHOULD contain the offending message.   Error messages MUST NOT be generated in response to other Error   messages.3.3.3.2.  Notify (NTFY)   The Notify message used to provide an autonomous indication of IUA   events to an IUA peer.   The Notify message will use only the common message header.  The   Notify message contains the following parameters:      Status                     (Mandatory)      ASP Identifier             (Optional)      Interface Identifiers      (Optional)      INFO String                (Optional)   The format for the Notify message with integer-formatted Interface   Identifiers is as follows:Morneault, et al.           Standards Track                    [Page 41]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Tag = 0x000d           |           Length = 8          |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Status Type            |    Status Identification      |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Tag = 0x0011           |           Length = 8          |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                        ASP Identifier                         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |     Tag (0x1=integer)         |            Length             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   \                                                               \   /                     Interface Identifiers                     /   \                                                               \   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |    Tag (0x8=integer range)    |            Length             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                 Interface Identifier Start1*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Interface Identifier Stop1*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                 Interface Identifier Start2*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Interface Identifier Stop2*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+           .                                       .           .                                       .           .                                       .   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                 Interface Identifier StartN*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Interface Identifier StopN*                  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   \                                                               \   /            Additional Interface Identifier Parameters         /   \                  of Tag Type 0x1 or 0x8                       \   /                                                               /   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |         Tag = 0x0004          |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   \                                                               \   /                         INFO String                           /   \                                                               \   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+Morneault, et al.           Standards Track                    [Page 42]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006   The format for the Notify message with text-formatted Interface   Identifiers is as follows:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Tag = 0x000d           |           Length = 8          |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Status Type            |    Status Identification      |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Tag = 0x0011           |           Length = 8          |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                        ASP Identifier                         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |       Tag (0x3=string)        |            Length             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   \                                                               \   /                     Interface Identifiers                     /   \                                                               \   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   \                                                               \   /           Additional Interface Identifier Parameters          /   \                      of Tag Type 0x3                          \   /                                                               /   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |         Tag = 0x0004          |             Length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   \                                                               \   /                         INFO String                           /   \                                                               \   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    Status Type: 16 bits (unsigned integer)      The Status Type parameter identifies the type of the Notify      message.  The following are the valid Status Type values:         1     Application Server State Change (AS-State_Change)         2     Other   Status Information: 16 bits (unsigned integer)      The Status Information parameter contains more detailed      information for the notification, based on the value of the Status      Type.  If the Status Type is AS-State_Change, the following Status      Information values are used:Morneault, et al.           Standards Track                    [Page 43]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006         1    reserved         2    Application Server Inactive (AS-INACTIVE)         3    Application Server Active (AS-ACTIVE)         4    Application Server Pending (AS-PENDING)   These notifications are sent from an SG to an ASP upon a change in   status of a particular Application Server.  The value reflects the   new state of the Application Server.   If the Status Type is Other, then the following Status Information   values are defined:      Value          Description        1    Insufficient ASP resources active in AS        2    Alternate ASP Active        3    ASP Failure   These notifications are not based on the SG reporting the state   change of an ASP or AS.  In the Insufficient ASP Resources case, the   SG is indicating to an ASP-INACTIVE ASP(s) in the AS that another ASP   is required in order to handle the load of the AS (Load-sharing   mode).  For the Alternate ASP Active case, an ASP is informed when an   alternate ASP transitions to the ASP-ACTIVE state in Over-ride mode.   The ASP Identifier (if available) of the Alternate ASP MUST be placed   in the message.  For the ASP Failure case, the SG is indicating to   ASP(s) in the AS that one of the ASPs has transitioned to ASP-DOWN.   The ASP Identifier (if available) of the failed ASP MUST be placed in   the message.   The format and description of the optional ASP Identifier are the   same as for the ASP Up message (seeSection 3.3.2.1).  The format and   description of the optional Interface Identifiers and INFO String   parameters are the same as for the ASP Active message (seeSection3.3.2.5).3.3.3.3.  TEI Status Messages (Request, Confirm, and Indication)   The TEI Status messages are exchanged between IUA layer peers to   request, confirm, and indicate the status of a particular TEI.   The TEI Status messages contain the common message header followed by   IUA message header.  The TEI Status Request message does not contain   any additional parameters.   In the integrated ISDN Layer 2/3 model (e.g., in traditional ISDN   switches), it is assumed that the Layer Management for the Q.921   Layer and the Q.931 layer are co-located.  When backhauling ISDN,   this assumption is not necessarily valid.  The TEI Status messagesMorneault, et al.           Standards Track                    [Page 44]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006   allow the two Layer Management entities to communicate the status of   the TEI.  In addition, knowing that a TEI is in service allows the   ASP to request the SG to establish the datalink to the terminal (via   the IUA Establish message) for signaling if the ASP wants to be in   control of data link establishment.  Another use of the TEI Status   procedure is where the Layer Management at the ASP can prepare for   send/receive signaling to/from a given TEI and confirm/verify the   establishment of a datalink to that TEI.  For example, if a datalink   is established for a TEI that the ASP did not know was assigned, the   ASP can check to see whether it was assigned or whether there was an   error in the signaling message.  Also, knowing that a TEI is out of   service, the ASP need not request the SG to establish a datalink to   that TEI.   The TEI Status Indication and Confirm messages contain the following   parameter:     STATUS    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |          Tag = 0x0010         |          Length = 8           |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                              Status                           |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The valid values for Status are shown in the following table.      Define     Value           Description   ASSIGNED       0x0        TEI is considered assigned by Q.921   UNASSIGNED     0x1        TEI is considered unassigned by Q.9213.3.3.4.  TEI Query Message (Request)   The TEI Query message is sent by the ASP to query the TEI(s).  This   message consists of the common header and IUA header.  The DLCI in   the IUA header MUST be ignored by the SG.  The SG will respond to   this message with TEI Status Indication(s).Morneault, et al.           Standards Track                    [Page 45]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 20064.  Procedures   The IUA layer needs to respond to various primitives it receives from   other layers as well as messages it receives from the peer IUA layer.   This section describes various procedures involved in response to   these events.4.1.  Procedures to Support Service inSection 1.4.1   These procedures achieve the IUA layer's "Transport of Q.921/Q.931   boundary primitives" service.4.1.1.  Q.921 or Q.931 Primitives Procedures   On receiving these primitives from the local layer, the IUA layer   will send the corresponding QPTM message (Data, Unit Data, Establish,   Release) to its peer.  While doing so, the IUA layer needs to fill   various fields of the common and specific headers correctly.  In   addition, the message needs to be sent on the SCTP stream that   corresponds to the D channel (Interface Identifier).4.1.2.  QPTM Message Procedures   On receiving QPTM messages from a peer IUA layer, the IUA layer on an   SG or MGC needs to invoke the corresponding layer primitives   (DL-ESTABLISH, DL-DATA, DL-UNIT DATA, DL-RELEASE) to the local Q.921   or Q.931 layer.4.2.  Procedures to Support Service inSection 1.4.2   These procedures achieve the IUA layer's "Support for Communication   between Layer Managements" service.4.2.1.  Layer Management Primitives Procedures   On receiving these primitives from the local Layer Management, the   IUA layer will provide the appropriate response primitive across the   internal local Layer Management interface.   An M-SCTP ESTABLISH request from Layer Management will initiate the   establishment of an SCTP association.  An M-SCTP ESTABLISH confirm   will be sent to Layer Management when the initiated association setup   is complete.  An M-SCTP ESTABLISH indication is sent to Layer   Management upon successful completion of an incoming SCTP association   setup from a peer IUA node.Morneault, et al.           Standards Track                    [Page 46]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006   An M-SCTP RELEASE request from Layer Management will initiate the   teardown of an SCTP association.  An M-SCTP RELEASE confirm will be   sent by Layer Management when the association teardown is complete.   An M-SCTP RELEASE indication is sent to Layer Management upon   successful teardown of an SCTP association initiated by a peer IUA.   M-SCTP STATUS request and indication support a Layer Management query   of the local status of a particular SCTP association.   M-NOTIFY indication and M-ERROR indication indicate to Layer   Management the notification or error information contained in a   received IUA Notify or Error message, respectively.  These   indications can also be generated based on local IUA events.   M-ASP STATUS request/indication and M-AS-STATUS request/indication   support a Layer Management query of the local status of a particular   ASP or AS.  No IUA peer protocol is invoked.   M-ASP-UP request, M-ASP-DOWN request, M-ASP-INACTIVE request, and   M-ASP-ACTIVE request allow Layer Management at an ASP to initiate   state changes.  These requests result in outgoing IUA ASP UP, ASP   DOWN, ASP INACTIVE, and ASP ACTIVE messages.   M-ASP-UP confirmation, M-ASP-DOWN confirmation, M-ASP-INACTIVE   confirmation, and M-ASP-ACTIVE confirmation indicate to Layer   Management that the previous request has been confirmed.   Upon receipt of an M-TEI Status primitive from Layer Management, the   IUA will send the corresponding MGMT message (TEI Status) to its   peer.  While doing so, the IUA layer needs to fill various fields of   the common and specific headers correctly.   All MGMT messages are sent on a sequenced stream to ensure ordering.   SCTP stream '0' SHOULD be used.4.2.2.  Receipt of IUA Peer Management Messages   Upon receipt of IUA Management messages, the IUA layer MUST invoke   the corresponding Layer Management primitive indications (e.g., M-AS   Status ind., M-ASP Status ind., M-ERROR ind., M-TEI STATUS) to the   local layer management.   M-NOTIFY indication and M-ERROR indication indicate to Layer   Management the notification or error information contained in a   received IUA Notify or Error message.  These indications can also be   generated based on local IUA events.Morneault, et al.           Standards Track                    [Page 47]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006   All MGMT messages are sent on a sequenced stream to ensure ordering.   SCTP stream '0' SHOULD be used.4.3.  Procedures to Support Service inSection 1.4.3   These procedures achieve the IUA layer's "Support for management of   active associations between SG and MGC" service.4.3.1.  AS and ASP State Maintenance   The IUA layer on the SG needs to maintain the states of each ASP as   well as the state of the AS.4.3.1.1.  ASP States   The state of the each ASP, in each AS that it is configured, is   maintained in the IUA layer on the SG.  The state of an ASP changes   due to the following type of events:      *  Reception of messages from peer IUA layer at that ASP      *  Reception of some messages from the peer IUA layer at other         ASPs in the AS      *  Reception of indications from SCTP layer      *  Local Management intervention   The ASP state transition diagram is shown in Figure 6.  The possible   states of an ASP are the following:   ASP-DOWN: Application Server Process is unavailable and/or the   related SCTP association is down.  Initially, all ASPs will be in   this state.  An ASP in this state SHOULD NOT be sent any IUA   messages.   ASP-INACTIVE: The remote IUA peer at the ASP is available (and the   related SCTP association is up) but application traffic is stopped.   In this state, the ASP can be sent any non-QPTM IUA messages (except   for TEI Status messages).   ASP-ACTIVE: The remote IUA peer at the ASP is available and   application traffic is active.Morneault, et al.           Standards Track                    [Page 48]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006                                    +--------------+             +----------------------|              |             |   Alternate  +-------|  ASP-ACTIVE  |             |       ASP    |       +--------------+             |    Takeover  |           ^     |             |              |    ASP    |     | ASP Inactive /             |              |    Active |     | ASP Up             |              |           |     v             |              |       +--------------+             |              |       |              |             |              +------>| ASP-INACTIVE |             |                      +--------------+             |                          ^    |   ASP Down/ |                     ASP  |    | ASP Down /   SCTP CDI/ |                     Up   |    | SCTP CDI /   SCTP RI   |                          |    v SCTP RI             |                      +--------------+             +--------------------->|              |                                    |   ASP-DOWN   |                                    +--------------+                  Figure 6.  ASP State Transition Diagram   SCTP CDI:  The local SCTP layer's Communication Down Indication to   the Upper Layer Protocol (IUA) on an SG.  The local SCTP will send   this indication when it detects the loss of connectivity to the ASP's   peer SCTP layer.  SCTP CDI is understood as either a SHUTDOWN   COMPLETE notification and COMMUNICATION LOST notification from the   SCTP.   SCTP RI: The local SCTP layer's Restart indication to the upper layer   protocol (IUA) on an SG.  The local SCTP will send this indication   when it detects a restart from the ASP's peer SCTP layer.4.3.1.2.  AS States   The state of the AS is maintained in the IUA layer on the SG.   The state of an AS changes due to events.  These events include the   following:      *  ASP state transitions      *  Recovery timer triggersMorneault, et al.           Standards Track                    [Page 49]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006   The possible states of an AS are the following:   AS-DOWN: The Application Server is unavailable.  This state implies   that all related ASPs are in the ASP-DOWN state for this AS.   Initially, the AS will be in this state.   AS-INACTIVE: The Application Server is available but no application   traffic is active (i.e., one or more related ASPs are in the   ASP-INACTIVE state, but none in the ASP-ACTIVE state).  The recovery   timer T(r) is not running or has expired.   AS-ACTIVE: The Application Server is available and application   traffic is active.  This state implies that at least one ASP is in   the ASP-ACTIVE state.   AS-PENDING: An active ASP has transitioned from active to inactive or   down and it was the last remaining active ASP in the AS.  A recovery   timer T(r) will be started and all incoming SCN messages will be   queued by the SG.  If an ASP becomes active before T(r) expires, the   AS will move to AS-ACTIVE state and all the queued messages will be   sent to the active ASP.   If T(r) expires before an ASP becomes active, the SG stops queuing   messages and discards all previously queued messages.  The AS will   move to AS-INACTIVE if at least one ASP is in ASP-INACTIVE state,   otherwise it will move to AS-DOWN state.Morneault, et al.           Standards Track                    [Page 50]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006      +----------+ one ASP trans to ASP-ACTIVE +-------------+      |    AS-   |---------------------------->|     AS-     |      | INACTIVE |                             |   ACTIVE    |      |          |<---                         |             |      +----------+    \                        +-------------+         ^   |         \ Tr Expiry,                ^    |         |   |          \ at least one             |    |         |   |           \ ASP in ASP-INACTIVE     |    |         |   |            \                        |    |         |   |             \                       |    |         |   |              \                      |    | one ASP |   | all ASP       \            one ASP  |    | Last ACTIVE trans   |   | trans to       \           trans to |    | ASP trans to to      |   | ASP-DOWN        -------\   ASP-     |    | ASP-INACTIVE ASP-    |   |                         \  ACTIVE   |    | or ASP-DOWN INACTIVE|   |                          \          |    |  (start Tr)         |   |                           \         |    |         |   |                            \        |    |         |   v                             \       |    v      +----------+                          \  +-------------+      |          |                           --|             |      | AS-DOWN  |                             | AS-PENDING  |      |          |                             |  (queueing) |      |          |<----------------------------|             |      +----------+    Tr Expiry and no ASP     +-------------+                     in ASP-INACTIVE state     Tr = Recovery Timer                 Figure 7: AS State Transition Diagram4.3.2.  ASPM Procedures for Primitives   Before the establishment of an SCTP association, the ASP state at   both the SG and ASP is assumed to be in the state ASP-DOWN.   As the ASP is responsible for initiating the setup of an SCTP   association to an SG, the IUA layer at an ASP receives an M-SCTP   ESTABLISH request primitive from the Layer Management, the IUA layer   will try to establish an SCTP association with the remote IUA peer at   an SG.  Upon reception of an eventual SCTP-Communication Up confirm   primitive from the SCTP, the IUA layer will invoke the primitive   M-SCTP ESTABLISH confirm to the Layer Management.   At the SG, the IUA layer will receive an SCTP Communication Up   indication primitive from the SCTP.  The IUA layer will then invoke   the primitive M-SCTP ESTABLISH indication to the Layer Management.Morneault, et al.           Standards Track                    [Page 51]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006   Once the SCTP association is established and assuming that the local   IUA-User is ready, the local ASP IUA Application Server Process   Maintenance (ASPM) function will initiate the ASPM procedures, using   the ASP Up/-Down/-Active/-Inactive messages to convey the ASP state   to the SG (seeSection 4.3.3).   The Layer Management and the IUA layer on SG can communicate the   status of the application server using the M-AS_STATUS primitives.   The Layer Management and the IUA layer on both the SG and ASP can   communicate the status of an SCTP association using the M-SCTP_STATUS   primitives.   If the Layer Management on SG or ASP wants to bring down an SCTP   association for management reasons, it would send M-SCTP RELEASE   request primitive to the local IUA layer.  The IUA layer would   release the SCTP association and upon receiving the SCTP-   COMMUNICATION_DOWN indication from the underlying SCTP layer, it   would inform the local Layer Management using M-SCTP_RELEASE confirm   primitive.   If the IUA layer receives an SCTP-COMMUNICATION_DOWN indication from   the underlying SCTP layer, it will inform the Layer Management by   invoking the M-SCTP RELEASE indication primitive.  The state of the   ASP will be moved to "Down" at both the SG and ASP.   At an ASP, the Layer Management MAY try to reestablish the SCTP   association using M-SCTP_ESTABLISH request primitive.   In the case of an SCTP-RESTART indication at an ASP, the ASP is now   considered by its IUA peer to be in the ASP-DOWN state.  The ASP, if   it is to recover, must begin any recovery with the ASP Up procedure.4.3.3.  ASPM Procedures for Peer-to-Peer Messages   All ASPM messages are sent on a sequenced stream to ensure ordering.   SCTP stream '0' SHOULD be used.4.3.3.1.  ASP Up Procedures   After an ASP has successfully established an SCTP association to an   SG, the SG waits for the ASP to send an ASP Up message, indicating   that the ASP IUA peer is available.  The ASP is always the initiator   of the ASP Up message.  This action MAY be initiated at the ASP by an   M-ASP_UP request primitive from Layer Management or MAY be initiated   automatically by an IUA management function.Morneault, et al.           Standards Track                    [Page 52]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006   When an ASP Up message is received at an SG and internally the remote   ASP is in the ASP-DOWN state and not considered locked out for local   management reasons, the SG marks the remote ASP in the state   ASP-INACTIVE and informs Layer Management with an M-ASP_Up indication   primitive.  If the SG is aware, via current configuration data, which   Application Servers the ASP is configured to operate in, the SG   updates the ASP state to ASP-INACTIVE in each AS that it is a member.   Alternatively, the SG may move the ASP into a pool of Inactive ASPs   available for future configuration within Application Server(s),   determined in a subsequent ASP Active procedure.  If the ASP Up   message contains an ASP Identifier, the SG should save the ASP   Identifier for that ASP.  The SG MUST send an ASP Up Ack message in   response to a received ASP Up message even if the ASP is already   marked as ASP-INACTIVE at the SG.   If for any local reason (e.g., management lockout) the SG cannot   respond with an ASP Up Ack message, the SG responds to an ASP Up   message with an Error message with reason "Refused - Management   Blocking".   At the ASP, the ASP Up Ack message received is not acknowledged.   Layer Management is informed with an M-ASP_UP confirm primitive.   When the ASP sends an ASP Up message, it starts timer T(ack).  If the   ASP does not receive a response to an ASP Up message within T(ack),   the ASP MAY restart T(ack) and resend ASP Up messages until it   receives an ASP Up Ack message.  T(ack) is provisionable, with a   default of 2 seconds.  Alternatively, retransmission of ASP Up   messages MAY be put under control of Layer Management.  In this   method, expiry of T(ack) results in an M-ASP_UP confirm primitive   carrying a negative indication.   The ASP must wait for the ASP Up Ack message before sending any other   IUA messages (e.g., ASP Active).  If the SG receives any other IUA   messages before an ASP Up message is received (other than ASP Down;   seeSection 4.3.3.2), the SG MAY discard them.   If an ASP Up message is received and internally the remote ASP is in   the ASP-ACTIVE state, an ASP Up Ack message is returned, as well as   an Error message ("Unexpected Message"), and the remote ASP state is   changed to ASP-INACTIVE in all relevant Application Servers.   If an ASP Up message is received and internally the remote ASP is   already in the ASP-INACTIVE state, an ASP Up Ack message is returned   and no further action is taken.Morneault, et al.           Standards Track                    [Page 53]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 20064.3.3.2.  ASP Down Procedures   The ASP will send an ASP Down message to an SG when the ASP wishes to   be removed from the list of ASPs in all Application Servers that it   is a member and no longer receive any IUA QPTM or ASPTM messages.   This action MAY be initiated at the ASP by an M-ASP_DOWN request   primitive from Layer Management or MAY be initiated automatically by   an IUA management function.   Whether the ASP is permanently removed from an AS is a function of   configuration management.   The SG marks the ASP as ASP-DOWN, informs Layer Management with an   M-ASP_Down indication primitive, and returns an ASP Down Ack message   to the ASP.   The SG MUST send an ASP Down Ack message in response to a received   ASP Down message from the ASP even if the ASP is already marked as   ASP-DOWN at the SG.   At the ASP, the ASP Down Ack message received is not acknowledged.   Layer Management is informed with an M-ASP_DOWN confirm primitive.   If the ASP receives an ASP Down Ack without having sent an ASP Down   message, the ASP should now consider itself as in the ASP-DOWN state.   If the ASP was previously in the ASP-ACTIVE or ASP-INACTIVE state,   the ASP should then initiate procedures to return itself to its   previous state.   When the ASP sends an ASP Down message, it starts timer T(ack).  If   the ASP does not receive a response to an ASP Down message within   T(ack), the ASP MAY restart T(ack) and resend ASP Down messages until   it receives an ASP Down Ack message.  T(ack) is provisionable, with a   default of 2 seconds.  Alternatively, retransmission of ASP Down   messages MAY be put under control of Layer Management.  In this   method, expiry of T(ack) results in an M-ASP_DOWN confirm primitive   carrying a negative indication.4.3.3.3.  IUA Version Control   If a ASP Up message with an unsupported version is received, the   receiving end responds with an Error message, indicating the version   the receiving node supports and notifies Layer Management.   This is useful when protocol version upgrades are being performed in   a network.  A node upgraded to a newer version SHOULD support the   older versions used on other nodes it is communicating with.  Because   ASPs initiate the ASP Up procedure it is assumed that the Error   message would normally come from the SG.Morneault, et al.           Standards Track                    [Page 54]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 20064.3.3.4.  ASP Active Procedures   Any time after the ASP has received an ASP Up Ack from the SG, the   ASP sends an ASP Active message to the SG indicating that the ASP is   ready to start processing traffic.  This action MAY be initiated at   the ASP by an M-ASP_ACTIVE request primitive from Layer Management or   MAY be initiated automatically by an IUA management function.  In the   case where an ASP is configured/registered to process the traffic for   more than one Application Server across an SCTP association, the   ASPAC contains one or more Interface Identifiers to indicate for   which Application Servers the ASPAC applies.   If the Application Server can be successfully activated, the SG   responds to the ASP with an ASPAC Ack message acknowledging that the   ASPAC message was received and starts sending traffic for the   Application Server to that ASP.   In the case where an "out-of-the-blue" ASP Active message is received   (i.e., the ASP has not registered with the SG or the SG has no static   configuration data for the ASP), the message MAY be silently   discarded.   The SG MUST send an ASP Active Ack message in response to a received   ASP Active message from the ASP, if the ASP is already marked in the   ASP-ACTIVE state at the SG.   At the ASP, the ASP Active Ack message received is not acknowledged.   Layer Management is informed with an M-ASP_ACTIVE confirm primitive.   It is possible for the ASP to receive Data message(s) before the ASP   Active Ack message as the ASP Active Ack and Data messages from an SG   may be sent on different SCTP streams.  Message loss is possible as   the ASP does not consider itself in the ASP-ACTIVE state until   reception of the ASP Active Ack message.   When the ASP sends an ASP Active message, it starts timer T(ack).  If   the ASP does not receive a response to an ASP Active message within   T(ack), the ASP MAY restart T(ack) and resend ASP Active messages   until it receives an ASP Active Ack message.  T(ack) is   provisionable, with a default of 2 seconds.  Alternatively,   retransmission of ASP Active messages MAY be put under control of   Layer Management.  In this method, expiry of T(ack) results in an M-   ASP_ACTIVE confirm primitive carrying a negative indication.   The ASP MUST wait for the ASP Active Ack message from the SG before   sending any Data messages or it will risk message loss.  If the SG   receives QPTM messages before an ASP Active is received, the SG   SHOULD discard these messages.Morneault, et al.           Standards Track                    [Page 55]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006   There are two modes of Application Server traffic handling in the SG   IUA: Over-ride and Load-sharing.  The Type parameter in the ASPAC   message indicates the mode used in a particular Application Server.   If the SG determines that the mode indicates in an ASPAC is   incompatible with the traffic handling mode currently used in the AS,   the SG responds with an Error message indicating Unsupported Traffic   Handling Mode.   In the case of an Over-ride mode AS, reception of an ASPAC message at   an SG causes the redirection of all traffic for the AS to the ASP   that sent the ASPAC.  The SG responds to the ASPAC with an ASP Active   Ack message to the ASP.  Any previously active ASP in the AS is now   considered Inactive and will no longer receive traffic from the SG   within the AS.  The SG sends a Notify (Alternate ASP Active) to the   previously active ASP in the AS, after stopping all traffic to that   ASP.   In the case of a load-share mode AS, reception of an ASPAC message at   an SG causes the direction of traffic to the ASP sending the ASPAC,   in addition to all the other ASPs that are currently active in the   AS.  The algorithm at the SG for load-sharing traffic within an AS to   all the active ASPs is implementation dependent.  The algorithm   could, for example, be round-robin or based on information in the   Data message, such as Interface Identifier, depending on the   requirements of the application and the call state handling   assumptions of the collection of ASPs in the AS.  The SG responds to   the ASPAC with an ASP Active Ack message to the ASP.4.3.3.5.  ASP Inactive Procedures   When an ASP wishes to withdraw from receiving traffic within an AS,   the ASP sends an ASP Inactive message to the SG.  This action MAY be   initiated at the ASP by an M-ASP_INACTIVE request primitive from   Layer Management or MAY be initiated automatically by an IUA   management function.  In the case where an ASP is configured/   registered to process the traffic for more than one Application   Server across an SCTP association, the ASPIA contains one or more   Interface Identifiers to indicate for which Application Servers the   ASP Inactive message applies.   There are two modes of Application Server traffic handling in the SG   IUA when withdrawing an ASP from service: Over-ride and Load-sharing.   In the case of an Over-ride mode AS, where normally another ASP has   already taken over the traffic within the AS with an Over-ride ASPAC   message, the ASP that sends the ASPIA message is already considered   by the SG to be ASP-INACTIVE.  An ASPIA Ack message is sent to the   ASP, after ensuring that all traffic is stopped to the ASP.Morneault, et al.           Standards Track                    [Page 56]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006   In the case of a Load-share mode AS, the SG moves the ASP to the   ASP-INACTIVE state and the AS traffic is re-allocated across the   remaining ASP-ACTIVE ASPs per the load-sharing algorithm currently   used within the AS.  An ASPIA Ack message is sent to the ASP after   all traffic is halted to the ASP.  A Notify (Insufficient ASPs)   message MAY be sent to all inactive ASPs, if required.   When the ASP sends an ASP Inactive message it starts timer T(ack).   If the ASP does not receive a response to an ASP Inactive message   within T(ack), the ASP MAY restart T(ack) and resend ASP Inactive   messages until it receives an ASP Inactive Ack message.  T(ack) is   provisionable, with a default of 2 seconds.  Alternatively,   retransmission of ASP Inactive messages MAY be put under control of   Layer Management.  In this method, expiry of T(ack) results in a M-   ASP_Inactive confirm primitive carrying a negative indication.   If no other ASPs in the Application Server are in the state   ASP-ACTIVE, the SG MUST send a Notify ("AS-Pending") message to all   of the ASPs in the AS that are in the state ASP-INACTIVE.  The SG   SHOULD start buffering the incoming messages for T(r) seconds, after   which messages MAY be discarded.  T(r) is configurable by the network   operator.  If the SG receives an ASP Active message from an ASP in   the AS before expiry of T(r), the buffered traffic is directed to   that ASP and the timer is cancelled.  If T(r) expires, the AS is   moved to the AS-INACTIVE state.   At the ASP, the ASP Inactive Ack message received is not   acknowledged.  Layer Management is informed with an M-ASP_INACTIVE   confirm primitive.  If the ASP receives an ASP Inactive Ack without   having sent an ASP Inactive message, the ASP should now consider   itself as in the ASP-INACTIVE state.  If the ASP was previously in   the ASP-ACTIVE state, the ASP should then initiate procedures to   return itself to its previous state.4.3.3.6.  Notify Procedures   A Notify message reflecting a change in the AS state MUST be sent to   all ASPs in the AS, except those in the ASP-DOWN state, with   appropriate Status Information and any ASP Identifier of the failed   ASP.  At the ASP, Layer Management is informed with an M-NOTIFY   indication primitive.  The Notify message must be sent whether the AS   state change was a result of an ASP failure or reception of an ASP   State Management (ASPSM) / ASP Traffic Management (ASPTM) message.   In the second case, the Notify message MUST be sent after any related   acknowledgement messages  (e.g., ASP Up Ack, ASP Down Ack, ASP Active   Ack, or ASP Inactive Ack).Morneault, et al.           Standards Track                    [Page 57]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006   In the case where a Notify ("AS-Pending") message is sent by an SG   that now has no ASPs active to service the traffic, or a NTFY   ("Insufficient ASPs") is sent in the Load-share mode, the Notify does   not explicitly compel the ASP(s) receiving the message to become   active.  The ASPs remain in control of what (and when) action is   taken.4.3.3.7.  Heartbeat   The optional Heartbeat procedures MAY be used when operating over   transport layers that do not have their own heartbeat mechanism for   detecting loss of the transport association (i.e., other than the   SCTP).   Either IUA peer may optionally send Heartbeat messages periodically,   subject to a provisionable timer T(beat).  Upon receiving a Heartbeat   message, the IUA peer MUST respond with a Heartbeat Ack message.   If no Heartbeat Ack message (or any other IUA message) is received   from the IUA peer within 2*T(beat), the remote IUA peer is considered   unavailable.  Transmission of Heartbeat messages is stopped and the   signaling process SHOULD attempt to re-establish communication if it   is configured as the client for the disconnected IUA peer.   The BEAT message MAY optionally contain an opaque Heartbeat Data   parameter that MUST be echoed back unchanged in the related Beat Ack   message.  The ASP upon examining the contents of the returned BEAT   Ack message MAY choose to consider the remote ASP as unavailable.   The contents/format of the Heartbeat Data parameter is implementation   dependent and only of local interest to the original sender.  The   contents MAY be used, for example, to support a Heartbeat sequence   algorithm (to detect missing Heartbeats), and/or a timestamp   mechanism (to evaluate delays).   Note:  Heartbeat-related events are not shown in Figure 6, "ASP State   Transition Diagram".5.  Examples5.1.  Establishment of Association and Traffic between SGs and ASPs5.1.1.  Single ASP in an Application Server (1+0 sparing)   This scenario shows the example IUA message flows for the   establishment of traffic between an SG and an ASP, where only one ASP   is configured within an AS (no backup).  It is assumed that the SCTP   association is already setup.Morneault, et al.           Standards Track                    [Page 58]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006                SG                       ASP1                 |                 |<---------ASP Up----------|                 |--------ASP Up Ack------->|                 |                          |                 |-----NTFY(AS-INACTIVE)--->|                 |                          |                 |<-------ASP Active--------|                 |------ASP Active Ack----->|                 |                          |                 |------NTFY(AS-ACTIVE)---->|                 |                          |5.1.2.  Two ASPs in Application Server (1+1 sparing)   This scenario shows the example IUA message flows for the   establishment of traffic between an SG and two ASPs in the same   Application Server, where ASP1 is configured to be Active and ASP2 a   standby in the event of communication failure or the withdrawal from   service of ASP1.  ASP2 MAY act as a hot, warm, or cold standby   depending on the extent to which ASP1 and ASP2 share call state or   can communicate call state under failure/withdrawal events.  The   example message flow is the same whether the ASP Active messages are   Over-ride or Load-share mode although typically this example would   use an Over-ride mode.          SG                        ASP1                        ASP2           |                         |                          |           |<--------ASP Up----------|                          |           |-------ASP Up Ack------->|                          |           |                         |                          |           |----NTFY(AS-INACTIVE)--->|                          |           |                         |                          |           |<-----------------------------ASP Up----------------|           |----------------------------ASP Up Ack------------->|           |                         |                          |           |                         |                          |           |<-------ASP Active-------|                          |           |-----ASP Active Ack----->|                          |           |                         |                          |           |-----NTFY(AS-ACTIVE)---->|                          |           |----------------------NTFY(AS-ACTIVE)-------------->|Morneault, et al.           Standards Track                    [Page 59]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 20065.1.3.  Two ASPs in an Application Server (1+1 sparing, load-sharing        case)   This scenario shows a similar case toSection 5.1.2 but where the two   ASPs are brought to active and load-share the traffic load.  In this   case, one ASP is sufficient to handle the total traffic load.          SG                       ASP1                       ASP2           |                         |                          |           |<---------ASP Up---------|                          |           |--------ASP Up Ack------>|                          |           |                         |                          |           |----NTFY(AS-INACTIVE)--->|                          |           |                         |                          |           |<------------------------------ASP Up---------------|           |-----------------------------ASP Up Ack------------>|           |                         |                          |           |                         |                          |           |<--ASP Active (Ldshr)----|                          |           |----ASP Active Ack------>|                          |           |                         |                          |           |-----NTFY(AS-ACTIVE)---->|                          |           |----------------------NTFY(AS-ACTIVE)-------------->|           |                         |                          |           |<----------------------------ASP Active (Ldshr)-----|           |-----------------------------ASP Active Ack-------->|           |                         |                          |5.1.4.  Three ASPs in an Application Server (n+k sparing, load-sharing        case)   This scenario shows the example IUA message flows for the   establishment of traffic between an SG and three ASPs in the same   Application Server, where two of the ASPs are brought to active and   share the load.  In this case, a minimum of two ASPs are required to   handle the total traffic load (2+1 sparing).Morneault, et al.           Standards Track                    [Page 60]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006      SG                  ASP1                ASP2                ASP3       |                    |                   |                   |       |<------ASP Up-------|                   |                   |       |-----ASP Up Ack---->|                   |                   |       |                    |                   |                   |       |-NTFY(AS-INACTIVE)->|                   |                   |       |                    |                   |                   |       |<--------------------------ASP Up-------|                   |       |-----------------------ASP Up Ack------>|                   |       |                    |                   |                   |       |<---------------------------------------------ASP Up--------|       |--------------------------------------------ASP Up Ack----->|       |                    |                   |                   |       |                    |                   |                   |       |<-ASP Act (Ldshr)---|                   |                   |       |----ASP Act Ack---->|                   |                   |       |                    |                   |                   |       |<---------------------ASP Act (Ldshr)---|                   |       |----------------------ASP Act Ack------>|                   |       |                    |                   |                   |       |--NTFY(AS-ACTIVE)-->|                   |                   |       |---------------NTFY(AS-ACTIVE)--------->|                   |       |------------------------NTFY(AS-ACTIVE)-------------------->|5.1.5.  Interface Identifier Configuration Mismatch Example   This scenario shows the example IUA message flows for the   establishment of traffic between an SG and an ASP in which some of   the Interface Identifiers have been misconfigured on the ASP side.   The SG in this case has Interface Identifiers 1-5 configured for   ASP1.                SG                               ASP1                 |                                |                 |                                |                 |<----ASP Active (IIDs 1-10)-----|                 |---ASP Active Ack (IIDs 1-5)--->|                 |-------Error (IIDs 6)---------->|                 |-------Error (IIDs 7)---------->|                 |-------Error (IIDs 8)---------->|                 |-------Error (IIDs 9)---------->|                 |-------Error (IIDs 10)--------->|                 |                                |Morneault, et al.           Standards Track                    [Page 61]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 20065.2.  ASP Traffic Fail-over Examples5.2.1.  (1+1 Sparing, withdrawal of ASP, Backup Over-ride)   The following example shows a case in which an ASP withdraws from   service:          SG                       ASP1                       ASP2           |                         |                          |           |<-----ASP Inactive-------|                          |           |----ASP Inactive Ack---->|                          |           |                         |                          |           |----NTFY(AS-Pending)---->|                          |           |-------------------NTFY(AS-Pending)---------------->|           |                         |                          |           |<------------------------------ ASP Active----------|           |-----------------------------ASP Active Ack)------->|           |                         |                          |           |----NTFY(AS-ACTIVE)----->|                          |           |-------------------NTFY(AS-ACTIVE)----------------->|   In this case, the SG notifies ASP2 that the AS has moved to the Down   state.  The SG could have also (optionally) sent a Notify message   when the AS moved to the Pending state.   Note:  If the SG detects loss of the IUA peer (IUA heartbeat loss or   detection of SCTP failure), the initial SG-ASP1 ASP Inactive message   exchange would not occur.5.2.2.  (1+1 Sparing, Backup Over-ride)   The following example shows a case in which ASP2 wishes to override   ASP1 and take over the traffic:          SG                       ASP1                       ASP2           |                         |                          |           |<-------------------------------ASP Active----------|           |-----------------------------ASP Active Ack-------->|           |----NTFY( Alt ASP-Act)-->|           |                         |                          |   In this case, the SG notifies ASP1 that an alternative ASP has   overridden it.Morneault, et al.           Standards Track                    [Page 62]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 20065.2.3.  (n+k Sparing, Load-sharing case, withdrawal of ASP)   Following on from the example inSection 5.1.4, and ASP1 withdraws   from service:     SG                  ASP1                 ASP2                 ASP3      |                    |                   |                   |      |<----ASP Inact------|                   |                   |      |---ASP Inact Ack--->|                   |                   |      |                    |                   |                   |      |---------------------------------NTFY(Ins. ASPs)----------->|      |                    |                   |                   |      |<-----------------------------------------ASP Act (Ldshr)---|      |-------------------------------------------ASP Act (Ack)--->|      |                    |                   |                   |   In this case, the SG has knowledge of the minimum ASP resources   required (implementation dependent), for example, if the SG knows   that n+k = 2+1 for a load-share AS and n currently equals 1.   Note:  If the SG detects loss of the ASP1 IUA peer (IUA heartbeat   loss or detection of SCTP failure), the first SG-ASP1 ASP Inactive   message exchange would not occur.5.3.  Q.921/Q.931 Primitives Backhaul Examples   When the IUA layer on the ASP has a QPTM message to send to the SG,   it will do the following:      -  Determine the correct SG      -  Find the SCTP association to the chosen SG      -  Determine the correct stream in the SCTP association based on         the D channel      -  Fill in the QPTM message, fill in IUA Message Header, fill in         Common Header      -  Send the QPTM message to the remote IUA peer in the SG, over         the SCTP association   When the IUA layer on the SG has a QPTM message to send to the ASP,   it will do the following:      -  Determine the AS for the Interface Identifier      -  Determine the Active ASP (SCTP association) within the ASMorneault, et al.           Standards Track                    [Page 63]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006      -  Determine the correct stream in the SCTP association based on         the D channel      -  Fill in the QPTM message, fill in IUA Message Header, fill in         Common Header      -  Send the QPTM message to the remote IUA peer in the ASP, over         the SCTP association   An example of the message flows for establishing a data link on a   signaling channel, passing PDUs and releasing a data link on a   signaling channel is shown below.  An active association between MGC   and SG is established (Section 5.1) prior to the following message   flows.            SG                             ASP                        <----------- Establish Request      Establish Confirm  ---------->                        <----------- Data Request         Data Indication ----------->                        <----------- Data Request         Data Indication ----------->                        <----------- Data Request                        <----------- Data Request         Data Indication ----------->                        <----------- Release Request (RELEASE_MGMT)        Release Confirm  ---------->   An example of the message flows for a failed attempt to establish a   data link on the signaling channel is shown below.  In this case, the   gateway has a problem with its physical connection (e.g., Red Alarm),   so it cannot establish a data link on the signaling channel.            SG                             ASP                        <----------- Establish Request (ESTABLISH_START)      Release Indication ---------->      (RELEASE_PHYS)5.4.  Layer Management Communication Examples   An example of the message flows for communication between Layer   Management modules between SG and ASP is shown below.  An active   association between ASP and SG is established (Section 5.1) prior to   the following message flows.Morneault, et al.           Standards Track                    [Page 64]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006                  SG                       ASP                        <----------- Data Request        Error Indication ---------->         (INVALID_TEI)                        <----------- TEI Status Request      TEI Status Confirm ---------->           (Unassigned)6.  Security   The security considerations discussed in "Security Considerations for   SIGTRAN Protocols",RFC 3788 [3], apply to this document.7.  IANA Considerations7.1.  SCTP Payload Protocol Identifier   The IANA has assigned an IUA value for the Payload Protocol   Identifier in SCTP Payload Data chunk.  The following SCTP Payload   Protocol Identifier has been registered:         IUA    "1"   The SCTP Payload Protocol Identifier is included in each SCTP Data   chunk, to indicate which protocol the SCTP is carrying.  This Payload   Protocol Identifier is not directly used by SCTP but MAY be used by   certain network entities to identify the type of information being   carried in a Data chunk.   The User Adaptation peer MAY use the Payload Protocol Identifier as a   way of determining additional information about the data being   presented to it by SCTP.7.2.  IUA Protocol Extensions   This protocol may also be extended through IANA in three ways:      -- through definition of additional message classes,      -- through definition of additional message types, and      -- through definition of additional message parameters.   The definition and use of new message classes, types, and parameters   are an integral part of SIGTRAN adaptation layers.  Thus, these   extensions are assigned by IANA through an IETF Consensus action as   defined in [7].Morneault, et al.           Standards Track                    [Page 65]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006   The proposed extension must in no way adversely affect the general   working of the protocol.7.2.1.  IETF-Defined Message Classes   The documentation for a new message class MUST include the following   information:   (a) A long and short name for the message class.   (b) A detailed description of the purpose of the message class.7.2.2.  IETF-Defined Message Types   Documentation of the message type MUST contain the following   information:   (a) A long and short name for the new message type.   (b) A detailed description of the structure of the message.   (c) A detailed definition and description of intended use of each       field within the message.   (d) A detailed procedural description of the use of the new       message type within the operation of the protocol.   (e) A detailed description of error conditions when receiving this       message type.   When an implementation receives a message type that it does not   support, it MUST respond with an Error (ERR) message with an Error   Code of Unsupported Message Type.7.2.3.  IETF-Defined TLV Parameter Extension   Documentation of the message parameter MUST contain the following   information:   (a) Name of the parameter type.   (b) Detailed description of the structure of the parameter field.       This structure MUST conform to the general type-length-value       format described inSection 3.1.5.   (c) Detailed definition of each component of the parameter value.   (d) Detailed description of the intended use of this parameter type,       and an indication of whether and under what circumstances       multiple instances of this parameter type may be found within the       same message type.Morneault, et al.           Standards Track                    [Page 66]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 20068.  Timer Values   The following are suggestions for default timer values.   T(r)                                    3-5 seconds   T(ack)                                  2-5 seconds   T(beat)   Heartbeat Timer               30 seconds9.  Acknowledgements   The authors would like to thank Alex Audu, Maria Sonia Vazquez   Arevalillo, Ming-te Chao, Keith Drage, Norm Glaude, Nikhil Jain,   Bernard Kuc, Ming Lin, Stephen Lorusso, John Loughney, Barry   Nagelberg, Neil Olson, Lyndon Ong, Heinz Prantner, Jose Luis Jimenez   Ramirez, Ian Rytina, Michael Tuexen, and Hank Wang for their valuable   comments and suggestions.10.   References10.1.  Normative References   [1]  ITU-T Recommendation Q.920, 'Digital Subscriber signaling System        No. 1 (DSS1) - ISDN User-Network Interface Data Link Layer -        General Aspects'   [2]  Coded Character Set--7-Bit American Standard Code for        Information Interchange, ANSI X3.4-1986.   [3]  Loughney, J., Tuexen, M., and J. Pastor-Balbas, "Security        Considerations for Signaling Transport (SIGTRAN) Protocols",RFC3788, June 2004.10.2.  Informative References   [4]  Stewart, R., Xie, Q., Morneault, K., Sharp, C., Schwarzbauer,        H., Taylor, T., Rytina, I., Kalla, M., Zhang, L., and V. Paxson,        "Stream Control Transmission Protocol",RFC 2960, October 2000.   [5]  Ong, L., Rytina, I., Garcia, M., Schwarzbauer, H., Coene, L.,        Lin, H., Juhasz, I., Holdrege, M., and C. Sharp, "Framework        Architecture for Signaling Transport",RFC 2719, October 1999.   [6]  Bradner, S., "Key words for use in RFCs to Indicate Requirement        Levels",BCP 14,RFC 2119, March 1997.   [7]  Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA        Considerations Section in RFCs",BCP 26,RFC 2434, October 1998.Morneault, et al.           Standards Track                    [Page 67]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006   [8]  Stone, J., Stewart, R., and D. Otis, "Stream Control        Transmission Protocol (SCTP) Checksum Change",RFC 3309,        September 2002.11.  Change Log   Below is a list of the major changes between this document andRFC3057.   1.  The TEI Query message was added.   2.  An explanation of the DLCI format (shown in Figure 6) is       provided.   3.  Aligned the ASP and AS procedures inSection 4 withRFC3331 andRFC3332.   4.  Alinged the format of the ASPSM and ASPTM messages withRFC3331       andRFC3332.  These changes include removing the Reason field       from the ASP Down and ASP Down Ack messages and the Traffic Mode       Type field from the ASP Inactive and ASP Inactive Ack messages.   5.  Sections1.3.3 and1.3.4 were moved toAppendix A.  A new section       was added in place ofSection 1.3.3.   6.  The references have been split between Normative and Informative.   7.  The new Sigtran security document is referenced andSection 6 has       been updated appropriately.Morneault, et al.           Standards Track                    [Page 68]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006Appendix AA.1.  Signaling Network Architecture   A Signaling Gateway is used to support the transport of Q.921-User   signaling traffic to one or more distributed ASPs (e.g., MGCs).   Clearly, the IUA protocol is not designed to meet the performance and   reliability requirements for such transport by itself.  However, the   conjunction of distributed architecture and redundant networks does   allow for a sufficiently reliable transport of signaling traffic over   IP.  The IUA protocol is flexible enough to allow its operation and   management in a variety of physical configurations, enabling Network   Operators to meet their performance and reliability requirements.   To meet the ISDN signaling reliability and performance requirements   for carrier grade networks, Network Operators SHOULD ensure that   there is no single point of failure provisioned in the end-to-end   network architecture between an ISDN node and an IP ASP.   Depending of course on the reliability of the SG and ASP functional   elements, this can typically be met by the provision of redundant   Quality of Service (QoS)-bounded IP network paths for SCTP   Associations between SCTP End Points, and redundant Hosts, and   redundant SGs.  The distribution of ASPs within the available Hosts   is also important.  For a particular Application Server, the related   ASPs SHOULD be distributed over at least two Hosts.   An example logical network architecture relevant to carrier-grade   operation in the IP network domain is shown in Figure 8 below:Morneault, et al.           Standards Track                    [Page 69]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006                                                          Host1     ********                                         **************     *      *_________________________________________*  ********  *     *      *                                _________*  * ASP1 *  *     *  SG1 *   SCTP Associations           |         *  ********  *     *      *_______________________        |         *            *     ********                       |       |         **************                                    |       |     ********                       |       |     *      *_______________________________|     *      *                       |     *  SG2 *    SCTP Associations  |     *      *____________           |     *      *            |          |                     Host2     ********            |          |                 **************                         |          |_________________*  ********  *                         |____________________________*  * ASP1 *  *                                                      *  ********  *                                                      *            *                                                      **************                                                              .                                                              .                                                              .                      Figure 8.  Logical Model Example   For carrier-grade networks, the failure or isolation of a particular   ASP SHOULD NOT cause stable calls to be dropped.  This implies that   ASPs need, in some cases, to share the call state or be able to pass   the call state between each other.  However, this sharing or   communication of call state information is outside the scope of this   document.A.2.  Application Server Process Redundancy   To avoid a single point of failure, it is recommended that a minimum   of two ASPs be in the list, resident in separate hosts and therefore   available over different SCTP Associations.  For example, in the   network shown in Figure 8, all messages from a particular D Channel   (Interface Identifier) could be sent to ASP1 in Host1 or ASP1 in   Host2.  The AS list at SG1 might look like the following:      Interface Identifier(s) - Application Server #1          ASP1/Host1  - State=Up, Active          ASP1/Host2  - State=Up, InactiveMorneault, et al.           Standards Track                    [Page 70]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006   In this 1+1 redundancy case, ASP1 in Host1 would be sent any incoming   message for the Interface Identifiers registered.  ASP1 in Host2   would normally be brought to the active state upon failure of, or   loss of connectivity to, ASP1/Host1.  In this example, both ASPs are   Up, meaning that the related SCTP association and far-end IUA peer   are ready.   The AS List at SG1 might also be set up in load-share mode as shown   below:      Interface Identifier(s) - Application Server #1          ASP1/Host1 - State=Up, Active          ASP1/Host2 - State=Up, Active   In this case, both the ASPs would be sent a portion of the traffic.   In the process of fail-over, it is recommended that in the case of   ASPs supporting call processing, stable calls do not get released.   It is possible that calls in transition MAY fail, although measures   of communication between the ASPs involved can be used to mitigate   this problem.  For example, the two ASPs MAY share call state via   shared memory, or MAY use an ASP-to-ASP protocol to pass call state   information.  The ASP-to-ASP protocol is outside the scope of this   document.Morneault, et al.           Standards Track                    [Page 71]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006Authors' Addresses   Ken Morneault   Cisco Systems Inc.   13615 Dulles Technology Drive   Herndon, VA. 20171   USA   Phone: +1-703-484-3323   EMail: kmorneau@cisco.com   Malleswar Kalla   Telcordia Technologies   PYA 2J-341   3 Corporate Place   Piscataway, NJ 08854   USA   Phone: +1-732-699-3728   EMail: mkalla@telcordia.com   Selvam Rengasami   Tridea Works   Phone: +1-732-512-0969   EMail: selvam@trideaworks.com   Greg Sidebottom   Signatus Technologies   Kanata, Ontario, Canada   EMail: greg@signatustechnologies.comMorneault, et al.           Standards Track                    [Page 72]

RFC 4233            ISDN Q.921-User Adaptation Layer        January 2006Full Copyright Statement   Copyright (C) The Internet Society (2006).   This document is subject to the rights, licenses and restrictions   contained inBCP 78, and except as set forth therein, the authors   retain all their rights.   This document and the information contained herein are provided on an   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET   ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,   INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE   INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.Intellectual Property   The IETF takes no position regarding the validity or scope of any   Intellectual Property Rights or other rights that might be claimed to   pertain to the implementation or use of the technology described in   this document or the extent to which any license under such rights   might or might not be available; nor does it represent that it has   made any independent effort to identify any such rights.  Information   on the procedures with respect to rights in RFC documents can be   found inBCP 78 andBCP 79.   Copies of IPR disclosures made to the IETF Secretariat and any   assurances of licenses to be made available, or the result of an   attempt made to obtain a general license or permission for the use of   such proprietary rights by implementers or users of this   specification can be obtained from the IETF on-line IPR repository athttp://www.ietf.org/ipr.   The IETF invites any interested party to bring to its attention any   copyrights, patents or patent applications, or other proprietary   rights that may cover technology that may be required to implement   this standard.  Please address the information to the IETF at   ietf-ipr@ietf.org.Acknowledgement   Funding for the RFC Editor function is provided by the IETF   Administrative Support Activity (IASA).Morneault, et al.           Standards Track                    [Page 73]

[8]ページ先頭

©2009-2025 Movatter.jp