Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Info page]

PROPOSED STANDARD
Internet Engineering Task Force (IETF)                         P. WestinRequest for Comments: 7741                                     H. LundinCategory: Standards Track                                         GoogleISSN: 2070-1721                                                M. Glover                                                                 Twitter                                                               J. Uberti                                                             F. Galligan                                                                  Google                                                              March 2016RTP Payload Format for VP8 VideoAbstract   This memo describes an RTP payload format for the VP8 video codec.   The payload format has wide applicability, as it supports   applications from low-bitrate peer-to-peer usage to high-bitrate   video conferences.Status of This Memo   This is an Internet Standards Track document.   This document is a product of the Internet Engineering Task Force   (IETF).  It represents the consensus of the IETF community.  It has   received public review and has been approved for publication by the   Internet Engineering Steering Group (IESG).  Further information on   Internet Standards is available inSection 2 of RFC 5741.   Information about the current status of this document, any errata,   and how to provide feedback on it may be obtained athttp://www.rfc-editor.org/info/rfc7741.Copyright Notice   Copyright (c) 2016 IETF Trust and the persons identified as the   document authors.  All rights reserved.   This document is subject toBCP 78 and the IETF Trust's Legal   Provisions Relating to IETF Documents   (http://trustee.ietf.org/license-info) in effect on the date of   publication of this document.  Please review these documents   carefully, as they describe your rights and restrictions with respect   to this document.  Code Components extracted from this document must   include Simplified BSD License text as described in Section 4.e of   the Trust Legal Provisions and are provided without warranty as   described in the Simplified BSD License.Westin, et al.               Standards Track                    [Page 1]

RFC 7741               RTP Payload Format for VP8             March 2016Table of Contents1. Introduction ....................................................32. Conventions, Definitions, and Abbreviations .....................33. Media Format Description ........................................44. Payload Format ..................................................54.1. RTP Header Usage ...........................................64.2. VP8 Payload Descriptor .....................................74.3. VP8 Payload Header ........................................114.4. Aggregated and Fragmented Payloads ........................124.5. Example Algorithms ........................................134.5.1. Frame Reconstruction Algorithm .....................134.5.2. Partition Reconstruction Algorithm .................134.6. Examples of VP8 RTP Stream ................................144.6.1. Key Frame in a Single RTP Packet ...................14           4.6.2. Non-discardable VP8 Interframe in a Single                  RTP Packet; No PictureID ...........................144.6.3. VP8 Partitions in Separate RTP Packets .............154.6.4. VP8 Frame Fragmented across RTP Packets ............164.6.5. VP8 Frame with Long PictureID ......................185. Using VP8 with RPSI and SLI Feedback ...........................185.1. RPSI ......................................................185.2. SLI .......................................................195.3. Example ...................................................196. Payload Format Parameters ......................................216.1. Media Type Definition .....................................216.2. SDP Parameters ............................................236.2.1. Mapping of Media Subtype Parameters to SDP .........236.2.2. Offer/Answer Considerations ........................237. Security Considerations ........................................248. Congestion Control .............................................249. IANA Considerations ............................................2410. References ....................................................2510.1. Normative References .....................................2510.2. Informative References ...................................26   Authors' Addresses ................................................28Westin, et al.               Standards Track                    [Page 2]

RFC 7741               RTP Payload Format for VP8             March 20161.  Introduction   This memo describes an RTP payload specification applicable to the   transmission of video streams encoded using the VP8 video codec   [RFC6386].  The format described in this document can be used both in   peer-to-peer and video-conferencing applications.   VP8 is based on the decomposition of frames into square sub-blocks of   pixels known as "macroblocks" (seeSection 2 of [RFC6386]).   Prediction of such sub-blocks using previously constructed blocks,   and adjustment of such predictions (as well as synthesis of   unpredicted blocks) is done using a discrete cosine transform   (hereafter abbreviated as DCT).  In one special case, however, VP8   uses a "Walsh-Hadamard" transform (hereafter abbreviated as WHT)   instead of a DCT.  An encoded VP8 frame is divided into two or more   partitions, as described in [RFC6386].  The first partition   (prediction or mode) contains prediction mode parameters and motion   vectors for all macroblocks.  The remaining partitions all contain   the quantized DCT/WHT coefficients for the residuals.  There can be   1, 2, 4, or 8 DCT/WHT partitions per frame, depending on encoder   settings.   In summary, the payload format described in this document enables a   number of features in VP8, including:   o  Taking partition boundaries into consideration, to improve loss      robustness and facilitate efficient packet-loss concealment at the      decoder.   o  Temporal scalability.   o  Advanced use of reference frames to enable efficient error      recovery.   o  Marking of frames that have no impact on the decoding of any other      frame, so that these non-reference frames can be discarded in a      server or media-aware network element if needed.2.  Conventions, Definitions, and Abbreviations   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this   document are to be interpreted as described in [RFC2119].Westin, et al.               Standards Track                    [Page 3]

RFC 7741               RTP Payload Format for VP8             March 2016   This document uses the definitions of [RFC6386].  In particular, the   following terms are used.   Key frames:  Frames that are decoded without reference to any other      frame in a sequence (also called intraframes and I-frames).   Interframes:  Frames that are encoded with reference to prior frames,      specifically all prior frames up to and including the most recent      key frame (also called prediction frames and P-frames).   Golden and altref frames:  alternate prediction frames.  Blocks in an      interframe may be predicted using blocks in the immediately      previous frame as well as the most recent golden frame or altref      frame.  Every key frame is automatically golden and altref, and      any interframe may optionally replace the most recent golden or      altref frame.   Macroblock:  a square array of pixels whose Y (luminance) dimensions      are 16x16 pixels and whose U and V (chrominance) dimensions are      8x8 pixels.   Two definitions from [RFC4585] are also used in this document.   RPSI:  Reference picture selection indication.  A feedback message to      let the encoder know that the decoder has correctly decoded a      certain frame.   SLI:  Slice loss indication.  A feedback message to let a decoder      inform an encoder that it has detected the loss or corruption of      one or several macroblocks.3.  Media Format Description   The VP8 codec uses three different reference frames for interframe   prediction: the previous frame, the golden frame, and the altref   frame.  Blocks in an interframe may be predicted using blocks in the   immediately previous frame as well as the most recent golden frame or   altref frame.  Every key frame is automatically golden and altref,   and any interframe may optionally replace the most recent golden or   altref frame.  Golden frames and altref frames may also be used to   increase the tolerance to dropped frames.  The payload specification   in this memo has elements that enable advanced use of the reference   frames, e.g., for improved loss robustness.   One specific use case of the three reference frame types is temporal   scalability.  By setting up the reference hierarchy in the   appropriate way, up to five temporal layers can be encoded.  (How to   set up the reference hierarchy for temporal scalability is not withinWestin, et al.               Standards Track                    [Page 4]

RFC 7741               RTP Payload Format for VP8             March 2016   the scope of this memo.)  Support for temporal scalability is   provided by the optional TL0PICIDX and TID/Y/KEYIDX fields described   inSection 4.2.  For a general description of temporal scalability   for video coding, see [Sch07].   Another property of the VP8 codec is that it applies data   partitioning to the encoded data.  Thus, an encoded VP8 frame can be   divided into two or more partitions, as described in "VP8 Data Format   and Decoding Guide" [RFC6386].  The first partition (prediction or   mode) contains prediction mode parameters and motion vectors for all   macroblocks.  The remaining partitions all contain the transform   coefficients for the residuals.  The first partition is decodable   without the remaining residual partitions.  The subsequent partitions   may be useful even if some part of the frame is lost.  Accordingly,   this document RECOMMENDS that the frame be packetized by the sender   with each data partition in a separate packet or packets.  This may   be beneficial for decoder-side error concealment, and the payload   format described inSection 4 provides fields that allow the   partitions to be identified even if the first partition is not   available.  The sender can, alternatively, aggregate the data   partitions into a single data stream and, optionally, split it into   several packets without consideration of the partition boundaries.   The receiver can use the length information in the first partition to   identify the partitions during decoding.   The format specification is described in Section 4.  InSection 5, a   method to acknowledge receipt of reference frames using RTCP   techniques is described.   The payload partitioning and the acknowledging method both serve as   motivation for three of the fields included in the payload format:   the "PID", "1st partition size", and "PictureID" fields.  The ability   to encode a temporally scalable stream motivates the "TL0PICIDX" and   "TID" fields.4.  Payload Format   This section describes how the encoded VP8 bitstream is encapsulated   in RTP.  To handle network losses, usage of RTP/AVPF [RFC4585] is   RECOMMENDED.  All integer fields in the specifications are encoded as   unsigned integers in network octet order.Westin, et al.               Standards Track                    [Page 5]

RFC 7741               RTP Payload Format for VP8             March 20164.1.  RTP Header Usage   The general RTP payload format for VP8 is depicted below.      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |V=2|P|X|  CC   |M|     PT      |       sequence number         |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                           timestamp                           |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |           synchronization source (SSRC) identifier            |     +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+     |            contributing source (CSRC) identifiers             |     |                             ....                              |     +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+     |            VP8 payload descriptor (integer #octets)           |     :                                                               :     |                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                               : VP8 payload header (3 octets) |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     | VP8 pyld hdr  :                                               |     +-+-+-+-+-+-+-+-+                                               |     :                   Octets 4..N of VP8 payload                  :     |                                                               |     |                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |                               :    OPTIONAL RTP padding       |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   The VP8 payload descriptor and VP8 payload header will be described   in Sections4.2 and4.3.  OPTIONAL RTP padding MUST NOT be included   unless the P bit is set.  The figure specifically shows the format   for the first packet in a frame.  Subsequent packets will not contain   the VP8 payload header and will have later octets in the frame   payload.                                 Figure 1   Marker bit (M):  MUST be set for the very last packet of each encoded      frame in line with the normal use of the M bit in video formats.      This enables a decoder to finish decoding the picture, where it      otherwise may need to wait for the next packet to explicitly know      that the frame is complete.   Payload type (PT):  The assignment of an RTP payload type for this      packet format is outside the scope of this document and will not      be specified here.Westin, et al.               Standards Track                    [Page 6]

RFC 7741               RTP Payload Format for VP8             March 2016   Timestamp:  The RTP timestamp indicates the time when the frame was      sampled.  The granularity of the clock is 90 kHz, so a delta of 1      represents 1/90,000 of a second.      The remaining RTP Fixed Header Fields (V, P, X, CC, sequence      number, SSRC, and CSRC identifiers) are used as specified inSection 5.1 of [RFC3550].4.2.  VP8 Payload Descriptor   The first octets after the RTP header are the VP8 payload descriptor,   with the following structure.  The single-octet version of the   PictureID is illustrated to the left (M bit set to 0), while the   dual-octet version (M bit set to 1) is shown to the right.         0 1 2 3 4 5 6 7                      0 1 2 3 4 5 6 7        +-+-+-+-+-+-+-+-+                   +-+-+-+-+-+-+-+-+        |X|R|N|S|R| PID | (REQUIRED)        |X|R|N|S|R| PID | (REQUIRED)        +-+-+-+-+-+-+-+-+                   +-+-+-+-+-+-+-+-+   X:   |I|L|T|K| RSV   | (OPTIONAL)   X:   |I|L|T|K| RSV   | (OPTIONAL)        +-+-+-+-+-+-+-+-+                   +-+-+-+-+-+-+-+-+   I:   |M| PictureID   | (OPTIONAL)   I:   |M| PictureID   | (OPTIONAL)        +-+-+-+-+-+-+-+-+                   +-+-+-+-+-+-+-+-+   L:   |   TL0PICIDX   | (OPTIONAL)        |   PictureID   |        +-+-+-+-+-+-+-+-+                   +-+-+-+-+-+-+-+-+   T/K: |TID|Y| KEYIDX  | (OPTIONAL)   L:   |   TL0PICIDX   | (OPTIONAL)        +-+-+-+-+-+-+-+-+                   +-+-+-+-+-+-+-+-+                                       T/K: |TID|Y| KEYIDX  | (OPTIONAL)                                            +-+-+-+-+-+-+-+-+                                 Figure 2   X: Extended control bits present.  When set to 1, the extension octet      MUST be provided immediately after the mandatory first octet.  If      the bit is zero, all optional fields MUST be omitted.  Note: this      X bit is not to be confused with the X bit in the RTP header.   R: Bit reserved for future use.  MUST be set to 0 and MUST be ignored      by the receiver.   N: Non-reference frame.  When set to 1, the frame can be discarded      without affecting any other future or past frames.  If the      reference status of the frame is unknown, this bit SHOULD be set      to 0 to avoid discarding frames needed for reference.         Informative note: This document does not describe how to         determine if an encoded frame is non-reference.  The reference         status of an encoded frame is preferably provided from the         encoder implementation.Westin, et al.               Standards Track                    [Page 7]

RFC 7741               RTP Payload Format for VP8             March 2016   S: Start of VP8 partition.  SHOULD be set to 1 when the first payload      octet of the RTP packet is the beginning of a new VP8 partition,      and MUST NOT be 1 otherwise.  The S bit MUST be set to 1 for the      first packet of each encoded frame.   PID:  Partition index.  Denotes to which VP8 partition the first      payload octet of the packet belongs.  The first VP8 partition      (containing modes and motion vectors) MUST be labeled with PID =      0.  PID SHOULD be incremented by 1 for each subsequent partition,      but it MAY be kept at 0 for all packets.  PID cannot be larger      than 7.  If more than one packet in an encoded frame contains the      same PID, the S bit MUST NOT be set for any packet other than the      first packet with that PID.   When the X bit is set to 1 in the first octet, the Extended Control   Bits field octet MUST be provided as the second octet.  If the X bit   is 0, the Extended Control Bits field octet MUST NOT be present, and   no extensions (I, L, T, or K) are permitted.   I: PictureID present.  When set to 1, the PictureID MUST be present      after the extension bit field and specified as below.  Otherwise,      PictureID MUST NOT be present.   L: TL0PICIDX present.  When set to 1, the TL0PICIDX MUST be present      and specified as below, and the T bit MUST be set to 1.      Otherwise, TL0PICIDX MUST NOT be present.   T: TID present.  When set to 1, the TID/Y/KEYIDX octet MUST be      present.  The TID|Y part of the octet MUST be specified as below.      If K (below) is set to 1 but T is set to 0, the TID/Y/KEYIDX octet      MUST be present, but the TID field MUST be ignored.  If neither T      nor K is set to 1, the TID/Y/KEYIDX octet MUST NOT be present.   K: KEYIDX present.  When set to 1, the TID/Y/KEYIDX octet MUST be      present.  The KEYIDX part of the octet MUST be specified as below.      If T (above) is set to 1 but K is set to 0, the TID/Y/KEYIDX octet      MUST be present, but the KEYIDX field MUST be ignored.  If neither      T nor K is set to 1, the TID/Y/KEYIDX octet MUST NOT be present.   RSV:  Bits reserved for future use.  MUST be set to 0 and MUST be      ignored by the receiver.Westin, et al.               Standards Track                    [Page 8]

RFC 7741               RTP Payload Format for VP8             March 2016   After the extension bit field follow the extension data fields that   are enabled.   The PictureID extension:  If the I bit is set to 1, the PictureID      extension field MUST be present, and it MUST NOT be present      otherwise.  The field consists of two parts:      M: The most significant bit of the first octet is an extension         flag.  If M is set, the remainder of the PictureID field MUST         contain 15 bits, else it MUST contain 7 bits.  Note: this M bit         is not to be confused with the M bit in the RTP header.      PictureID:  7 or 15 bits (shown left and right, respectively, in         Figure 2) not including the M bit.  This is a running index of         the frames, which MAY start at a random value, MUST increase by         1 for each subsequent frame, and MUST wrap to 0 after reaching         the maximum ID (all bits set).  The 7 or 15 bits of the         PictureID go from most significant to least significant,         beginning with the first bit after the M bit.  The sender         chooses a 7- or 15-bit index and sets the M bit accordingly.         The receiver MUST NOT assume that the number of bits in         PictureID stays the same through the session.  Having sent a         7-bit PictureID with all bits set to 1, the sender may either         wrap the PictureID to 0 or extend to 15 bits and continue         incrementing.   The TL0PICIDX extension:  If the L bit is set to 1, the TL0PICIDX      extension field MUST be present, and it MUST NOT be present      otherwise.  The field consists of one part:      TL0PICIDX:  8 bits temporal level zero index.  TL0PICIDX is a         running index for the temporal base layer frames, i.e., the         frames with TID set to 0.  If TID is larger than 0, TL0PICIDX         indicates on which base-layer frame the current image depends.         TL0PICIDX MUST be incremented when TID is 0.  The index MAY         start at a random value, and it MUST wrap to 0 after reaching         the maximum number 255.  Use of TL0PICIDX depends on the         presence of TID.  Therefore, it is RECOMMENDED that the TID be         used whenever TL0PICIDX is.   The TID/Y/KEYIDX extension:  If either of the T or K bits are set to      1, the TID/Y/KEYIDX extension field MUST be present.  It MUST NOT      be present if both T and K are zero.  The field consists of three      parts:      TID:  2 bits temporal-layer index.  The TID field MUST be ignored         by the receiver when the T bit is set equal to 0.  The TID         field indicates which temporal layer the packet represents.Westin, et al.               Standards Track                    [Page 9]

RFC 7741               RTP Payload Format for VP8             March 2016         The lowest layer, i.e., the base layer, MUST have the TID set         to 0.  Higher layers SHOULD increment the TID according to         their position in the layer hierarchy.      Y: 1 layer sync bit.  The Y bit SHOULD be set to 1 if the current         frame depends only on the base layer (TID = 0) frame with         TL0PICIDX equal to that of the current frame.  The Y bit MUST         be set to 0 if the current frame depends on any other frame         than the base layer (TID = 0) frame with TL0PICIDX equal to         that of the current frame.  Additionally, the Y bit MUST be set         to 0 if any frame following the current frame depends on a non-         base-layer frame older than the base-layer frame with TL0PICIDX         equal to that of the current frame.  If the Y bit is set when         the T bit is equal to 0, the current frame MUST only depend on         a past base-layer (TID=0) key frame as signaled by a change in         the KEYIDX field.  Additionally, this frame MUST NOT depend on         any of the three codec buffers (as defined by [RFC6386]) that         have been updated since the last time the KEYIDX field was         changed.         Informative note: This document does not describe how to         determine the dependency status for a frame; this information         is preferably provided from the encoder implementation.  In the         case of unknown status, the Y bit can safely be set to 0.      KEYIDX:  5 bits temporal key frame index.  The KEYIDX field MUST         be ignored by the receiver when the K bit is set equal to 0.         The KEYIDX field is a running index for key frames.  KEYIDX MAY         start at a random value, and it MUST wrap to 0 after reaching         the maximum number 31.  When in use, the KEYIDX SHOULD be         present for both key frames and interframes.  The sender MUST         increment KEYIDX for key frames that convey parameter updates         critical to the interpretation of subsequent frames, and it         SHOULD leave the KEYIDX unchanged for key frames that do not         contain these critical updates.  If the KEYIDX is present, a         receiver SHOULD NOT decode an interframe if it has not received         and decoded a key frame with the same KEYIDX after the last         KEYIDX wraparound.         Informative note: This document does not describe how to         determine if a key frame updates critical parameters; this         information is preferably provided from the encoder         implementation.  A sender that does not have this information         may either omit the KEYIDX field (set K equal to 0) or         increment the KEYIDX on every key frame.  The benefit with the         latter is that any key-frame loss will be detected by the         receiver, which can signal for re-transmission or request a new         key frame.Westin, et al.               Standards Track                   [Page 10]

RFC 7741               RTP Payload Format for VP8             March 2016   Informative note:  Implementations doing splicing of VP8 streams will      have to make sure the rules for incrementing TL0PICIDX and KEYIDX      are obeyed across the splice.  This will likely require rewriting      values of TL0PICIDX and KEYIDX after the splice.4.3.  VP8 Payload Header   The beginning of an encoded VP8 frame is referred to as an   "uncompressed data chunk" inSection 9.1 of [RFC6386], and it also   serves as a payload header in this RTP format.  The codec bitstream   format specifies two different variants of the uncompressed data   chunk: a 3-octet version for interframes and a 10-octet version for   key frames.  The first 3 octets are common to both variants.  In the   case of a key frame, the remaining 7 octets are considered to be part   of the remaining payload in this RTP format.  Note that the header is   present only in packets that have the S bit equal to one and the PID   equal to zero in the payload descriptor.  Subsequent packets for the   same frame do not carry the payload header.   The length of the first partition can always be obtained from the   first partition-size parameter in the VP8 payload header.  The VP8   bitstream format [RFC6386] specifies that if multiple DCT/WHT   partitions are produced, the location of each partition start is   found at the end of the first (prediction or mode) partition.  In   this RTP payload specification, the location offsets are considered   to be part of the first partition.                             0 1 2 3 4 5 6 7                            +-+-+-+-+-+-+-+-+                            |Size0|H| VER |P|                            +-+-+-+-+-+-+-+-+                            |     Size1     |                            +-+-+-+-+-+-+-+-+                            |     Size2     |                            +-+-+-+-+-+-+-+-+                            | Octets 4..N of|                            | VP8 payload   |                            :               :                            +-+-+-+-+-+-+-+-+                            | OPTIONAL RTP  |                            | padding       |                            :               :                            +-+-+-+-+-+-+-+-+                                 Figure 3Westin, et al.               Standards Track                   [Page 11]

RFC 7741               RTP Payload Format for VP8             March 2016   A packetizer needs access to the P bit.  The other fields are defined   in[RFC6386], Section 9.1, and their meanings do not influence the   packetization process.  None of these fields are modified by the   packetization process.   P: Inverse key frame flag.  When set to 0, the current frame is a key      frame.  When set to 1, the current frame is an interframe.      Defined in [RFC6386]4.4.  Aggregated and Fragmented Payloads   An encoded VP8 frame can be divided into two or more partitions, as   described inSection 1.  It is OPTIONAL for a packetizer implementing   this RTP specification to pay attention to the partition boundaries   within an encoded frame.  If packetization of a frame is done without   considering the partition boundaries, the PID field MAY be set to 0   for all packets and the S bit MUST NOT be set to 1 for any other   packet than the first.   If the preferred usage suggested inSection 3 is followed, with each   packet carrying data from exactly one partition, the S bit and PID   fields described inSection 4.2 SHOULD be used to indicate what the   packet contains.  The PID field should indicate to which partition   the first octet of the payload belongs and the S bit indicates that   the packet starts on a new partition.   If the packetizer does not pay attention to the partition boundaries,   one packet can contain a fragment of a partition, a complete   partition, or an aggregate of fragments and partitions.  There is no   explicit signaling of partition boundaries in the payload, and the   partition lengths at the end of the first partition have to be used   to identify the boundaries.  Partitions MUST be aggregated in   decoding order.  Two fragments from different partitions MAY be   aggregated into the same packet along with one or more complete   partitions.   In all cases, the payload of a packet MUST contain data from only one   video frame.  Consequently, the set of packets carrying the data from   a particular frame will contain exactly one VP8 Payload Header (seeSection 4.3) carried in the first packet of the frame.  The last, or   only, packet carrying data for the frame MUST have the M bit set in   the RTP header.Westin, et al.               Standards Track                   [Page 12]

RFC 7741               RTP Payload Format for VP8             March 20164.5.  Example Algorithms4.5.1.  Frame Reconstruction Algorithm   Example of frame reconstruction algorithm.   1: Collect all packets with a given RTP timestamp.   2: Go through packets in order, sorted by sequence numbers, if      packets are missing, send NACK as defined in [RFC4585] or decode      with missing partitions, seeSection 4.5.2 below.   3: A frame is complete if the frame has no missing sequence numbers,      the first packet in the frame contains S=1 with partId=0 and the      last packet in the frame has the marker bit set.4.5.2.  Partition Reconstruction Algorithm   Example of partition reconstruction algorithm.  The algorithm only   applies for the RECOMMENDED use case with partitions in separate   packets.   1: Scan for the start of a new partition; S=1.   2: Continue scan to detect end of partition; hence, a new S=1      (previous packet was the end of the partition) is found or the      marker bit is set.  If a loss is detected before the end of the      partition, abandon all packets in this partition and continue the      scan repeating from step 1.   3: Store the packets in the complete partition, continue the scan      repeating from step 1 until end of frame is reached.   4: Send all complete partitions to the decoder.  If no complete      partition is found discard the whole frame.Westin, et al.               Standards Track                   [Page 13]

RFC 7741               RTP Payload Format for VP8             March 20164.6.  Examples of VP8 RTP Stream   A few examples of how the VP8 RTP payload can be used are included   below.4.6.1.  Key Frame in a Single RTP Packet      0 1 2 3 4 5 6 7     +-+-+-+-+-+-+-+-+     |  RTP header   |     |  M = 1        |     +-+-+-+-+-+-+-+-+     |1|0|0|1|0|0 0 0| X = 1; S = 1; PID = 0     +-+-+-+-+-+-+-+-+     |1|0|0|0|0 0 0 0| I = 1     +-+-+-+-+-+-+-+-+     |0 0 0 1 0 0 0 1| PictureID = 17     +-+-+-+-+-+-+-+-+     |Size0|1| VER |0| P = 0     +-+-+-+-+-+-+-+-+     |     Size1     |     +-+-+-+-+-+-+-+-+     |     Size2     |     +-+-+-+-+-+-+-+-+     | VP8 payload   |     +-+-+-+-+-+-+-+-+4.6.2.  Non-discardable VP8 Interframe in a Single RTP Packet; No        PictureID      0 1 2 3 4 5 6 7     +-+-+-+-+-+-+-+-+     |  RTP header   |     |  M = 1        |     +-+-+-+-+-+-+-+-+     |0|0|0|1|0|0 0 0| X = 0; S = 1; PID = 0     +-+-+-+-+-+-+-+-+     |Size0|1| VER |1| P = 1     +-+-+-+-+-+-+-+-+     |     Size1     |     +-+-+-+-+-+-+-+-+     |     Size2     |     +-+-+-+-+-+-+-+-+     | VP8 payload   |     +-+-+-+-+-+-+-+-+Westin, et al.               Standards Track                   [Page 14]

RFC 7741               RTP Payload Format for VP8             March 20164.6.3.  VP8 Partitions in Separate RTP Packets   First RTP packet; complete first partition.      0 1 2 3 4 5 6 7     +-+-+-+-+-+-+-+-+     |  RTP header   |     |  M = 0        |     +-+-+-+-+-+-+-+-+     |1|0|0|1|0|0 0 0| X = 1; S = 1; PID = 0     +-+-+-+-+-+-+-+-+     |1|0|0|0|0 0 0 0| I = 1     +-+-+-+-+-+-+-+-+     |0 0 0 1 0 0 0 1| PictureID = 17     +-+-+-+-+-+-+-+-+     |Size0|1| VER |1| P = 1     +-+-+-+-+-+-+-+-+     |     Size1     |     +-+-+-+-+-+-+-+-+     |     Size2     |     +-+-+-+-+-+-+-+-+     | Octets 4..L of|     | first VP8     |     | partition     |     :               :     +-+-+-+-+-+-+-+-+   Second RTP packet; complete second partition.      0 1 2 3 4 5 6 7     +-+-+-+-+-+-+-+-+     |  RTP header   |     |  M = 1        |     +-+-+-+-+-+-+-+-+     |1|0|0|1|0|0 0 1| X = 1; S = 1; PID = 1     +-+-+-+-+-+-+-+-+     |1|0|0|0|0 0 0 0| I = 1     +-+-+-+-+-+-+-+-+     |0 0 0 1 0 0 0 1| PictureID = 17     +-+-+-+-+-+-+-+-+     | Remaining VP8 |     | partitions    |     :               :     +-+-+-+-+-+-+-+-+Westin, et al.               Standards Track                   [Page 15]

RFC 7741               RTP Payload Format for VP8             March 20164.6.4.  VP8 Frame Fragmented across RTP Packets   First RTP packet; complete first partition.      0 1 2 3 4 5 6 7     +-+-+-+-+-+-+-+-+     |  RTP header   |     |  M = 0        |     +-+-+-+-+-+-+-+-+     |1|0|0|1|0|0 0 0| X = 1; S = 1; PID = 0     +-+-+-+-+-+-+-+-+     |1|0|0|0|0 0 0 0| I = 1     +-+-+-+-+-+-+-+-+     |0 0 0 1 0 0 0 1| PictureID = 17     +-+-+-+-+-+-+-+-+     |Size0|1| VER |1| P = 1     +-+-+-+-+-+-+-+-+     |     Size1     |     +-+-+-+-+-+-+-+-+     |     Size2     |     +-+-+-+-+-+-+-+-+     | Complete      |     | first         |     | partition     |     :               :     +-+-+-+-+-+-+-+-+   Second RTP packet; first fragment of second partition.      0 1 2 3 4 5 6 7     +-+-+-+-+-+-+-+-+     |  RTP header   |     |  M = 0        |     +-+-+-+-+-+-+-+-+     |1|0|0|1|0|0 0 1| X = 1; S = 1; PID = 1     +-+-+-+-+-+-+-+-+     |1|0|0|0|0 0 0 0| I = 1     +-+-+-+-+-+-+-+-+     |0 0 0 1 0 0 0 1| PictureID = 17     +-+-+-+-+-+-+-+-+     | First fragment|     | of second     |     | partition     |     :               :     +-+-+-+-+-+-+-+-+Westin, et al.               Standards Track                   [Page 16]

RFC 7741               RTP Payload Format for VP8             March 2016   Third RTP packet; second fragment of second partition.      0 1 2 3 4 5 6 7     +-+-+-+-+-+-+-+-+     |  RTP header   |     |  M = 0        |     +-+-+-+-+-+-+-+-+     |1|0|0|0|0|0 0 1| X = 1; S = 0; PID = 1     +-+-+-+-+-+-+-+-+     |1|0|0|0|0 0 0 0| I = 1     +-+-+-+-+-+-+-+-+     |0 0 0 1 0 0 0 1| PictureID = 17     +-+-+-+-+-+-+-+-+     | Mid fragment  |     | of second     |     | partition     |     :               :     +-+-+-+-+-+-+-+-+   Fourth RTP packet; last fragment of second partition.      0 1 2 3 4 5 6 7     +-+-+-+-+-+-+-+-+     |  RTP header   |     |  M = 1        |     +-+-+-+-+-+-+-+-+     |1|0|0|0|0|0 0 1| X = 1; S = 0; PID = 1     +-+-+-+-+-+-+-+-+     |1|0|0|0|0 0 0 0| I = 1     +-+-+-+-+-+-+-+-+     |0 0 0 1 0 0 0 1| PictureID = 17     +-+-+-+-+-+-+-+-+     | Last fragment |     | of second     |     | partition     |     :               :     +-+-+-+-+-+-+-+-+Westin, et al.               Standards Track                   [Page 17]

RFC 7741               RTP Payload Format for VP8             March 20164.6.5.  VP8 Frame with Long PictureID   PictureID = 4711 = 001001001100111 binary (first 7 bits: 0010010,   last 8 bits: 01100111).      0 1 2 3 4 5 6 7     +-+-+-+-+-+-+-+-+     |  RTP header   |     |  M = 1        |     +-+-+-+-+-+-+-+-+     |1|0|0|1|0|0 0 0| X = 1; S = 1; PID = 0     +-+-+-+-+-+-+-+-+     |1|0|0|0|0 0 0 0| I = 1;     +-+-+-+-+-+-+-+-+     |1 0 0 1 0 0 1 0| Long PictureID flag = 1     |0 1 1 0 0 1 1 1| PictureID = 4711     +-+-+-+-+-+-+-+-+     |Size0|1| VER |1|     +-+-+-+-+-+-+-+-+     |     Size1     |     +-+-+-+-+-+-+-+-+     |     Size2     |     +-+-+-+-+-+-+-+-+     | Octets 4..N of|     | VP8 payload   |     :               :     +-+-+-+-+-+-+-+-+5.  Using VP8 with RPSI and SLI Feedback   The VP8 payload descriptor defined inSection 4.2 contains an   optional PictureID parameter.  This parameter is included mainly to   enable use of reference picture selection indication (RPSI) and slice   loss indication (SLI), both defined in [RFC4585].5.1.  RPSI   The RPSI is a payload-specific feedback message defined within the   RTCP-based feedback format.  The RPSI message is generated by a   receiver and can be used in two ways.  Either it can signal a   preferred reference picture when a loss has been detected by the   decoder -- preferably then a reference that the decoder knows is   perfect -- or it can be used as positive feedback information to   acknowledge correct decoding of certain reference pictures.  The   positive-feedback method is useful for VP8 used for point-to-point   (unicast) communication.  The use of RPSI for VP8 is preferably   combined with a special update pattern of the codec's two special   reference frames -- the golden frame and the altref frame -- in whichWestin, et al.               Standards Track                   [Page 18]

RFC 7741               RTP Payload Format for VP8             March 2016   they are updated in an alternating leapfrog fashion.  When a receiver   has received and correctly decoded a golden or altref frame, and that   frame has a PictureID in the payload descriptor, the receiver can   acknowledge this simply by sending an RPSI message back to the   sender.  The message body (i.e., the "native RPSI bit string" in   [RFC4585]) is simply the PictureID of the received frame.5.2.  SLI   The SLI is another payload-specific feedback message defined within   the RTCP-based feedback format.  The SLI message is generated by the   receiver when a loss or corruption is detected in a frame.  The   format of the SLI message is as follows [RFC4585]:      0                   1                   2                   3      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+     |         First           |        Number           | PictureID |     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                                 Figure 4   Here, First is the macroblock address (in scan order) of the first   lost block and Number is the number of lost blocks, as defined in   [RFC4585].  PictureID is the six least significant bits of the codec-   specific picture identifier in which the loss or corruption has   occurred.  For VP8, this codec-specific identifier is naturally the   PictureID of the current frame, as read from the payload descriptor.   If the payload descriptor of the current frame does not have a   PictureID, the receiver MAY send the last received PictureID+1 in the   SLI message.  The receiver MAY set the First parameter to 0, and the   Number parameter to the total number of macroblocks per frame, even   though only part of the frame is corrupted.  When the sender receives   an SLI message, it can make use of the knowledge from the latest   received RPSI message.  Knowing that the last golden or altref frame   was successfully received, it can encode the next frame with   reference to that established reference.5.3.  Example   The use of RPSI and SLI is best illustrated in an example.  In this   example, the encoder may not update the altref frame until the last   sent golden frame has been acknowledged with an RPSI message.  If an   update is not received within some time, a new golden frame update is   sent instead.  Once the new golden frame is established and   acknowledged, the same rule applies when updating the altref frame.Westin, et al.               Standards Track                   [Page 19]

RFC 7741               RTP Payload Format for VP8             March 2016   +-------+-------------------+-------------------------+-------------+   | Event | Sender            | Receiver                | Established |   |       |                   |                         | reference   |   +-------+-------------------+-------------------------+-------------+   | 1000  | Send golden frame |                         |             |   |       | PictureID = 0     |                         |             |   |       |                   |                         |             |   |       |                   | Receive and decode      |             |   |       |                   | golden frame            |             |   |       |                   |                         |             |   | 1001  |                   | Send RPSI(0)            |             |   |       |                   |                         |             |   | 1002  | Receive RPSI(0)   |                         | golden      |   |       |                   |                         |             |   | ...   | (sending regular  |                         |             |   |       | frames)           |                         |             |   |       |                   |                         |             |   | 1100  | Send altref frame |                         |             |   |       | PictureID = 100   |                         |             |   |       |                   |                         |             |   |       |                   | Altref corrupted or     | golden      |   |       |                   | lost                    |             |   |       |                   |                         |             |   | 1101  |                   | Send SLI(100)           | golden      |   |       |                   |                         |             |   | 1102  | Receive SLI(100)  |                         |             |   |       |                   |                         |             |   | 1103  | Send frame with   |                         |             |   |       | reference to      |                         |             |   |       | golden            |                         |             |   |       |                   |                         |             |   |       |                   | Receive and decode      | golden      |   |       |                   | frame (decoder state    |             |   |       |                   | restored)               |             |   |       |                   |                         |             |   | ...   | (sending regular  |                         |             |   |       | frames)           |                         |             |   |       |                   |                         |             |   | 1200  | Send altref frame |                         |             |   |       | PictureID = 200   |                         |             |   |       |                   |                         |             |   |       |                   | Receive and decode      | golden      |   |       |                   | altref frame            |             |   |       |                   |                         |             |   | 1201  |                   | Send RPSI(200)          |             |   |       |                   |                         |             |   | 1202  | Receive RPSI(200) |                         | altref      |   |       |                   |                         |             |Westin, et al.               Standards Track                   [Page 20]

RFC 7741               RTP Payload Format for VP8             March 2016   | ...   | (sending regular  |                         |             |   |       | frames)           |                         |             |   |       |                   |                         |             |   | 1300  | Send golden frame |                         |             |   |       | PictureID = 300   |                         |             |   |       |                   |                         |             |   |       |                   | Receive and decode      | altref      |   |       |                   | golden frame            |             |   |       |                   |                         |             |   | 1301  |                   | Send RPSI(300)          | altref      |   |       |                   |                         |             |   | 1302  | RPSI lost         |                         |             |   |       |                   |                         |             |   | 1400  | Send golden frame |                         |             |   |       | PictureID = 400   |                         |             |   |       |                   |                         |             |   |       |                   | Receive and decode      | altref      |   |       |                   | golden frame            |             |   |       |                   |                         |             |   | 1401  |                   | Send RPSI(400)          |             |   |       |                   |                         |             |   | 1402  | Receive RPSI(400) |                         | golden      |   +-------+-------------------+-------------------------+-------------+          Table 1: Example Signaling between Sender and Receiver   Note that the scheme is robust to loss of the feedback messages.  If   the RPSI is lost, the sender will try to update the golden (or   altref) again after a while, without releasing the established   reference.  Also, if an SLI is lost, the receiver can keep sending   SLI messages at any interval allowed by the RTCP sending timing   restrictions as specified in [RFC4585], as long as the picture is   corrupted.6.  Payload Format Parameters   This payload format has two optional parameters.6.1.  Media Type Definition   This registration is done using the template defined in [RFC6838] and   following [RFC4855].   Type name:  video   Subtype name:  VP8   Required parameters:  None.Westin, et al.               Standards Track                   [Page 21]

RFC 7741               RTP Payload Format for VP8             March 2016   Optional parameters:      These parameters are used to signal the capabilities of a receiver      implementation.  If the implementation is willing to receive      media, both parameters MUST be provided.  These parameters MUST      NOT be used for any other purpose.      max-fr:  The value of max-fr is an integer indicating the maximum         frame rate in units of frames per second that the decoder is         capable of decoding.      max-fs:  The value of max-fs is an integer indicating the maximum         frame size in units of macroblocks that the decoder is capable         of decoding.         The decoder is capable of decoding this frame size as long as         the width and height of the frame in macroblocks are less than         int(sqrt(max-fs * 8)).  For instance, a max-fs of 1200 (capable         of supporting 640x480 resolution) will support widths and         heights up to 1552 pixels (97 macroblocks).   Encoding considerations:      This media type is framed in RTP and contains binary data; seeSection 4.8 of [RFC6838].   Security considerations:  SeeSection 7 of RFC 7741.   Interoperability considerations:  None.   Published specification:  VP8 bitstream format [RFC6386] andRFC7741.   Applications that use this media type:      For example: Video over IP, video conferencing.   Fragment identifier considerations:  N/A.   Additional information:  None.   Person & email address to contact for further information:      Patrik Westin, patrik.westin@gmail.com   Intended usage:  COMMON   Restrictions on usage:      This media type depends on RTP framing, and hence it is only      defined for transfer via RTP [RFC3550].Westin, et al.               Standards Track                   [Page 22]

RFC 7741               RTP Payload Format for VP8             March 2016   Author:  Patrik Westin, patrik.westin@gmail.com   Change controller:      IETF Payload Working Group delegated from the IESG.6.2.  SDP Parameters   The receiver MUST ignore any fmtp parameter unspecified in this memo.6.2.1.  Mapping of Media Subtype Parameters to SDP   The media type video/VP8 string is mapped to fields in the Session   Description Protocol (SDP) [RFC4566] as follows:   o  The media name in the "m=" line of SDP MUST be video.   o  The encoding name in the "a=rtpmap" line of SDP MUST be VP8 (the      media subtype).   o  The clock rate in the "a=rtpmap" line MUST be 90000.   o  The parameters "max-fs" and "max-fr" MUST be included in the      "a=fmtp" line if the SDP is used to declare receiver capabilities.      These parameters are expressed as a media subtype string, in the      form of a semicolon-separated list of parameter=value pairs.6.2.1.1.  Example   An example of media representation in SDP is as follows:   m=video 49170 RTP/AVPF 98   a=rtpmap:98 VP8/90000   a=fmtp:98 max-fr=30; max-fs=3600;6.2.2.  Offer/Answer Considerations   The VP8 codec offers a decode complexity that is roughly linear with   the number of pixels encoded.  The parameters "max-fr" and "max-fs"   are defined inSection 6.1, where the macroblock size is 16x16 pixels   as defined in [RFC6386], the max-fs and max-fr parameters MUST be   used to establish these limits.Westin, et al.               Standards Track                   [Page 23]

RFC 7741               RTP Payload Format for VP8             March 20167.  Security Considerations   RTP packets using the payload format defined in this specification   are subject to the security considerations discussed in the RTP   specification [RFC3550], and in any applicable RTP profile such as   RTP/AVP [RFC3551], RTP/AVPF [RFC4585], RTP/SAVP [RFC3711], or RTP/   SAVPF [RFC5124].  However, as "Securing the RTP Protocol Framework:   Why RTP Does Not Mandate a Single Media Security Solution" [RFC7202]   discusses, it is not an RTP payload format's responsibility to   discuss or mandate what solutions are used to meet the basic security   goals like confidentiality, integrity, and source authenticity for   RTP in general.  This responsibility lays on anyone using RTP in an   application.  They can find guidance on available security mechanisms   and important considerations in "Options for Securing RTP Sessions"   [RFC7201].  Applications SHOULD use one or more appropriate strong   security mechanisms.  The rest of this security consideration section   discusses the security impacting properties of the payload format   itself.   This RTP payload format and its media decoder do not exhibit any   significant difference in the receiver-side computational complexity   for packet processing and, thus, are unlikely to pose a denial-of-   service threat due to the receipt of pathological data.  Nor does the   RTP payload format contain any active content.8.  Congestion Control   Congestion control for RTP SHALL be used in accordance withRFC 3550   [RFC3550] and with any applicable RTP profile; e.g.,RFC 3551   [RFC3551].  The congestion control mechanism can, in a real-time   encoding scenario, adapt the transmission rate by instructing the   encoder to encode at a certain target rate.  Media-aware network   elements MAY use the information in the VP8 payload descriptor inSection 4.2 to identify non-reference frames and discard them in   order to reduce network congestion.  Note that discarding of non-   reference frames cannot be done if the stream is encrypted (because   the non-reference marker is encrypted).9.  IANA Considerations   The IANA has registered a media type as described inSection 6.1.Westin, et al.               Standards Track                   [Page 24]

RFC 7741               RTP Payload Format for VP8             March 201610.  References10.1.  Normative References   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate              Requirement Levels",BCP 14,RFC 2119,              DOI 10.17487/RFC2119, March 1997,              <http://www.rfc-editor.org/info/rfc2119>.   [RFC3550]  Schulzrinne, H., Casner, S., Frederick, R., and V.              Jacobson, "RTP: A Transport Protocol for Real-Time              Applications", STD 64,RFC 3550, DOI 10.17487/RFC3550,              July 2003, <http://www.rfc-editor.org/info/rfc3550>.   [RFC3551]  Schulzrinne, H. and S. Casner, "RTP Profile for Audio and              Video Conferences with Minimal Control", STD 65,RFC 3551,              DOI 10.17487/RFC3551, July 2003,              <http://www.rfc-editor.org/info/rfc3551>.   [RFC4566]  Handley, M., Jacobson, V., and C. Perkins, "SDP: Session              Description Protocol",RFC 4566, DOI 10.17487/RFC4566,              July 2006, <http://www.rfc-editor.org/info/rfc4566>.   [RFC4585]  Ott, J., Wenger, S., Sato, N., Burmeister, C., and J. Rey,              "Extended RTP Profile for Real-time Transport Control              Protocol (RTCP)-Based Feedback (RTP/AVPF)",RFC 4585,              DOI 10.17487/RFC4585, July 2006,              <http://www.rfc-editor.org/info/rfc4585>.   [RFC4855]  Casner, S., "Media Type Registration of RTP Payload              Formats",RFC 4855, DOI 10.17487/RFC4855, February 2007,              <http://www.rfc-editor.org/info/rfc4855>.   [RFC6386]  Bankoski, J., Koleszar, J., Quillio, L., Salonen, J.,              Wilkins, P., and Y. Xu, "VP8 Data Format and Decoding              Guide",RFC 6386, DOI 10.17487/RFC6386, November 2011,              <http://www.rfc-editor.org/info/rfc6386>.   [RFC6838]  Freed, N., Klensin, J., and T. Hansen, "Media Type              Specifications and Registration Procedures",BCP 13,RFC 6838, DOI 10.17487/RFC6838, January 2013,              <http://www.rfc-editor.org/info/rfc6838>.Westin, et al.               Standards Track                   [Page 25]

RFC 7741               RTP Payload Format for VP8             March 201610.2.  Informative References   [RFC3711]  Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.              Norrman, "The Secure Real-time Transport Protocol (SRTP)",RFC 3711, DOI 10.17487/RFC3711, March 2004,              <http://www.rfc-editor.org/info/rfc3711>.   [RFC5124]  Ott, J. and E. Carrara, "Extended Secure RTP Profile for              Real-time Transport Control Protocol (RTCP)-Based Feedback              (RTP/SAVPF)",RFC 5124, DOI 10.17487/RFC5124, February              2008, <http://www.rfc-editor.org/info/rfc5124>.   [RFC7201]  Westerlund, M. and C. Perkins, "Options for Securing RTP              Sessions",RFC 7201, DOI 10.17487/RFC7201, April 2014,              <http://www.rfc-editor.org/info/rfc7201>.   [RFC7202]  Perkins, C. and M. Westerlund, "Securing the RTP              Framework: Why RTP Does Not Mandate a Single Media              Security Solution",RFC 7202, DOI 10.17487/RFC7202, April              2014, <http://www.rfc-editor.org/info/rfc7202>.   [Sch07]    Schwarz, H., Marpe, D., and T. Wiegand, "Overview of the              Scalable Video Coding Extension of the H.264/AVC              Standard", IEEE Transactions on Circuits and Systems for              Video Technology, Volume 17: Issue 9,              DOI 10.1109/TCSVT.2007.905532, September 2007,              <http://dx.doi.org/10.1109/TCSVT.2007.905532>.Westin, et al.               Standards Track                   [Page 26]

RFC 7741               RTP Payload Format for VP8             March 2016Authors' Addresses   Patrik Westin   Google, Inc.   1600 Amphitheatre Parkway   Mountain View, CA  94043   United States   Email: patrik.westin@gmail.com   Henrik F Lundin   Google, Inc.   Kungsbron 2   Stockholm  11122   Sweden   Email: hlundin@google.com   Michael Glover   Twitter Boston   10 Hemlock Way   Durham, NH  03824   United States   Email: michaelglover262@gmail.com   Justin Uberti   Google, Inc.   747 6th Street South   Kirkland, WA  98033   United States   Email: justin@uberti.name   Frank Galligan   Google, Inc.   1600 Amphitheatre Parkway   Mountain View, CA  94043   United States   Email: fgalligan@google.comWestin, et al.               Standards Track                   [Page 27]

[8]ページ先頭

©2009-2026 Movatter.jp