Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Errata] [Info page]

INFORMATIONAL
Errata Exist
Network Working Group                                           J. TouchRequest For Comments: 1936                                     B. ParhamCategory: Informational                                              ISI                                                              April 1996Implementing the Internet Checksum in HardwareStatus of This Memo   This memo provides information for the Internet community.  This memo   does not specify an Internet standard of any kind.  Distribution of   this memo is unlimited.Abstract   This memo presents a techniques for efficiently implementing the   Internet Checksum in hardware. It includes PLD code for programming a   single, low cost part to perform checksumming at 1.26 Gbps.Introduction   The Internet Checksum is used in various Internet protocols to check   for data corruption in headers (e.g., IP) [4] and packet bodies (e.g,   UDP, TCP) [5][6]. Efficient software implementation of this checksum   has been addressed in previous RFCs [1][2][3][7].   Efficient software implementations of the Internet Checksum algorithm   are often embedded in data copying operations ([1], Section 2). This   copy operation is increasingly being performed by dedicated direct   memory access (DMA) hardware. As a result, DMA hardware designs are   beginning to incorporate dedicated hardware to compute the Internet   Checksum during the data transfer.   This note presents the architecture of an efficient, pipelined   Internet Checksum mechanism, suitable for inclusion in DMA hardware   [8]. This design can be implemented in a relatively inexpensive   programmable logic device (PLD) (1995 cost of $40), and is capable of   supporting 1.26 Gbps transfer rates, at 26 ns per 32-bit word.Appendix A provides the pseudocode for such a device. This design has   been implemented in the PC-ATOMIC host interface hardware [8]. We   believe this design is of general use to the Internet community.Touch & Parham               Informational                      [Page 1]

RFC 1936    Implementing the Internet Checksum in Hardware    April 1996   The remainder of this document is organized as follows:            Review of the Internet Checksum            One's Complement vs. Two's Complement Addition            Interfaces            SummaryAppendix A - PLD source codeTouch & Parham               Informational                      [Page 2]

RFC 1936    Implementing the Internet Checksum in Hardware    April 1996A Review of the Internet Checksum   The Internet Checksum is used for detecting corruption in a block of   data [1]. It is initialized to zero, and computed as the complement   of the ones-complement sum of the data, taken in 16-bit units. A   subsequent checksum of the data and checksum together should generate   a zero checksum if no errors are detected.   The checksum allows [1]:            - byte order "independence"                    reordered output is equivalent to reordered input            - 16-bit word-order independence                    reordering 16-bit words preserves the output            - incremental computation            - deferred carries            - parallel summation                    a result of deferred carries, incremental                    computation, and 16-bit word order independence   This note describes an implementation that computes two partial   checksums in parallel, over the odd and even 16-bit half-words of   32-bit data. The result is a pair of partial checksums (odd and   even), which can be combined, and the result inverted to generate the   true Internet Checksum. This technique is related to the long-word   parallel summation used in efficient software implementations [1].            +------------------+     +------------------+            |  high half-word  |     |  low half-word   |            | ones-complement  |     | ones-complement  |            | partial checksum |     | partial checksum |            +------------------+     +------------------+                                \   /                                  * (ones-complement sum)                                  |                         +------------------+                         | partial checksum |                         +------------------+                                  |                                  * (ones-complement negative)                                  |                        +-------------------+                        |       final       |                        | Internet Checksum |                        +-------------------+Touch & Parham               Informational                      [Page 3]

RFC 1936    Implementing the Internet Checksum in Hardware    April 1996One's Complement vs. Two's Complement Addition   The Internet Checksum is composed of a ones-complement lookahead   adder and a bit-wise inverter. A ones-complement adder can be built   either using twos-complement components, or natively.   A twos-complement implementation of a ones-complement adder requires   either two twos-complement adders, or two cycles per add. The sum is   performed, then the high-bit carry-out is propagated to the carry-in,   and a second sum is performed. (ones-complement addition is {+1s} and   twos-complement is {+2s})            a {+1s} b == (a {+2s} b) + carry(a {+2s} b)            e.g.,                    halfword16 a,b;                    word32 c;                    a {+1s} b == r            such that:                    c = a {+2s} b;                          # sum value                    r = (c & 0xFFFF) {+2s} (c >> 16);       # sum carry   Bits of a twos-complement lookahead adder are progressively more   complex in carry lookahead. (OR the contents of each row, where terms   are AND'd or XOR'd {^})            4-bit carry-lookahead 2's complement adder:                    a,b : input data                    p   : carry propagate, where pi = ai*bi = (ai)(bi)                    g   : carry generate, where gi = ai + bi            Out0 := a0 ^ b0 ^ ci            Out1 := a1 ^ b1 ^ (cip0     + g0)            Out2 := a2 ^ b2 ^ (cip0p1   + g0p1   + g1)            Out3 := a3 ^ b3 ^ (cip0p1p2 + g0p1p2 + g1p2 + g2)            Cout := cip0p1p2p3 + g0p1p2p3 + g1p2p3 + g2p3 + g3   The true ones-complement lookahead adder recognizes that the carry-   wrap of the twos-complement addition is equivalent to a toroidal   carry-lookahead. Bits of a ones-complement lookahead adder are all   the same complexity, that of the high-bit of a twos-complement   lookahead adder. Thus the ones-complement sum (and thus the Internet   Checksum) is bit-position independent. We replace `ci' with the `co'   expression and reduce. (OR terms in each row pair).Touch & Parham               Informational                      [Page 4]

RFC 1936    Implementing the Internet Checksum in Hardware    April 1996            4-bit carry-lookahead 1's complement ring adder:            Out0 = a0 ^ b0 ^ (g3       + g2p3     + g1p2p3   + g0p1p2p3)            Out1 = a1 ^ b1 ^ (g3p0     + g2p3p0   + g1p2p3p0 + g0)            Out2 = a2 ^ b2 ^ (g3p0p1   + g2p3p0p1 + g1       + g0p1)            Out3 = a3 ^ b3 ^ (g3p0p1p2 + g2       + g1p2     + g0p1p2)   A hardware implementation can use this toroidal design directly,   together with conventional twos-complement fast-adder internal   components, to perform a pipelined ones-complement adder [8].   A VLSI implementation could use any full-lookahead adder, adapted to   be toroidal and bit-equivalent, as above. In our PLD implementation,   we implement the adders via 2- and 3-bit full-lookahead sub-   components. The adder components are chained in a ring via carry bit   registers.  This relies on delayed carry-propagation to implement a   carry pipeline between the fast-adder stages.            Full-lookahead adders in a toroidal pipeline         +-+-+-+   +-+-+-+   +-+-+   +-+-+-+   +-+-+-+   +-+-+         |i|i|i|   |i|i|i|   |i|i|   |i|i|i|   |i|i|i|   |i|i|         |F|E|D|   |C|B|A|   |9|8|   |7|6|5|   |4|3|2|   |1|0|         +-+-+-+   +-+-+-+   +-+-+   +-+-+-+   +-+-+-+   +-+-+           "+"       "+"      "+"      "+"       "+"      "+"         +-+-+-+   +-+-+-+   +-+-+   +-+-+-+   +-+-+-+   +-+-+         |s|s|s|   |s|s|s|   |s|s|   |s|s|s|   |s|s|s|   |s|s|         |F|E|D|   |C|B|A|   |9|8|   |7|6|5|   |4|3|2|   |1|0|         +-+-+-+   +-+-+-+   +-+-+   +-+-+-+   +-+-+-+   +-+-+         v     |   v     |   v   |   v     |   v     |   v   |   +--+         |     ^   |     ^   |   ^   |     ^   |     ^   |   ^   v  |         |      +-+       +-+     +-+       +-+       +-+     +-+   |         |      |c|       |c|     |c|       |c|       |c|     |c|   |         |      |5|       |4|     |3|       |2|       |1|     |0|   |         |      +-+       +-+     +-+       +-+       +-+     +-+   |         +----------------------------------------------------------+   Implementation of fast-adders in PLD hardware is currently limited to   3-bits, because an i-bit adder requires 4+2^i product terms, and   current PLDs support only 16 product terms.  The resulting device   takes at most 5 "idle" clock periods for the carries to propagate   through the accumulation pipeline.Touch & Parham               Informational                      [Page 5]

RFC 1936    Implementing the Internet Checksum in Hardware    April 1996Interfaces   The above device has been installed in a VL-Bus PC host interface   card [8]. It has a hardware and software interface, defined as   follows. Hardware Interface   The Internet Checksum hardware appears as a single-port 32-bit   register, with clock and control signals [8]:                   +----------------------+            CLR--->|                      |            OE---->|  32-bit register as  |            CLK--->|  2 adjacent 16-bit   |<---/---> 32-bit data bus            ICLK-->| ones-complement sums |            ADD--->|                      |                   +----------------------+            CLR    = zero the register            OE     = write the register onto the data bus            CLK    = clock to cycle the pipeline operation            ICLK   = input data latch clock            ADD    = initiating an add of latched input data   CLR causes the contents of the checksum register and input latch to   be zeroed. There is no explicit load; a CLR followed by a write of   the load value to a dummy location is equivalent.   The OE causes the register to be written to the data bus, or tri-   stated.   The CLK causes the pipeline to operate. If no new input data is   latched to be added (via ICLK, ADD), a virtual "zero" is summed into   the register, to permit the pipeline to empty.   The ICLK (transparently) latches the value on the data bus to be   latched internally, to be summed into the accumulator on the next ADD   signal. The ADD signal causes the latched input data (ICLK) to be   accumulated into the checksum pipeline. ADD and ICLK are commonly   tied together. One 32-bit data value can be latched and accumulated   into the pipeline adder every 26-ns clock, assuming data is stable   when the ADD/ICLK signal occurs.   The internal 32-bit register is organized as two 16-bit ones-   complement sums, over the even and odd 16-bit words of the data   stream. To compute the Internet Checksum from this quantity, ones-   complement add the halves together, and invert the result.Touch & Parham               Informational                      [Page 6]

RFC 1936    Implementing the Internet Checksum in Hardware    April 1996 Software Interface   The device is used as a memory-mapped register. The register is read   by performing a read on its equivalent memory location.   The device is controlled via an external memory-mapped register. Bits   in this control register clear the device (set/clear the CLR line),   and enable and disable the device (set/clear the ADD line). The CLR   line can alternatively be mapped to a memory write, e.g., such that   reading the location is a non-destructive read of the checksum   register, and a write of any value clears the checksum register. The   enable/disable control must be stored in an external register.   The device is designed to operate in background during memory   transfers (either DMA or programmed I/O). Once enabled, all transfers   across that bus are summed into the checksum register. The checksum   is available 5 clocks after the last enabled data accumulation. This   delay is often hidden by memory access mechanisms and bus   arbitration.  If required, "stall" instructions can be executed for   the appropriate delay.   For the following example, we assume that the device is located at   CKSUMLOC. We assume that reading that location reads the checksum   register, and writing any value to that location clears the register.   The control register is located at CTLLOC, and the checksum   enable/disable bit is CKSUMBIT, where 1 is enabled, and 0 is   disabled.  To perform a checksum, a programmer would clear the   register, (optionally initialize the checksum), initiate a series of   transfers, and use the result:            /******* initialization *******/            *(CTLLOC) &= ~((ctlsize)(CKSUMBIT));     /* disable sum */            (word32)(*(CKSUMLOC)) = 0;               /* clear reg   */            *(CTLLOC) |= CKSUMBIT;                   /* enable sum  */            { (optional) write initial value to a dummy location }            /***** perform a transfer *****/            { do one or more DMA or PIO transfers - read or write }            /***** gather the results *****/            *(CTLLOC) &= ~((ctlsize)(CKSUMBIT));     /* disable sum  */            sum = (word32)(*(CKSUMLOC));             /* read sum     */            sum = (sum & 0xFFFF) + (sum >> 16);      /* fold halves  */            sum = (sum & 0xFFFF) + (sum >> 16);      /* add in carry */            ipcksum = (halfword16)(~(sum & 0xFFFF)); /* 1's negative */Touch & Parham               Informational                      [Page 7]

RFC 1936    Implementing the Internet Checksum in Hardware    April 1996Summary   This note describes the design of a hardware Internet Checksum that   can be implemented in an inexpensive PLD, achieving 1.26 Gbps. This   design has been implemented in the PC-ATOMIC host interface hardware   [8]. We believe this design is of general use to the Internet   community.Security Considerations   Security considerations are not addressed here. The Internet Checksum   is not intended as a security measure.Acknowledgements   The authors would like to thank the members of the "High-Performance   Computing and Communications", notably Mike Carlton, and "Advanced   Systems" Divisions at ISI for their assistance in the development of   the hardware, and this memo.References   [1] Braden, R., Borman, D., and Partridge, C., "Computing the       Internet Checksum," Network Working GroupRFC-1071, ISI, Cray       Research, and BBN Labs, Sept. 1988.   [2] Mallory, T., and Kullberg, A., "Incremental Updating of the       Internet Checksum," Network Working GroupRFC-1141, BBN Comm.,       Jan. 1990.   [3] Plummer, W., "TCP Checksum Function Design," IEN-45, BBN, 1978,       included as an appendix inRFC-1071.   [4] Postel, Jon, "Internet Protocol," Network Working GroupRFC-791/STD-5, ISI, Sept. 1981.   [5] Postel, Jon, "User Datagram Protocol," Network Working GroupRFC-768/STD-6, ISI, Aug. 1980.   [6] Postel, Jon, "Transmission Control Protocol," Network Working       GroupRFC-793/STD-7, ISI, Sept. 1981.   [7] Rijsinghani, A., "Computation of the Internet Checksum via       Incremental Update," Network Working GroupRFC-1624, Digital       Equipment Corp., May 1994.   [8] Touch, J., "PC-ATOMIC", ISI Tech. Report. SR-95-407, June 1995.Touch & Parham               Informational                      [Page 8]

RFC 1936    Implementing the Internet Checksum in Hardware    April 1996Authors' Addresses   Joe Touch   University of Southern California/Information Sciences Institute   4676 Admiralty Way   Marina del Rey, CA 90292-6695   USA   Phone: +1 310-822-1511 x151   Fax:   +1 310-823-6714   URL:http://www.isi.edu/~touch   EMail: touch@isi.edu   Bruce Parham   University of Southern California/Information Sciences Institute   4676 Admiralty Way   Marina del Rey, CA 90292-6695   USA   Phone: +1 310-822-1511 x101   Fax:   +1 310-823-6714   EMail: bparham@isi.eduTouch & Parham               Informational                      [Page 9]

RFC 1936    Implementing the Internet Checksum in Hardware    April 1996Appendix A: PLD source codeThe following is the PLD source code for an AMD MACH-435 PLD. TheMACH-435 is composed of 8 22V10-equivalent PLD blocks, connected by aconfigurable internal matrix.---- (PLD source code follows) ----TITLE    PC-ATOMIC IP Sum Accelerator - 1-clock 2- and 3-bit 26 ns versionPATTERN  ip_sumREVISION 1.01AUTHOR   J. Touch & B. ParhamCOMPANY  USC/ISIDATE     06/21/94CHIP    ip_sum          MACH435; accumulates in 1 clock (1 level of logic);; resources allocated to reduce fitting time;; uses an input register "dl" to latch the data bus values on rising edge; accumulates a hi/lo ones-complement sum in register "q"; the input and output are accessed via bidirectional pins "dq";; uses 2 groups of 6 carry bit registers "cy";; use 3-bit full-adders with carry lookahead (settles in 6 clocks); group 16 bits as      [000102 030405 0607 080910 111213 1415];                       [161718 192021 2223 242526 272829 3031];; locking the pins down speeds up fitting and is designed to force; 4-bit components into single "segments" of the PLD.; we could have indicated the same thing via:;       GROUP MACH_SEG_A        dq[6..0];       GROUP MACH_SEG_B        dq[14..8];       GROUP MACH_SEG_C        dq[22..16];       GROUP MACH_SEG_D        dq[30..24];; control pins:;PIN     20      clk             ; adder clockPIN     62      ip_add          ; add current data to sumPIN     83      ip_sum_ena      ; output current sumPIN     41      ip_clr          ; clear current sumPIN 23  ip_dclk                 ; input data latch (tied to clk, or not)Touch & Parham               Informational                     [Page 10]

RFC 1936    Implementing the Internet Checksum in Hardware    April 1996;; dq are data bus pins; dl is the input register;PIN     [9..3]          dq[6..0] IPAIR dl[6..0]         ; IO portPIN     [18..12]        dq[14..8] IPAIR dl[14..8]       ; IO portPIN     [30..24]        dq[22..16] IPAIR dl[22..16]     ; IO portPIN     [39..33]        dq[30..24] IPAIR dl[30..24]     ; IO portPIN     ?       dq[31,23,15,7] IPAIR dl[31,23,15,7]     ; IO port;; q  is the partial checksum register; dl is the input register; dq are the data bus pins;NODE    ?       q[31..0] OPAIR dq[31..0]        ; internal data in regNODE    ?       dl[31..0] REG                   ; input reg;; cy are the carry register bits;NODE    ?       cy[31,29,26,23,21,18,15,13,10,7,5,2] REG                                                ;1-bit internal carry bitsEQUATIONS;; .trst is the tri-state control, 0 means these are always inputs;ip_add.trst             = 0ip_clr.trst             = 0ip_sum_ena.trst         = 0;; grab data to the input register on every clock (irrelevant if invalid);dl[31..0].clkf          = ip_dclk       ; grab data all the time        ; don't use setf, rstf, or trst for dl        ; we want dl to map to input registers, not internal cells        ; besides, input registers don't need setf, rstf, or trst;; control of the checksum register;dq[31..0].clkf          = clk                   ; clk clocks everythingdq[31..0].setf          = gnd                   ; never preset registersdq[31..0].rstf          = ip_clr                ; clear on resetdq[31..0].trst          = ip_sum_ena            ; ena outputs sum - readTouch & Parham               Informational                     [Page 11]

RFC 1936    Implementing the Internet Checksum in Hardware    April 1996;; control for the carry register;cy[31,29,26,23,21,18,15,13,10,7,5,2].clkf       = clkcy[31,29,26,23,21,18,15,13,10,7,5,2].setf       = gnd    ; never presetcy[31,29,26,23,21,18,15,13,10,7,5,2].rstf       = ip_clr ; clear on reset;; INPUT DATA LATCH; nothing fancy here - grab all inputs when ip_add signal is high; i.e., grab data in input register;dl[31..0]             := dq[31..0];; COMBINATORIAL ADDER;; built as a series of 2-bit and 3-bit (carry-lookahead) full-adders; with carries sent to the carry register "pipeline";; sum[n] are sum bits; cy[m] are carry bits; ":+:" is XOR;; SUM[0] = (A0 :+: B0 :+: CARRY_IN);; CY[0] = ((A0 * B0) + ((A0 :+: B0) * CARRY_IN));; actually, the latter can be rewritten as;; CY[0] = ((A0 * B0) + ((A0 + B0) * CARRY_IN));; because the XOR won't be invalidated by the AND case, since the; result is always 1 from the first term then anyway; this helps reduce the number of XOR terms required, which are; a limited resource in PLDs;Touch & Parham               Informational                     [Page 12]

RFC 1936    Implementing the Internet Checksum in Hardware    April 1996; SUM THE LOW-ORDER WORD;;; the first 5 bits [0..4] of the low-order word;q[0]    := (q[0] :+: (ip_add * dl[0]) :+: cy[15])q[1]    := (q[1] :+: (ip_add * dl[1]) :+:        ((ip_add *                (q[0] * dl[0] +                dl[0] * cy[15])) +        (q[0] * cy[15])))q[2]    := (q[2] :+: (ip_add * dl[2]) :+:        ((ip_add *                (q[1] * dl[1] +                 q[1] *  q[0] *  dl[0] +                dl[1] *  q[0] *  dl[0] +                 q[1] * dl[0] * cy[15] +                dl[1] * dl[0] * cy[15] +                dl[1] *  q[0] * cy[15])) +        (q[1] * q[0] * cy[15])))cy[2]   := ((ip_add *                (q[2] * dl[2] +                 q[2] *  q[1] * dl[1] +                dl[2] *  q[1] * dl[1] +                 q[2] *  q[1] *  q[0] *  dl[0] +                 q[2] * dl[1] *  q[0] *  dl[0] +                dl[2] *  q[1] *  q[0] *  dl[0] +                dl[2] * dl[1] *  q[0] *  dl[0] +                 q[2] *  q[1] * dl[0] * cy[15] +                 q[2] * dl[1] *  q[0] * cy[15] +                 q[2] * dl[1] * dl[0] * cy[15] +                dl[2] *  q[1] *  q[0] * cy[15] +                dl[2] *  q[1] * dl[0] * cy[15] +                dl[2] * dl[1] *  q[0] * cy[15] +                dl[2] * dl[1] * dl[0] * cy[15])) +        (q[2] * q[1] * q[0] * cy[15]))q[3]    := (q[3] :+: (ip_add * dl[3]) :+: cy[2])q[4]    := (q[4] :+: (ip_add * dl[4]) :+:        ((ip_add *                (q[3] * dl[3] +                dl[3] * cy[2])) +        (q[3] * cy[2])))Touch & Parham               Informational                     [Page 13]

RFC 1936    Implementing the Internet Checksum in Hardware    April 1996;; the next 3 bits [5..7] of the low-order word;q[5]    := (q[5] :+: (ip_add * dl[5]) :+:        ((ip_add *                (q[4] * dl[4] +                 q[4] *  q[3] * dl[3] +                dl[4] *  q[3] * dl[3] +                 q[4] * dl[3] * cy[2] +                dl[4] * dl[3] * cy[2] +                dl[4] *  q[3] * cy[2])) +        (q[4] * q[3] * cy[2])))cy[5]   := ((ip_add * (                 q[5] * dl[5] +                 q[5] *  q[4] * dl[4] +                dl[5] *  q[4] * dl[4] +                 q[5] *  q[4] *  q[3] * dl[3] +                 q[5] * dl[4] *  q[3] * dl[3] +                dl[5] *  q[4] *  q[3] * dl[3] +                dl[5] * dl[4] *  q[3] * dl[3] +                 q[5] *  q[4] * dl[3] * cy[2] +                 q[5] * dl[4] *  q[3] * cy[2] +                 q[5] * dl[4] * dl[3] * cy[2] +                dl[5] *  q[4] *  q[3] * cy[2] +                dl[5] *  q[4] * dl[3] * cy[2] +                dl[5] * dl[4] *  q[3] * cy[2] +                dl[5] * dl[4] * dl[3] * cy[2])) +        (q[5] * q[4] * q[3] * cy[2]))q[6]    := (q[6] :+: (ip_add * dl[6]) :+: cy[5])q[7]    := (q[7] :+: (ip_add * dl[7]) :+:        ((ip_add *                (q[6] * dl[6] +                dl[6] * cy[5])) +        (q[6] * cy[5])))cy[7]   := ((ip_add *                (q[7] * dl[7] +                 q[7] *  q[6] * dl[6] +                dl[7] *  q[6] * dl[6] +                 q[7] * dl[6] * cy[5] +                dl[7] * dl[6] * cy[5] +                dl[7] *  q[6] * cy[5])) +        (q[7] * q[6] * cy[5]))Touch & Parham               Informational                     [Page 14]

RFC 1936    Implementing the Internet Checksum in Hardware    April 1996;; the next 5 bits [8..12] of the low-order word;q[8]    := (q[8] :+: (ip_add * dl[8]) :+: cy[7])q[9]    := (q[9] :+: (ip_add * dl[9]) :+:        ((ip_add *                (q[8] * dl[8] +                dl[8] * cy[7])) +        (q[8] * cy[7])))q[10]   := (q[10] :+: (ip_add * dl[10]) :+:        ((ip_add *                (q[9] * dl[9] +                 q[9] *  q[8] * dl[8] +                dl[9] *  q[8] * dl[8] +                 q[9] * dl[8] * cy[7] +                dl[9] * dl[8] * cy[7] +                dl[9] *  q[8] * cy[7])) +        (q[9] * q[8] * cy[7])))cy[10]  := ((ip_add *                (q[10] * dl[10] +                 q[10] *  q[9] * dl[9] +                dl[10] *  q[9] * dl[9] +                 q[10] *  q[9] *  q[8] * dl[8] +                 q[10] * dl[9] *  q[8] * dl[8] +                dl[10] *  q[9] *  q[8] * dl[8] +                dl[10] * dl[9] *  q[8] * dl[8] +                 q[10] *  q[9] * dl[8] * cy[7] +                 q[10] * dl[9] *  q[8] * cy[7] +                 q[10] * dl[9] * dl[8] * cy[7] +                dl[10] *  q[9] *  q[8] * cy[7] +                dl[10] *  q[9] * dl[8] * cy[7] +                dl[10] * dl[9] *  q[8] * cy[7] +                dl[10] * dl[9] * dl[8] * cy[7])) +        (q[10] * q[9] * q[8] * cy[7]))q[11]   := (q[11] :+: (ip_add * dl[11]) :+: cy[10])q[12]   := (q[12] :+: (ip_add * dl[12]) :+:        ((ip_add *                (q[11] * dl[11] +                dl[11] * cy[10])) +        (q[11] * cy[10])))Touch & Parham               Informational                     [Page 15]

RFC 1936    Implementing the Internet Checksum in Hardware    April 1996;; the final 3 bits [13..15] of the low-order word;q[13]   := (q[13] :+: (ip_add * dl[13]) :+:        ((ip_add *                (q[12] * dl[12] +                 q[12] *  q[11] * dl[11] +                dl[12] *  q[11] * dl[11] +                 q[12] * dl[11] * cy[10] +                dl[12] * dl[11] * cy[10] +                dl[12] *  q[11] * cy[10])) +        (q[12] * q[11] * cy[10])))cy[13]  := ((ip_add * (                 q[13] * dl[13] +                 q[13] *  q[12] * dl[12] +                dl[13] *  q[12] * dl[12] +                 q[13] *  q[12] *  q[11] * dl[11] +                 q[13] * dl[12] *  q[11] * dl[11] +                dl[13] *  q[12] *  q[11] * dl[11] +                dl[13] * dl[12] *  q[11] * dl[11] +                 q[13] *  q[12] * dl[11] * cy[10] +                 q[13] * dl[12] *  q[11] * cy[10] +                 q[13] * dl[12] * dl[11] * cy[10] +                dl[13] *  q[12] *  q[11] * cy[10] +                dl[13] *  q[12] * dl[11] * cy[10] +                dl[13] * dl[12] *  q[11] * cy[10] +                dl[13] * dl[12] * dl[11] * cy[10])) +        (q[13] * q[12] *  q[11] * cy[10]))q[14]   := (q[14] :+: (ip_add * dl[14]) :+: cy[13])q[15]   := (q[15] :+: (ip_add * dl[15]) :+:        ((ip_add *                (q[14] * dl[14] +                dl[14] * cy[13])) +        (q[14] * cy[13])))cy[15]  := ((ip_add *                (q[15] * dl[15] +                 q[15] *  q[14] * dl[14] +                dl[15] *  q[14] * dl[14] +                 q[15] * dl[14] * cy[13] +                dl[15] * dl[14] * cy[13] +                dl[15] *  q[14] * cy[13])) +        (q[15] * q[14] * cy[13]))Touch & Parham               Informational                     [Page 16]

RFC 1936    Implementing the Internet Checksum in Hardware    April 1996; SUM THE HIGH-ORDER WORD;;; the first 5 bits [16..20] of the high-order word;q[16]   := (q[16] :+: (ip_add * dl[16]) :+: cy[31])q[17]   := (q[17] :+: (ip_add * dl[17]) :+:        ((ip_add *                (q[16] * dl[16] +                dl[16] * cy[31])) +        (q[16] * cy[31])))q[18]   := (q[18] :+: (ip_add * dl[18]) :+:        ((ip_add *                (q[17] * dl[17] +                 q[17] *  q[16] * dl[16] +                dl[17] *  q[16] * dl[16] +                 q[17] * dl[16] * cy[31] +                dl[17] * dl[16] * cy[31] +                dl[17] *  q[16] * cy[31])) +        (q[17] * q[16] * cy[31])))cy[18]  := ((ip_add *                (q[18] * dl[18] +                 q[18] *  q[17] * dl[17] +                dl[18] *  q[17] * dl[17] +                 q[18] *  q[17] *  q[16] * dl[16] +                 q[18] * dl[17] *  q[16] * dl[16] +                dl[18] *  q[17] *  q[16] * dl[16] +                dl[18] * dl[17] *  q[16] * dl[16] +                 q[18] *  q[17] * dl[16] * cy[31] +                 q[18] * dl[17] *  q[16] * cy[31] +                 q[18] * dl[17] * dl[16] * cy[31] +                dl[18] *  q[17] *  q[16] * cy[31] +                dl[18] *  q[17] * dl[16] * cy[31] +                dl[18] * dl[17] *  q[16] * cy[31] +                dl[18] * dl[17] * dl[16] * cy[31])) +        (q[18] * q[17] * q[16] * cy[31]))q[19]   := (q[19] :+: (ip_add * dl[19]) :+: cy[18])q[20]   := (q[20] :+: (ip_add * dl[20]) :+:        ((ip_add *                (q[19] * dl[19] +                dl[19] * cy[18])) +        (q[19] * cy[18])))Touch & Parham               Informational                     [Page 17]

RFC 1936    Implementing the Internet Checksum in Hardware    April 1996;; the next 3 bits [21..23] of the high-order word;q[21]   := (q[21] :+: (ip_add * dl[21]) :+:        ((ip_add *                (q[20] * dl[20] +                 q[20] *  q[19] * dl[19] +                dl[20] *  q[19] * dl[19] +                 q[20] * dl[19] * cy[18] +                dl[20] * dl[19] * cy[18] +                dl[20] *  q[19] * cy[18])) +        (q[20] * q[19] * cy[18])))cy[21]  := ((ip_add * (                 q[21] * dl[21] +                 q[21] *  q[20] * dl[20] +                dl[21] *  q[20] * dl[20] +                 q[21] *  q[20] *  q[19] * dl[19] +                 q[21] * dl[20] *  q[19] * dl[19] +                dl[21] *  q[20] *  q[19] * dl[19] +                dl[21] * dl[20] *  q[19] * dl[19] +                 q[21] *  q[20] * dl[19] * cy[18] +                 q[21] * dl[20] *  q[19] * cy[18] +                 q[21] * dl[20] * dl[19] * cy[18] +                dl[21] *  q[20] *  q[19] * cy[18] +                dl[21] *  q[20] * dl[19] * cy[18] +                dl[21] * dl[20] *  q[19] * cy[18] +                dl[21] * dl[20] * dl[19] * cy[18])) +        (q[21] * q[20] * q[19] * cy[18]))q[22]   := (q[22] :+: (ip_add * dl[22]) :+: cy[21])q[23]   := (q[23] :+: (ip_add * dl[23]) :+:        ((ip_add *                (q[22] * dl[22] +                dl[22] * cy[21])) +        (q[22] * cy[21])))cy[23]  := ((ip_add *                (q[23] * dl[23] +                 q[23] *  q[22] * dl[22] +                dl[23] *  q[22] * dl[22] +                 q[23] * dl[22] * cy[21] +                dl[23] * dl[22] * cy[21] +                dl[23] *  q[22] * cy[21])) +        (q[23] * q[22] * cy[21]))Touch & Parham               Informational                     [Page 18]

RFC 1936    Implementing the Internet Checksum in Hardware    April 1996;; the next 5 bits [24..28] of the high-order word;q[24]   := (q[24] :+: (ip_add * dl[24]) :+: cy[23])q[25]   := (q[25] :+: (ip_add * dl[25]) :+:        ((ip_add *                (q[24] * dl[24] +                dl[24] * cy[23])) +        (q[24] * cy[23])))q[26]   := (q[26] :+: (ip_add * dl[26]) :+:        ((ip_add *                (q[25] * dl[25] +                 q[25] *  q[24] * dl[24] +                dl[25] *  q[24] * dl[24] +                 q[25] * dl[24] * cy[23] +                dl[25] * dl[24] * cy[23] +                dl[25] *  q[24] * cy[23])) +        (q[25] * q[24] * cy[23])))cy[26]  := ((ip_add *                (q[26] * dl[26] +                 q[26] *  q[25] * dl[25] +                dl[26] *  q[25] * dl[25] +                 q[26] *  q[25] *  q[24] * dl[24] +                 q[26] * dl[25] *  q[24] * dl[24] +                dl[26] *  q[25] *  q[24] * dl[24] +                dl[26] * dl[25] *  q[24] * dl[24] +                 q[26] *  q[25] * dl[24] * cy[23] +                 q[26] * dl[25] *  q[24] * cy[23] +                 q[26] * dl[25] * dl[24] * cy[23] +                dl[26] *  q[25] *  q[24] * cy[23] +                dl[26] *  q[25] * dl[24] * cy[23] +                dl[26] * dl[25] *  q[24] * cy[23] +                dl[26] * dl[25] * dl[24] * cy[23])) +        (q[26] * q[25] * q[24] * cy[23]))q[27]   := (q[27] :+: (ip_add * dl[27]) :+: cy[26])q[28]   := (q[28] :+: (ip_add * dl[28]) :+:        ((ip_add *                (q[27] * dl[27] +                dl[27] * cy[26])) +        (q[27] * cy[26])))Touch & Parham               Informational                     [Page 19]

RFC 1936    Implementing the Internet Checksum in Hardware    April 1996;; the final 3 bits [29..31] of the high-order word;q[29]   := (q[29] :+: (ip_add * dl[29]) :+:        ((ip_add *                (q[28] * dl[28] +                 q[28] *  q[27] * dl[27] +                dl[28] *  q[27] * dl[27] +                 q[28] * dl[27] * cy[26] +                dl[28] * dl[27] * cy[26] +                dl[28] *  q[27] * cy[26])) +        (q[28] * q[27] * cy[26])))cy[29]  := ((ip_add * (                 q[29] * dl[29] +                 q[29] *  q[28] * dl[28] +                dl[29] *  q[28] * dl[28] +                 q[29] *  q[28] *  q[27] * dl[27] +                 q[29] * dl[28] *  q[27] * dl[27] +                dl[29] *  q[28] *  q[27] * dl[27] +                dl[29] * dl[28] *  q[27] * dl[27] +                 q[29] *  q[28] * dl[27] * cy[26] +                 q[29] * dl[28] *  q[27] * cy[26] +                 q[29] * dl[28] * dl[27] * cy[26] +                dl[29] *  q[28] *  q[27] * cy[26] +                dl[29] *  q[28] * dl[27] * cy[26] +                dl[29] * dl[28] *  q[27] * cy[26] +                dl[29] * dl[28] * dl[27] * cy[26])) +        (q[29] * q[28] * q[27] * cy[26]))q[30]   := (q[30] :+: (ip_add * dl[30]) :+: cy[29])q[31]   := (q[31] :+: (ip_add * dl[31]) :+:        ((ip_add *                (q[30] * dl[30] +                dl[30] * cy[29])) +        (q[30] * cy[29])))cy[31]  := ((ip_add *                (q[31] * dl[31] +                 q[31] *  q[30] * dl[30] +                dl[31] *  q[30] * dl[30] +                 q[31] * dl[30] * cy[29] +                dl[31] * dl[30] * cy[29] +                dl[31] *  q[30] * cy[29])) +        (q[31] * q[30] * cy[29]))Touch & Parham               Informational                     [Page 20]

RFC 1936    Implementing the Internet Checksum in Hardware    April 1996;; output nodes onto output pins (pending enable..);dq[0]   := {q[0]}dq[1]   := {q[1]}dq[2]   := {q[2]}dq[3]   := {q[3]}dq[4]   := {q[4]}dq[5]   := {q[5]}dq[6]   := {q[6]}dq[7]   := {q[7]}dq[8]   := {q[8]}dq[9]   := {q[9]}dq[10]  := {q[10]}dq[11]  := {q[11]}dq[12]  := {q[12]}dq[13]  := {q[13]}dq[14]  := {q[14]}dq[15]  := {q[15]}dq[16]  := {q[16]}dq[17]  := {q[17]}dq[18]  := {q[18]}dq[19]  := {q[19]}dq[20]  := {q[20]}dq[21]  := {q[21]}dq[22]  := {q[22]}dq[23]  := {q[23]}dq[24]  := {q[24]}dq[25]  := {q[25]}dq[26]  := {q[26]}dq[27]  := {q[27]}dq[28]  := {q[28]}dq[29]  := {q[29]}dq[30]  := {q[30]}dq[31]  := {q[31]};; end.;Touch & Parham               Informational                     [Page 21]

[8]ページ先頭

©2009-2025 Movatter.jp