Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Errata] [Info page]

PROPOSED STANDARD
Updated by:9071Errata Exist
Network Working Group                                      G. HellstromRequest for Comments: 4103                                   Omnitor ABObsoletes:2793                                                P. JonesCategory: Standards Track                           Cisco Systems, Inc.                                                              June 2005RTP Payload for Text ConversationStatus of This Memo   This document specifies an Internet standards track protocol for the   Internet community, and requests discussion and suggestions for   improvements.  Please refer to the current edition of the "Internet   Official Protocol Standards" (STD 1) for the standardization state   and status of this protocol.  Distribution of this memo is unlimited.Copyright Notice   Copyright (C) The Internet Society (2005).Abstract   This memo obsoletesRFC 2793; it describes how to carry real-time   text conversation session contents in RTP packets.  Text conversation   session contents are specified in ITU-T Recommendation T.140.   One payload format is described for transmitting text on a separate   RTP session dedicated for the transmission of text.   This RTP payload description recommends a method to include redundant   text from already transmitted packets in order to reduce the risk of   text loss caused by packet loss.Hellstrom & Jones           Standards Track                     [Page 1]

RFC 4103           RTP Payload for Text Conversation           June 2005Table of Contents1.  Introduction ...................................................32.  Conventions Used in This Document ..............................43.  Usage of RTP ...................................................43.1. Motivations and Rationale .................................43.2. Payload Format for Transmission of text/t140 Data .........43.3. The "T140block" ...........................................53.4. Synchronization of Text with Other Media ..................53.5. RTP Packet Header .........................................54.  Protection against Loss of Data ................................64.1. Payload Format When Using Redundancy ......................64.2. Using Redundancy with the text/t140 Format ................75.  Recommended Procedure ..........................................85.1. Recommended Basic Procedure ...............................85.2. Transmission before and after "Idle Periods" ..............85.3. Detection of Lost Text Packets ............................95.4. Compensation for Packets Out of Order ....................106.  Parameter for Character Transmission Rate .....................107.  Examples ......................................................117.1. RTP Packetization Examples for the text/t140 Format ......117.2. SDP Examples .............................................138.  Security Considerations .......................................148.1. Confidentiality ..........................................148.2. Integrity ................................................148.3. Source Authentication ....................................149.  Congestion Considerations .....................................1410. IANA Considerations ...........................................1610.1. Registration of MIME Media Type text/t140 ...............1610.2. SDP Mapping of MIME Parameters ..........................1710.3. Offer/Answer Consideration ..............................1711. Acknowledgements ..............................................1812. Normative References ..........................................1813. Informative References ........................................19Hellstrom & Jones           Standards Track                     [Page 2]

RFC 4103           RTP Payload for Text Conversation           June 20051.  Introduction   This document defines a payload type for carrying text conversation   session contents in RTP [2] packets.  Text conversation session   contents are specified in ITU-T Recommendation T.140 [1].  Text   conversation is used alone or in connection with other conversational   facilities, such as video and voice, to form multimedia conversation   services.  Text in multimedia conversation sessions is sent   character-by-character as soon as it is available, or with a small   delay for buffering.   The text is intended to be entered by human users from a keyboard,   handwriting recognition, voice recognition or any other input method.   The rate of character entry is usually at a level of a few characters   per second or less.  In general, only one or a few new characters are   expected to be transmitted with each packet.  Small blocks of text   may be prepared by the user and pasted into the user interface for   transmission during the conversation, occasionally causing packets to   carry more payload.   T.140 specifies that text and other T.140 elements must be   transmitted in ISO 10646-1 [5] code with UTF-8 [6] transformation.   This makes it easy to implement internationally useful applications   and to handle the text in modern information technology environments.   The payload of an RTP packet that follows this specification consists   of text encoded according to T.140, without any additional framing.   A common case will be a single ISO 10646 character, UTF-8 encoded.   T.140 requires the transport channel to provide characters without   duplication and in original order.  Text conversation users expect   that text will be delivered with no, or a low level, of lost   information.   Therefore, a mechanism based on RTP is specified here.  It gives text   arrival in correct order, without duplication, and with detection and   indication of loss.  It also includes an optional possibility to   repeat data for redundancy in order to lower the risk of loss.   Because packet overhead is usually much larger than the T.140   contents, the increase in bandwidth, with the use of redundancy, is   minimal.   By using RTP for text transmission in a multimedia conversation   application, uniform handling of text and other media can be achieved   in, for example, conferencing systems, firewalls, and network   translation devices.  This, in turn, eases the design and increases   the possibility for prompt and proper media delivery.Hellstrom & Jones           Standards Track                     [Page 3]

RFC 4103           RTP Payload for Text Conversation           June 2005   This document obsoletesRFC 2793 [16].  The text clarifies   ambiguities inRFC 2793, improves on the specific implementation   requirements learned through development experience and gives   explicit usage examples.2.  Conventions Used in This Document   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this   document are to be interpreted as described inRFC 2119 [4].3.  Usage of RTP   The payload format for real-time text transmission with RTP [2]   described in this memo is intended for general text conversation use   and is called text/t140 after its MIME registration.3.1.  Motivations and Rationale   The text/t140 format is intended to be used for text transmitted on a   separate RTP session, dedicated for the transmission of text, and not   shared with other media.   The text/t140 format MAY be used for any non-gateway application, as   well as in gateways.  It MAY be used simultaneously with other media   streams, transmitted as a separate RTP session, as required in real   time multimedia applications.   The text/t140 format specified in this memo is compatible with its   earlier definition inRFC 2793.  It has been refined, with the main   intention to minimize interoperability problems and encourage good   reliability and functionality.   By specifying text transmission as a text medium, many good effects   are gained.  Routing, device selection, invocation of transcoding,   selection of quality of service parameters, and other high and low   level functions depend on each medium being explicitly specified.3.2.  Payload Format for Transmission of text/t140 Data   A text/t140 conversation RTP payload format consists of one, and only   one, block of T.140 data, referred to as a "T140block" (seeSection3.3).  There are no additional headers specific to this payload   format.  The fields in the RTP header are set as defined inSection3.5, carried in network byte order (seeRFC 791 [12]).Hellstrom & Jones           Standards Track                     [Page 4]

RFC 4103           RTP Payload for Text Conversation           June 20053.3.  The "T140block"   T.140 text is UTF-8 coded, as specified in T.140, with no extra   framing.  The T140block contains one or more T.140 code elements as   specified in [1].  Most T.140 code elements are single ISO 10646 [5]   characters, but some are multiple character sequences.  Each   character is UTF-8 encoded [6] into one or more octets.  Each block   MUST contain an integral number of UTF-8 encoded characters   regardless of the number of octets per character.  Any composite   character sequence (CCS) SHOULD be placed within one block.3.4.  Synchronization of Text with Other Media   Usually, each medium in a session utilizes a separate RTP stream.  As   such, if synchronization of the text and other media packets is   important, the streams MUST be associated when the sessions are   established and the streams MUST share the same reference clock   (refer to the description of the timestamp field as it relates to   synchronization inSection 5.1 of RFC 3550 [2]).  Association of RTP   streams can be done through the CNAME field of RTCP SDES function.   It is dependent on the particular application and is outside the   scope of this document.3.5.  RTP Packet Header   Each RTP packet starts with a fixed RTP header.  The following fields   of the RTP fixed header are specified for T.140 text streams:   Payload Type (PT): The assignment of an RTP payload type is specific                      to the RTP profile under which the payload format                      is used.  For profiles that use dynamic payload                      type number assignment, this payload format can be                      identified by the MIME type "text/t140" (seeSection 10).  If redundancy is used perRFC 2198,                      another payload type number needs to be provided                      for the redundancy format.  The MIME type for                      identifyingRFC 2198 is available inRFC 4102 [9].   Sequence number:   The definition of sequence numbers is available inRFC 3550 [2].  When transmitting text using the                      payload format for text/t140, it is used for                      detection of packet loss and out-of-order packets,                      and can be used in the process of retrieval of                      redundant text, reordering of text and marking                      missing text.Hellstrom & Jones           Standards Track                     [Page 5]

RFC 4103           RTP Payload for Text Conversation           June 2005   Timestamp:         The RTP Timestamp encodes the approximate instance                      of entry of the primary text in the packet.  A                      clock frequency of 1000 Hz MUST be used.                      Sequential packets MUST NOT use the same                      timestamp.  Because packets do not represent any                      constant duration, the timestamp cannot be used to                      directly infer packet loss.   M-bit:             The M-bit MUST be included.  The first packet in a                      session, and the first packet after an idle                      period, SHOULD be distinguished by setting the                      marker bit in the RTP data header to one.  The                      marker bit in all other packets MUST be set to                      zero.  The reception of the marker bit MAY be used                      for refined methods for detection of loss.4.  Protection against Loss of Data   Consideration must be devoted to keeping loss of text due to packet   loss within acceptable limits.  (See ITU-T F.703 [17])   The default method that MUST be used, when no other method is   explicitly selected, is redundancy in accordance withRFC 2198 [3].   When this method is used, the original text and two redundant   generations SHOULD be transmitted if the application or end-to-end   conditions do not call for other levels of redundancy to be used.   Forward Error Correction mechanisms, as perRFC 2733 [8], or any   other mechanism with the purpose of increasing the reliability of   text transmission, MAY be used as an alternative or complement to   redundancy.  Text data MAY be sent without additional protection if   end-to-end network conditions allow the text quality requirements,   specified in ITU-T F.703 [17], to be met in all anticipated load   conditions.4.1.  Payload Format When Using Redundancy   When using the payload format with redundant data, the transmitter   may select a number of T140block generations to retransmit in each   packet.  A higher number introduces better protection against loss of   text but marginally increases the data rate.   The RTP header is followed by one or more redundant data block   headers: one for each redundant data block to be included.  Each of   these headers provides the timestamp offset and length of the   corresponding data block, in addition to a payload type number   (indicating the payload format text/t140).Hellstrom & Jones           Standards Track                     [Page 6]

RFC 4103           RTP Payload for Text Conversation           June 2005   The redundant data block headers are followed by the redundant data   fields carrying T140blocks from previous packets.  Finally, the new   (primary) T140block for this packet follows.   Redundant data that would need a timestamp offset higher than 16383   (due to its age at transmission) MUST NOT be included in transmitted   packets.4.2.  Using Redundancy with the text/t140 Format   Because text is transmitted only when there is text to transmit, the   timestamp is not used to identify a lost packet.  Rather, missing   sequence numbers are used to detect lost text packets at reception.   Also, because sequence numbers are not provided in the redundant   header, some additional rules must be followed to allow redundant   data that corresponds to missing primary data to be properly merged   into the stream of primary data T140blocks.  They are:   - Each redundant data block MUST contain the same data as a T140block     previously transmitted as primary data.   - The redundant data MUST be placed in age order, with the most     recent redundant T140block last in the redundancy area.   - All T140blocks, from the oldest desired generation up through the     generation immediately preceding the new (primary) T140block, MUST     be included.   These rules allow the sequence numbers for the redundant T140blocks   to be inferred by counting backwards from the sequence number in the   RTP header.  The result will be that all the text in the payload will   be contiguous and in order.   If there is a gap in the received RTP sequence numbers, and redundant   T140blocks are available in a subsequent packet, the sequence numbers   for the redundant T140blocks should be inferred by counting backwards   from the sequence number in the RTP header for that packet.  If there   are redundant T140blocks with sequence numbers matching those that   are missing, the redundant T140blocks may be substituted for the   missing T140blocks.Hellstrom & Jones           Standards Track                     [Page 7]

RFC 4103           RTP Payload for Text Conversation           June 20055.  Recommended Procedure   This section contains RECOMMENDED procedures for usage of the payload   format.  Based on the information in the received packets, the   receiver can:      - reorder text received out of order.      - mark where text is missing because of packet loss.      - compensate for lost packets by using redundant data.5.1.  Recommended Basic Procedure   Packets are transmitted when there is valid T.140 data to transmit.   T.140 specifies that T.140 data MAY be buffered for transmission with   a maximum buffering time of 500 ms.  A buffering time of 300 ms is   RECOMMENDED when the application or end-to-end network conditions are   not known to require another value.   If no new data is available for a longer period than the buffering   time, the transmission process is in an idle period.   When new text is available for transmission after an idle period, it   is RECOMMENDED to send it as soon as possible.  After this   transmission, it is RECOMMENDED to buffer T.140 data in buffering   time intervals, until the next idle period.  This is done in order to   keep the maximum bit rate usage for text at a reasonable level.  The   buffering time MUST be selected so that text users will perceive a   real-time text flow.5.2.  Transmission before and after "Idle Periods"   When valid T.140 data has been sent and no new T.140 data is   available for transmission after the selected buffering time, an   empty T140block SHOULD be transmitted.  This situation is regarded as   the beginning of an idle period.  The procedure is recommended in   order to more rapidly detect potentially missing text before an idle   period.   An empty T140block contains no data.   When redundancy is used, transmission continues with a packet at   every transmission timer expiration and insertion of an empty   T.140block as primary, until the last non-empty T140block has been   transmitted, as primary and as redundant data, with all intended   generations of redundancy.  The last packet before an idle period   will contain only one non-empty T140block as redundant data, while   the remainder of the redundancy packet will contain empty T140blocks.Hellstrom & Jones           Standards Track                     [Page 8]

RFC 4103           RTP Payload for Text Conversation           June 2005   Any empty T140block sent as primary data MUST be included as   redundant T140blocks in subsequent packets, just as normal text   T140blocks would be, unless the empty T140block is too old to be   transmitted.  This is done so that sequence number inference for the   redundant T140blocks will be correct, as explained inSection 4.2.   After an idle period, the transmitter SHOULD set the M-bit to one in   the first packet with new text.5.3.  Detection of Lost Text Packets   Packet loss for text/t140 packets MAY be detected by observing gaps   in the sequence numbers of RTP packets received by the receiver.   With text/t140, the loss of packets is usually detected by comparison   of the sequence of RTP packets as they arrive.  Any discrepancy MAY   be used to indicate loss.  The highest RTP sequence number received   may also be compared with that in RTCP reports, as an additional   check for loss of the last packet before an idle period.   Missing data SHOULD be marked by insertion of a missing text marker   in the received stream for each missing T140block, as specified in   ITU-T T.140 Addendum 1 [1].   Because empty T140blocks are transmitted in the beginning of an idle   period, there is a slight risk of falsely marking loss of text, when   only an empty T140block was lost.  Procedures based on detection of   the packet with the M-bit set to one MAY be used to reduce the risk   of introducing false markers of loss.   If redundancy is used with the text/t140 format, and a packet is   received with fewer redundancy levels than normally in the session,   it SHOULD be treated as if one empty T140block has been received for   each excluded level in the received packet.  This is because the only   occasion when a T140block is excluded from transmission is when it is   an empty T140block that has become too old to be transmitted.   If two successive packets have the same number of redundant   generations, it SHOULD be treated as the general redundancy level for   the session.  Change of the general redundancy level SHOULD only be   done after an idle period.   The text/t140 format relies on use of the sequence number in the RTP   packet header for detection of loss and, therefore, is not suitable   for applications where it needs to be alternating with other payloads   in the same RTP stream.  It would be complicated and unreliable toHellstrom & Jones           Standards Track                     [Page 9]

RFC 4103           RTP Payload for Text Conversation           June 2005   try to detect loss of data at the edges of the shifts between t140   text and other stream contents.  Therefore, text/t140 is RECOMMENDED   to be the only payload type in the RTP stream.5.4.  Compensation for Packets Out of Order   For protection against packets arriving out of order, the following   procedure MAY be implemented in the receiver.  If analysis of a   received packet reveals a gap in the sequence and no redundant data   is available to fill that gap, the received packet SHOULD be kept in   a buffer to allow time for the missing packet(s) to arrive.  It is   RECOMMENDED that the waiting time be limited to 1 second.   If a packet with a T140block belonging to the gap arrives before the   waiting time expires, this T140block is inserted into the gap and   then consecutive T140blocks from the leading edge of the gap may be   consumed.  Any T140block that does not arrive before the time limit   expires should be treated as lost and a missing text marker should be   inserted (seeSection 5.3).6.  Parameter for Character Transmission Rate   In some cases, it is necessary to limit the rate at which characters   are transmitted.  For example, when a Public Switched Telephone   Network (PSTN) gateway is interworking between an IP device and a   PSTN textphone, it may be necessary to limit the character rate from   the IP device in order to avoid throwing away characters (in case of   buffer overflow at the PSTN gateway).   To control the character transmission rate, the MIME parameter "cps"   in the "fmtp" attribute [7] is defined (seeSection 10 ).  It is used   in SDP with the following syntax:      a=fmtp:<format> cps=<integer>   The <format> field is populated with the payload type that is used   for text.  The <integer> field contains an integer representing the   maximum number of characters that may be received per second.  The   value shall be used as a mean value over any 10-second interval.  The   default value is 30.   Examples of use in SDP are found inSection 7.2.   In receipt of this parameter, devices MUST adhere to the request by   transmitting characters at a rate at or below the specified <integer>   value.  Note that this parameter was not defined inRFC 2793 [16].   Therefore implementations of the text/t140 format may be in use that   do not recognize and act according to this parameter.  Therefore,Hellstrom & Jones           Standards Track                    [Page 10]

RFC 4103           RTP Payload for Text Conversation           June 2005   receivers of text/t140 MUST be designed so they can handle temporary   reception of characters at a higher rate than this parameter   specifies.  As a result malfunction due to buffer overflow is avoided   for text conversation with human input.7.  Examples7.1.  RTP Packetization Examples for the text/t140 Format   Below is an example of a text/t140 RTP packet without redundancy.    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |V=2|P|X| CC=0  |M|   T140 PT   |       sequence number         |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                      timestamp (1000Hz)                       |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |           synchronization source (SSRC) identifier            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |                      T.140 encoded data                       |   +                                               +---------------+   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   Below is an example of a text/t140 RTP packet with one redundant   T140block.    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |V=2|P|X| CC=0  |M|  "RED" PT   |   sequence number of primary  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |               timestamp of primary encoding "P"               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |           synchronization source (SSRC) identifier            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |1|   T140 PT   |  timestamp offset of "R"  | "R" block length  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |0|   T140 PT   | "R" T.140 encoded redundant data              |   +-+-+-+-+-+-+-+-+                               +---------------+   +                                               |               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     +-+-+-+-+-+   |                "P" T.140 encoded primary data       |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+Hellstrom & Jones           Standards Track                    [Page 11]

RFC 4103           RTP Payload for Text Conversation           June 2005   Below is an example of an RTP packet with one redundant T140block   using text/t140 payload format.  The primary data block is empty,   which is the case when transmitting a packet for the sole purpose of   forcing the redundant data to be transmitted in the absence of any   new data.    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |V=2|P|X| CC=0  |M|  "RED" PT   |   sequence number of primary  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |               timestamp of primary encoding "P"               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |           synchronization source (SSRC) identifier            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |1|   T140 PT   |  timestamp offset of "R"  | "R" block length  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |0|   T140 PT   | "R" T.140 encoded redundant data              |   +-+-+-+-+-+-+-+-+                               +---------------+   |                                               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   As a follow-on to the previous example, the example below shows the   next RTP packet in the sequence, which does contain a real T140block   when using the text/t140 payload format.  Note that the empty block   is present in the redundant transmissions of the text/t140 payload   format.  This example shows two levels of redundancy and one primary   data block.  The value of the "R2 block length" would be set to zero   in order to represent the empty T140block.Hellstrom & Jones           Standards Track                    [Page 12]

RFC 4103           RTP Payload for Text Conversation           June 2005    0                   1                   2                   3    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |V=2|P|X| CC=0  |M|  "RED" PT   |   sequence number of primary  |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |               timestamp of primary encoding "P"               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |           synchronization source (SSRC) identifier            |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |1|   T140 PT   |  timestamp offset of "R2" | "R2" block length |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |1|   T140 PT   |  timestamp offset of "R1" | "R1" block length |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |0|   T140 PT   | "R1" T.140 encoded redundant data             |   +-+-+-+-+-+-+-+-+                               +---------------+   |                                               |               |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+         +-+-+-+   |              "P" T.140 encoded primary data             |   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+7.2.  SDP Examples   Below is an example of SDP, which describes RTP text transport on   port 11000:      m=text 11000 RTP/AVP 98      a=rtpmap:98 t140/1000   Below is an example of SDP that is similar to the above example, but   also utilizesRFC 2198 to provide the recommended two levels of   redundancy for the text packets:      m=text 11000 RTP/AVP 98 100      a=rtpmap:98 t140/1000      a=rtpmap:100 red/1000      a=fmtp:100 98/98/98   Note:  Although these examples utilize the RTP/AVP profile, it is not   intended to limit the scope of this memo.  Any appropriate profile   may be used in conjunction with this memo.Hellstrom & Jones           Standards Track                    [Page 13]

RFC 4103           RTP Payload for Text Conversation           June 20058.  Security Considerations   All of the security considerations fromSection 14 of RFC 3550 [2]   apply.8.1.  Confidentiality   Because the intention of the described payload format is to carry   text in a text conversation, security measures in the form of   encryption are of importance.  The amount of data in a text   conversation session is low.  Therefore, any encryption method MAY be   selected and applied to T.140 session contents or to whole RTP   packets.  Secure Real-time Transport Protocol (SRTP) [14] provides a   suitable method for ensuring confidentiality.8.2.  Integrity   It may be desirable to protect the text contents of an RTP stream   against manipulation.  SRTP [14] provides methods for providing   integrity that MAY be applied.8.3.  Source Authentication   There are several methods of making sure the source of the text is   the intended one.   Text streams are usually used in a multimedia control environment.   Security measures for authentication are available and SHOULD be   applied in the registration and session establishment procedures, so   that the identity of the sender of the text stream is reliably   associated with the person or device setting up the session.  Once   established, SRTP [14] mechanisms MAY be applied to ascertain that   the source is maintained the same during the session.9.  Congestion Considerations   The congestion considerations fromSection 10 of RFC 3550 [2],Section 6 of RFC 2198 [3], and any used profile (e.g., the section   about congestion in chapter 2 ofRFC 3551 [11]) apply with the   following application-specific considerations.   Automated systems MUST NOT use this format to send large amounts of   text at rates significantly above those a human user could enter.   Even if the network load from users of text conversation is usually   very low, for best-effort networks an application MUST monitor the   packet loss rate and take appropriate actions to reduce its sending   rate (if this application sends at higher rate than what TCP wouldHellstrom & Jones           Standards Track                    [Page 14]

RFC 4103           RTP Payload for Text Conversation           June 2005   achieve over the same path).  The reason for this is that this   application, due to its recommended usage of two or more redundancy   levels, is very robust against packet loss.  At the same time, due to   the low bit-rate of text conversations, if one considers the   discussion inRFC 3714 [13], this application will experience very   high packet loss rates before it needs to perform any reduction in   the sending rate.   If the application needs to reduce its sending rate, it SHOULD NOT   reduce the number of redundancy levels below the default amount   specified inSection 4.  Instead, the following actions are   RECOMMENDED in order of priority:   - Increase the shortest time between transmissions (described inSection 5.1) from the recommended 300 ms to 500 ms, which is the     highest value allowed according to T.140.   - Limit the maximum rate of characters transmitted.   - Increase the shortest time between transmissions to a higher value,     not higher than 5 seconds.  This will cause unpleasant delays in     transmission, beyond what is allowed according to T.140, but text     will still be conveyed in the session with some usability.   - Exclude participants from the session.   Please note that if the reduction in bit-rate achieved through the   above measures is not sufficient, the only remaining action is to   terminate the session.   As guidance, some load figures are provided here as examples based on   use of IPv4, including the load from IP, UDP, and RTP headers without   compression .   - Experience tells that a common mean character transmission rate,     during a complete PSTN text telephony session, is around two     characters per second.   - A maximum performance of 20 characters per second is enough even     for voice-to-text applications.   - With the (unusually high) load of 20 characters per second, in a     language that makes use of three octets per UTF-8 character, two     redundant levels, and 300 ms between transmissions, the maximum     load of this application is 3300 bits/s.Hellstrom & Jones           Standards Track                    [Page 15]

RFC 4103           RTP Payload for Text Conversation           June 2005   - When the restrictions mentioned above are applied, limiting     transmission to 10 characters per second, using 5 s between     transmissions, the maximum load of this application, in a language     that uses one octet per UTF-8 character, is 300 bits/s.   Note that this payload can be used in a congested situation as a last   resort to maintain some contact when audio and video media need to be   stopped.  The availability of one low bit-rate stream for text in   such adverse situations may be crucial for maintaining some   communication in a critical situation.10.  IANA Considerations   This document updates the RTP payload format named "t140" and the   associated MIME type "text/t140", in the IANA RTP and Media Type   registries.10.1.  Registration of MIME Media Type text/t140   MIME media type name: text   MIME subtype name: t140   Required parameters: rate: The RTP timestamp clock rate, which is     equal to the sampling rate.  The only valid value is 1000.   Optional parameters: cps: The maximum number of characters that may     be received per second.  The default value is 30.   Encoding considerations: T.140 text can be transmitted with RTP as     specified inRFC 4103.   Security considerations: SeeSection 8 of RFC 4103.   Interoperability considerations: This format is the same as specified     inRFC2793.  ForRFC2793 the "cps=" parameter was not defined.     Therefore, there may be implementations that do not consider this     parameter.  Receivers need to take that into account.   Published specification: ITU-T T.140 Recommendation.RFC 4103.   Applications which use this media type: Text communication terminals     and text conferencing tools.   Additional information: This type is only defined for transfer via     RTP.   Magic number(s): NoneHellstrom & Jones           Standards Track                    [Page 16]

RFC 4103           RTP Payload for Text Conversation           June 2005   File extension(s): None   Macintosh File Type Code(s): None   Person & email address to contact for further information:   Gunnar Hellstrom   E-mail: gunnar.hellstrom@omnitor.se   Intended usage: COMMON   Author                        / Change controller:     Gunnar Hellstrom            | IETF avt WG     gunnar.hellstrom@omnitor.se |10.2.  SDP Mapping of MIME Parameters   The information carried in the MIME media type specification has a   specific mapping to fields in the Session Description Protocol (SDP)   [7], which is commonly used to describe RTP sessions.  When SDP is   used to specify sessions employing the text/t140 format, the mapping   is as follows:   - The MIME type ("text") goes in SDP "m=" as the media name.   - The MIME subtype (payload format name) goes in SDP "a=rtpmap" as     the encoding name.  The RTP clock rate in "a=rtpmap" MUST be 1000     for text/t140.   - The parameter "cps" goes in SDP "a=fmtp" attribute.   - When the payload type is used with redundancy according toRFC2198, the level of redundancy is shown by the number of elements in     the slash-separated payload type list in the "fmtp" parameter of     the redundancy declaration as defined inRFC 4102 [9] andRFC 2198     [3].10.3.  Offer/Answer Consideration   In order to achieve interoperability within the framework of the   offer/answer model [10], the following consideration should be made:   - The "cps" parameter is declarative.  Both sides may provide a     value, which is independent of the other side.Hellstrom & Jones           Standards Track                    [Page 17]

RFC 4103           RTP Payload for Text Conversation           June 200511.  Acknowledgements   The authors want to thank Stephen Casner, Magnus Westerlund, and   Colin Perkins for valuable support with reviews and advice on   creation of this document, to Mickey Nasiri at Ericsson Mobile   Communication for providing the development environment, Michele   Mizarro for verification of the usability of the payload format for   its intended purpose, and Andreas Piirimets for editing support and   validation.12.  Normative References   [1]  ITU-T Recommendation T.140 (1998) - Text conversation protocol        for multimedia application, with amendment 1, (2000).   [2]  Schulzrinne, H., Casner, S., Frederick, R. and V. Jacobson,        "RTP: A Transport Protocol for Real-Time Applications",RFC3550, July 2003.   [3]  Perkins, C., Kouvelas, I., Hodson, O., Hardman, V., Handley, M.,        Bolot, J., Vega-Garcia, A., and S. Fosse-Parisis, "RTP Payload        for Redundant Audio Data",RFC 2198, September 1997.   [4]  Bradner, S., "Key words for use in RFCs to Indicate Requirement        Levels",BCP 14,RFC 2119, March 1997.   [5]  ISO/IEC 10646-1: (1993), Universal Multiple Octet Coded        Character Set.   [6]  Yergeau, F., "UTF-8, a transformation format of ISO 10646", STD        63,RFC 3629, November 2003.   [7]  Handley, M. and V. Jacobson, "SDP: Session Description        Protocol",RFC 2327, April 1998.   [8]  Rosenberg, J. and H. Schulzrinne, "An RTP Payload Format for        Generic Forward Error Correction",RFC 2733, December 1999.   [9]  Jones, P., "Registration of the text/red MIME Sub-Type",RFC4102, June 2005.   [10] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model with        the Session Description Protocol (SDP)",RFC 3264, June 2002.   [11] Schulzrinne, H. and S. Casner, "RTP Profile for Audio and Video        Conference with Minimal Control", STD 65,RFC 3551, July 2003.   [12] Postel, J., "Internet Protocol", STD 5,RFC 791, September 1981.Hellstrom & Jones           Standards Track                    [Page 18]

RFC 4103           RTP Payload for Text Conversation           June 200513.  Informative References   [13] Floyd, S. and J. Kempf, "IAB Concerns Regarding Congestion        Control for Voice Traffic in the Internet",RFC 3714, March        2004.   [14] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.        Norrman, "The Secure Real-time Transport Protocol (SRTP)",RFC3711, March 2004.   [15] Schulzrinne, H. and S. Petrack, "RTP Payload for DTMF Digits,        Telephony Tones and Telephony Signals",RFC 2833, May 2000.   [16] Hellstrom, G., "RTP Payload for Text Conversation",RFC 2793,        May 2000.   [17] ITU-T Recommendation F.703, Multimedia Conversational Services,        November 2000.Authors' Addresses   Gunnar Hellstrom   Omnitor AB   Renathvagen 2   SE-121 37 Johanneshov   Sweden   Phone: +46 708 204 288 / +46 8 556 002 03   Fax:   +46 8 556 002 06   EMail: gunnar.hellstrom@omnitor.se   Paul E. Jones   Cisco Systems, Inc.   7025 Kit Creek Rd.   Research Triangle Park, NC 27709   USA   Phone: +1 919 392 6948   EMail: paulej@packetizer.comHellstrom & Jones           Standards Track                    [Page 19]

RFC 4103           RTP Payload for Text Conversation           June 2005Full Copyright Statement   Copyright (C) The Internet Society (2005).   This document is subject to the rights, licenses and restrictions   contained inBCP 78, and except as set forth therein, the authors   retain all their rights.   This document and the information contained herein are provided on an   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET   ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,   INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE   INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.Intellectual Property   The IETF takes no position regarding the validity or scope of any   Intellectual Property Rights or other rights that might be claimed to   pertain to the implementation or use of the technology described in   this document or the extent to which any license under such rights   might or might not be available; nor does it represent that it has   made any independent effort to identify any such rights.  Information   on the procedures with respect to rights in RFC documents can be   found inBCP 78 andBCP 79.   Copies of IPR disclosures made to the IETF Secretariat and any   assurances of licenses to be made available, or the result of an   attempt made to obtain a general license or permission for the use of   such proprietary rights by implementers or users of this   specification can be obtained from the IETF on-line IPR repository athttp://www.ietf.org/ipr.   The IETF invites any interested party to bring to its attention any   copyrights, patents or patent applications, or other proprietary   rights that may cover technology that may be required to implement   this standard.  Please address the information to the IETF at ietf-   ipr@ietf.org.Acknowledgement   Funding for the RFC Editor function is currently provided by the   Internet Society.Hellstrom & Jones           Standards Track                    [Page 20]

[8]ページ先頭

©2009-2025 Movatter.jp