Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Info page]

PROPOSED STANDARD
Updated by:6001,6002,7074
Network Working Group                                   K. Kompella, Ed.Request for Comments: 4203                               Y. Rekhter, Ed.Updates:3630                                           Juniper NetworksCategory: Standards Track                                   October 2005OSPF Extensions in Support ofGeneralized Multi-Protocol Label Switching (GMPLS)Status of This Memo   This document specifies an Internet standards track protocol for the   Internet community, and requests discussion and suggestions for   improvements.  Please refer to the current edition of the "Internet   Official Protocol Standards" (STD 1) for the standardization state   and status of this protocol.  Distribution of this memo is unlimited.Copyright Notice   Copyright (C) The Internet Society (2005).Abstract   This document specifies encoding of extensions to the OSPF routing   protocol in support of Generalized Multi-Protocol Label Switching   (GMPLS).1.  Introduction   This document specifies extensions to the OSPF routing protocol   [OSPF] in support of carrying link state information for Generalized   Multi-Protocol Label Switching (GMPLS).  The set of required   enhancements to OSPF are outlined in [GMPLS-ROUTING].   In this section, we define the enhancements to the Traffic   Engineering (TE) properties of GMPLS TE links that can be announced   in OSPF TE LSAs.  The TE LSA, which is an opaque LSA with area   flooding scope [OSPF-TE], has only one top-level Type/Length/Value   (TLV) triplet and has one or more nested sub-TLVs for extensibility.   The top-level TLV can take one of two values (1) Router Address or   (2) Link.  In this document, we enhance the sub-TLVs for the Link TLV   in support of GMPLS.  Specifically, we add the following sub-TLVs to   the Link TLV:Kompella & Rekhter          Standards Track                     [Page 1]

RFC 4203                OSPF Extensions in MPLS             October 2005   Sub-TLV Type      Length    Name             11           8    Link Local/Remote Identifiers             14           4    Link Protection Type             15    variable    Interface Switching Capability Descriptor             16    variable    Shared Risk Link Group   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this   document are to be interpreted as described inBCP 14,RFC 2119   [RFC2119].1.1.  Link Local/Remote Identifiers   Link Local/Remote Identifiers is a sub-TLV of the Link TLV.  The type   of this sub-TLV is 11, and length is eight octets.  The value field   of this sub-TLV contains four octets of Link Local Identifier   followed by four octets of Link Remote Identifier (see Section   "Support for unnumbered links" of [GMPLS-ROUTING]).  If the Link   Remote Identifier is unknown, it is set to 0.    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Link Local Identifier                        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Link Remote Identifier                       |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   A node can communicate its Link Local Identifier to its neighbor   using a link local Opaque LSA, as described in Section "Exchanging   Link Local TE Information".1.2.  Link Protection Type   The Link Protection Type is a sub-TLV of the Link TLV.  The type of   this sub-TLV is 14, and length is four octets.    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |Protection Cap |                    Reserved                   |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The first octet is a bit vector describing the protection   capabilities of the link (see Section "Link Protection Type" of   [GMPLS-ROUTING]).  They are:      0x01  Extra TrafficKompella & Rekhter          Standards Track                     [Page 2]

RFC 4203                OSPF Extensions in MPLS             October 2005      0x02  Unprotected      0x04  Shared      0x08  Dedicated 1:1      0x10  Dedicated 1+1      0x20  Enhanced      0x40  Reserved      0x80  Reserved   The remaining three octets SHOULD be set to zero by the sender, and   SHOULD be ignored by the receiver.   The Link Protection Type sub-TLV may occur at most once within the   Link TLV.1.3.  Shared Risk Link Group (SRLG)   The SRLG is a sub-TLV (of type 16) of the Link TLV.  The length is   the length of the list in octets.  The value is an unordered list of   32 bit numbers that are the SRLGs that the link belongs to.  The   format of the value field is as shown below:    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Shared Risk Link Group Value                 |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                        ............                           |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Shared Risk Link Group Value                 |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   This sub-TLV carries the Shared Risk Link Group information (see   Section "Shared Risk Link Group Information" of [GMPLS-ROUTING]).   The SRLG sub-TLV may occur at most once within the Link TLV.1.4.  Interface Switching Capability Descriptor   The Interface Switching Capability Descriptor is a sub-TLV (of type   15) of the Link TLV.  The length is the length of value field in   octets.  The format of the value field is as shown below:Kompella & Rekhter          Standards Track                     [Page 3]

RFC 4203                OSPF Extensions in MPLS             October 2005    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   | Switching Cap |   Encoding    |           Reserved            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Max LSP Bandwidth at priority 0              |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Max LSP Bandwidth at priority 1              |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Max LSP Bandwidth at priority 2              |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Max LSP Bandwidth at priority 3              |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Max LSP Bandwidth at priority 4              |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Max LSP Bandwidth at priority 5              |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Max LSP Bandwidth at priority 6              |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Max LSP Bandwidth at priority 7              |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |        Switching Capability-specific information              |   |                  (variable)                                   |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The Switching Capability (Switching Cap) field contains one of the   following values:      1     Packet-Switch Capable-1 (PSC-1)      2     Packet-Switch Capable-2 (PSC-2)      3     Packet-Switch Capable-3 (PSC-3)      4     Packet-Switch Capable-4 (PSC-4)      51    Layer-2 Switch Capable  (L2SC)      100   Time-Division-Multiplex Capable (TDM)      150   Lambda-Switch Capable   (LSC)      200   Fiber-Switch Capable    (FSC)   The Encoding field contains one of the values specified inSection3.1.1 of [GMPLS-SIG].   Maximum LSP Bandwidth is encoded as a list of eight 4 octet fields in   the IEEE floating point format [IEEE], with priority 0 first and   priority 7 last.  The units are bytes (not bits!) per second.   The content of the Switching Capability specific information field   depends on the value of the Switching Capability field.Kompella & Rekhter          Standards Track                     [Page 4]

RFC 4203                OSPF Extensions in MPLS             October 2005   When the Switching Capability field is PSC-1, PSC-2, PSC-3, or PSC-4,   the Switching Capability specific information field includes Minimum   LSP Bandwidth, Interface MTU, and padding.    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Minimum LSP Bandwidth                        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |           Interface MTU       |            Padding            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The Minimum LSP Bandwidth is encoded in a 4 octets field in the IEEE   floating point format.  The units are bytes (not bits!) per second.   The Interface MTU is encoded as a 2 octets integer.  The padding is 2   octets, and is used to make the Interface Switching Capability   Descriptor sub-TLV 32-bits aligned.  It SHOULD be set to zero by the   sender and SHOULD be ignored by the receiver.   When the Switching Capability field is L2SC, there is no Switching   Capability specific information field present.   When the Switching Capability field is TDM, the Switching Capability   specific information field includes Minimum LSP Bandwidth, an   indication whether the interface supports Standard or Arbitrary   SONET/SDH, and padding.    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                  Minimum LSP Bandwidth                        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |   Indication  |                 Padding                       |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The Minimum LSP Bandwidth is encoded in a 4 octets field in the IEEE   floating point format.  The units are bytes (not bits!) per second.   The indication whether the interface supports Standard or Arbitrary   SONET/SDH is encoded as 1 octet.  The value of this octet is 0 if the   interface supports Standard SONET/SDH, and 1 if the interface   supports Arbitrary SONET/SDH.  The padding is 3 octets, and is used   to make the Interface Switching Capability Descriptor sub-TLV 32-bits   aligned.  It SHOULD be set to zero by the sender and SHOULD be   ignored by the receiver.   When the Switching Capability field is LSC, there is no Switching   Capability specific information field present.Kompella & Rekhter          Standards Track                     [Page 5]

RFC 4203                OSPF Extensions in MPLS             October 2005   To support interfaces that have more than one Interface Switching   Capability Descriptor (see Section "Interface Switching Capability   Descriptor" of [GMPLS-ROUTING]) the Interface Switching Capability   Descriptor sub-TLV may occur more than once within the Link TLV.2.  Implications on Graceful Restart   The restarting node should follow the OSPF restart procedures   [OSPF-RESTART], and the RSVP-TE restart procedures [GMPLS-RSVP].   When a restarting node is going to originate its TE LSAs, the TE LSAs   containing Link TLV should be originated with 0 unreserved bandwidth,   Traffic Engineering metric set to 0xffffffff, and if the Link has LSC   or FSC as its Switching Capability then also with 0 as Max LSP   Bandwidth, until the node is able to determine the amount of   unreserved resources taking into account the resources reserved by   the already established LSPs that have been preserved across the   restart.  Once the restarting node determines the amount of   unreserved resources, taking into account the resources reserved by   the already established LSPs that have been preserved across the   restart, the node should advertise these resources in its TE LSAs.   In addition in the case of a planned restart prior to restarting, the   restarting node SHOULD originate the TE LSAs containing Link TLV with   0 as unreserved bandwidth, and if the Link has LSC or FSC as its   Switching Capability then also with 0 as Max LSP Bandwidth.  This   would discourage new LSP establishment through the restarting router.   Neighbors of the restarting node should continue advertise the actual   unreserved bandwidth on the TE links from the neighbors to that node.   Regular graceful restart should not be aborted if a TE LSA or TE   topology changes.  TE graceful restart need not be aborted if a TE   LSA or TE topology changes.3.  Exchanging Link Local TE Information   It is often useful for a node to communicate some Traffic Engineering   information for a given interface to its neighbors on that interface.   One example of this is a Link Local Identifier.  If nodes X and Y are   connected by an unnumbered point-to-point interface I, then X's Link   Local Identifier for I is Y's Link Remote Identifier for I.  X can   communicate its Link Local Identifier for I by exchanging with Y a TE   link local opaque LSA described below.  Note that this information   need only be exchanged over interface I, hence the use of a link   local Opaque LSA.Kompella & Rekhter          Standards Track                     [Page 6]

RFC 4203                OSPF Extensions in MPLS             October 2005   A TE Link Local LSA is an opaque LSA of type 9 (link-local flooding   scope) with Opaque Type 1 (TE LSA) and Opaque ID of 0.    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |            LS age             |    Options    |       9       |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |  Opaque Type  |                   Opaque ID                   |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                     Advertising Router                        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                     LS sequence number                        |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |         LS checksum           |             length            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                                                               |   +-                            TLVs                             -+   |                             ...                               |   The format of the TLVs that make up the body of the TE Link Local LSA   is the same as that of the TE TLVs: a 2-octet Type field followed by   a 2-octet Length field which indicates the length of the Value field   in octets.  The Top Level Type for the Link Local TLV is 4.  The   Value field is zero-padded at the end to a four octet boundary.   The only TLV defined here is the Link Local Identifier TLV, with Type   1, Length 4 and Value the 32 bit Link Local Identifier for the link   over which the TE Link Local LSA is exchanged.4.  Contributors   Ayan Banerjee   Calient Networks   5853 Rue Ferrari   San Jose, CA 95138   Phone: +1.408.972.3645   EMail: abanerjee@calient.net   John Drake   Calient Networks   5853 Rue Ferrari   San Jose, CA 95138   Phone: +1.408.972.3720   EMail: jdrake@calient.netKompella & Rekhter          Standards Track                     [Page 7]

RFC 4203                OSPF Extensions in MPLS             October 2005   Greg Bernstein   Ciena Corporation   10480 Ridgeview Court   Cupertino, CA 94014   Phone: +1.408.366.4713   EMail: greg@ciena.com   Don Fedyk   Nortel Networks Corp.   600 Technology Park Drive   Billerica, MA 01821   Phone: +1.978.288.4506   EMail: dwfedyk@nortelnetworks.com   Eric Mannie   Independent Consultant   EMail: eric_mannie@hotmail.com   Debanjan Saha   Tellium Optical Systems   2 Crescent Place   P.O. Box 901   Ocean Port, NJ 07757   Phone: +1.732.923.4264   EMail: dsaha@tellium.com   Vishal Sharma   Metanoia, Inc.   335 Elan Village Lane, Unit 203   San Jose, CA 95134-2539   Phone: +1.408.943.1794   EMail: v.sharma@ieee.org5.  Acknowledgements   The authors would like to thank Suresh Katukam, Jonathan Lang,   Quaizar Vohra, and Alex Zinin for their comments on the document.Kompella & Rekhter          Standards Track                     [Page 8]

RFC 4203                OSPF Extensions in MPLS             October 20056.  Security Considerations   This document specifies the contents of Opaque LSAs in OSPFv2.  As   Opaque LSAs are not used for SPF computation or normal routing, the   extensions specified here have no direct effect on IP routing.   Tampering with GMPLS TE LSAs may have an effect on the underlying   transport (optical and/or SONET-SDH) network.  [OSPF-TE] suggests   mechanisms such as [OSPF-SIG] to protect the transmission of this   information, and those or other mechanisms should be used to secure   and/or authenticate the information carried in the Opaque LSAs.7.  IANA Considerations   The memo introduces four new sub-TLVs of the TE Link TLV in the TE   Opaque LSA for OSPF v2; [OSPF-TE] says that the sub-TLVs of the TE   Link TLV in the range 10-32767 must be assigned by Expert Review, and   must be registered with IANA.   The memo has four suggested values for the four sub-TLVs of the TE   Link TLV; it is strongly recommended that the suggested values be   granted, as there are interoperable implementations using these   values.   Finally, a new Top Level Type for OSPF TE LSAs for the Link Local TLV   has been allocated from the Standards Action space.8.  References8.1.  Normative References   [GMPLS-ROUTING] Kompella, K., Ed., and Y. Rekhter, Ed., "Routing                   Extensions in Support of Generalized Multi-Protocol                   Label Switching (GMPLS)",RFC 4202, October 2005.   [GMPLS-RSVP]    Berger, L., "Generalized Multi-Protocol Label                   Switching (GMPLS) Signaling Resource ReserVation                   Protocol-Traffic Engineering (RSVP-TE) Extensions",RFC 3473, January 2003.   [GMPLS-SIG]     Berger, L., "Generalized Multi-Protocol Label                   Switching (GMPLS) Signaling Functional Description",RFC 3471, January 2003.   [IEEE]          IEEE, "IEEE Standard for Binary Floating-Point                   Arithmetic", Standard 754-1985, 1985 (ISBN 1-5593-                   7653-8).Kompella & Rekhter          Standards Track                     [Page 9]

RFC 4203                OSPF Extensions in MPLS             October 2005   [OSPF]          Moy, J., "OSPF Version 2", STD 54,RFC 2328, April                   1998.   [OSPF-RESTART]  Moy, J., Pillay-Esnault, P., and A. Lindem, "Graceful                   OSPF Restart",RFC 3623, November 2003.   [OSPF-SIG]      Murphy, S., Badger, M., and B. Wellington, "OSPF with                   Digital Signatures",RFC 2154, June 1997.   [OSPF-TE]       Katz, D., Kompella, K., and Yeung, D., "Traffic                   Engineering (TE) Extensions to OSPF Version 2",RFC3630, September 2003.   [RFC2119]       Bradner, S., "Key words for use in RFCs to Indicate                   Requirement Levels",BCP 14,RFC 2119, March 1997.Authors' Addresses   Kireeti Kompella   Juniper Networks, Inc.   1194 N. Mathilda Ave   Sunnyvale, CA 94089   EMail: kireeti@juniper.net   Yakov Rekhter   Juniper Networks, Inc.   1194 N. Mathilda Ave   Sunnyvale, CA 94089   EMail: yakov@juniper.netKompella & Rekhter          Standards Track                    [Page 10]

RFC 4203                OSPF Extensions in MPLS             October 2005Full Copyright Statement   Copyright (C) The Internet Society (2005).   This document is subject to the rights, licenses and restrictions   contained inBCP 78, and except as set forth therein, the authors   retain all their rights.   This document and the information contained herein are provided on an   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET   ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,   INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE   INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.Intellectual Property   The IETF takes no position regarding the validity or scope of any   Intellectual Property Rights or other rights that might be claimed to   pertain to the implementation or use of the technology described in   this document or the extent to which any license under such rights   might or might not be available; nor does it represent that it has   made any independent effort to identify any such rights.  Information   on the procedures with respect to rights in RFC documents can be   found inBCP 78 andBCP 79.   Copies of IPR disclosures made to the IETF Secretariat and any   assurances of licenses to be made available, or the result of an   attempt made to obtain a general license or permission for the use of   such proprietary rights by implementers or users of this   specification can be obtained from the IETF on-line IPR repository athttp://www.ietf.org/ipr.   The IETF invites any interested party to bring to its attention any   copyrights, patents or patent applications, or other proprietary   rights that may cover technology that may be required to implement   this standard.  Please address the information to the IETF at ietf-   ipr@ietf.org.Acknowledgement   Funding for the RFC Editor function is currently provided by the   Internet Society.Kompella & Rekhter          Standards Track                    [Page 11]

[8]ページ先頭

©2009-2025 Movatter.jp