Movatterモバイル変換


[0]ホーム

URL:


[RFC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Info page]

INFORMATIONAL
Network Working Group                                       P. SrisureshRequest for Comments: 2888                         Campio CommunicationsCategory: Informational                                      August 2000Secure Remote Access with L2TPStatus of this Memo   This memo provides information for the Internet community.  It does   not specify an Internet standard of any kind.  Distribution of this   memo is unlimited.Copyright Notice   Copyright (C) The Internet Society (2000).  All Rights Reserved.Abstract   L2TP protocol is a virtual extension of PPP across IP network   infrastructure. L2TP makes possible for an access concentrator (LAC)   to be near remote clients, while allowing PPP termination server   (LNS) to be located in enterprise premises. L2TP allows an enterprise   to retain control of RADIUS data base, which is used to control   Authentication, Authorization and Accountability (AAA) of dial-in   users. The objective of this document is to extend security   characteristics of IPsec to remote access users, as they dial-in   through the Internet. This is accomplished without creating new   protocols and using the existing practices of Remote Access and   IPsec. Specifically, the document proposes three new RADIUS   parameters for use by the LNS node, acting as Secure Remote Access   Server (SRAS) to mandate network level security between remote   clients and the enterprise. The document also discusses limitations   of the approach.1. Introduction and Overview   Now-a-days, it is common practice for employees to dial-in to their   enterprise over the PSTN (Public Switched Telephone Network) and   perform day-to-day operations just as they would if they were in   corporate premises. This includes people who dial-in from their home   and road warriors, who cannot be at the corporate premises. As the   Internet has become ubiquitous, it is appealing to dial-in through   the Internet to save on phone charges and save the dedicated voice   lines from being clogged with data traffic.Srisuresh                    Informational                      [Page 1]

RFC 2888             Secure Remote Access with L2TP          August 2000   The document suggests an approach by which remote access over the   Internet could become a reality. The approach is founded on the   well-known techniques and protocols already in place. Remote Access   extensions based on L2TP, when combined with the security offered by   IPSec can make remote access over the Internet a reality. The   approach does not require inventing new protocol(s).   The trust model of remote access discussed in this document is viewed   principally from the perspective of an enterprise into which remote   access clients dial-in. A remote access client may or may not want to   enforce end-to-end IPsec from his/her end to the enterprise.   However, it is in the interest of the enterprise to mandate security   of every packet that it accepts from the Internet into the   enterprise.  Independently, remote users may also pursue end-to-end   IPsec, if they choose to do so. That would be in addition to the   security requirement imposed by the enterprise edge device.Section 2 has reference to the terminology used throughout the   document. Also mentioned are the limited scope in which some of these   terms may be used in this document.Section 3 has a brief description   of what constitutes remote access.Section 4 describes what   constitutes network security from an enterprise perspective.Section5 describes the model of secure remote access as a viable solution to   enterprises. The solution presented insection 5 has some   limitations. These limitations are listed insection 6.Section 7 is   devoted to describing new RADIUS attributes that may be configured to   turn a NAS device into Secure Remote Access Server.2. Terminology and scope   Definition of terms used in this document may be found in one of (a)   L2TP Protocol document [Ref 1], (b) IP security Architecture document   [Ref 5], or (c) Internet Key Exchange (IKE) document [Ref 8].   Note, the terms Network Access Server (NAS) and  Remote Access   Server(RAS) are used interchangeably throughout the document.  While   PPP may be used to carry a variety of network layer packets, the   focus of this document is limited to carrying IP datagrams only.   "Secure Remote Access Server" (SRAS) defined in this document refers   to a NAS that supports tunnel-mode IPsec with its remote clients.   Specifically, LNS is the NAS that is referred. Further, involuntary   tunneling is assumed for L2TP tunnel setup, in that remote clients   initiating PPP session and the LAC that tunnels the PPP sessions are   presumed to be distinct physical entities.Srisuresh                    Informational                      [Page 2]

RFC 2888             Secure Remote Access with L2TP          August 2000   Lastly, there are a variety of transport mediums by which to tunnel   PPP packets between a LAC and LNS. Examples include Frame Relay or   ATM cloud and IP network infrastructure. For simplicity, the document   assumes a public IP infrastructure as the medium to transport PPP   packets between LAC and LNS. Security of IP packets (embedded within   PPP) in a trusted private transport medium is less of a concern for   the purposes of this document.3. Remote Access operation   Remote access is more than mere authentication of remote clients by a   Network Access Server(NAS). Authentication, Authorization, Accounting   and routing are integral to remote access. A client must first pass   the authentication test before being granted link access to the   network. Network level services (such as IP) are granted based on the   authorization characteristics specified for the user in RADIUS.   Network Access Servers use RADIUS to scale for large numbers of users   supported. NAS also monitors the link status of the remote access   clients.   There are a variety of techniques by which remote access users are   connected to their enterprise and the Internet. At a link level, the   access techniques include ISDN digital lines, analog plain-old-   telephone-service lines, xDSL lines, cable and wireless to name a   few. PPP is the most common Layer-2 (L2)protocol used for carrying   network layer packets over these remote access links. PPP may be used   to carry a variety of network layer datagrams including IP, IPX and   AppleTalk. The focus of this document is however limited to IP   datagrams only.   L2TP is a logical extension of PPP over an IP infrastructure. While a   LAC provides termination of Layer 2 links,  LNS provides the logical   termination of PPP. As a result, LNS becomes the focal point for (a)   performing the AAA operations for the remote users, (b) assigning IP   address and monitoring the logical link status (i.e., the status of   LAC-to-LNS tunnel and the link between remote user and LAC), and (c)   maintaining host-route to remote user network and providing routing   infrastructure into the enterprise.   L2TP uses control messages to establish, terminate and monitor the   status of the logical PPP sessions (from remote user to LNS). These   are independent of the data messages. L2TP data messages contain an   L2TP header, followed by PPP packets. The L2TP header identifies the   PPP session (amongst other things) to which the PPP packet belongs.   The IP packets exchanged from/to the remote user are carried within   the PPP packets.  The L2TP data messages, carrying end-to-end IP   packets in an IP transport medium may be described as follows. The   exact details of L2TP protocol may be found in [Ref 1].Srisuresh                    Informational                      [Page 3]

RFC 2888             Secure Remote Access with L2TP          August 2000      +----------------------+      | IP Header            |      | (LAC <->LNS)         |      +----------------------+      | UDP Header           |      +----------------------+      | L2TP Header          |      | (incl. PPP Sess-ID)  |      +----------------------+      | PPP Header           |      | (Remote User<->LNS)  |      +----------------------+      | End-to-end IP packet |      | (to/from Remote User)|      +----------------------+4. Requirements of an enterprise Security Gateway   Today's enterprises are aware of the various benefits of connecting   to the Internet. Internet is a vast source of Information and a means   to disseminate information and make available certain resources to   the external world. However, enterprises are also aware that security   breaches (by being connected to the Internet) can severely jeopardize   internal network.   As a result, most enterprises restrict access to a pre-defined set of   resources for external users. Typically, enterprises employ a   firewall to restrict access to internal resources and place   externally accessible servers in the DeMilitarized Zone (DMZ), in   front of the firewall, as described below in Figure 1.Srisuresh                    Informational                      [Page 4]

RFC 2888             Secure Remote Access with L2TP          August 2000                        ----------------                       (                )                      (                  )                     (      Internet      )                      (                  )                       (_______________ )                       WAN  |                 .........|\|....                          |                +-----------------+                |Enterprise Router|                +-----------------+                    |                    |   DMZ - Network               ---------------------------------                |            |                |               +--+         +--+         +----------+               |__|         |__|         | Firewall |              /____\       /____\        +----------+              DMZ-Name     DMZ-Web  ...    |              Server       Server          |                                           |                                ------------------                               (                  )                              (  Internal Network  )                             (   (private to the    )                              (   enterprise)      )                               (_________________ )         Figure 1: Security model of an Enterprise using Firewall   Network Access Servers used to allow direct dial-in access (through   the PSTN) to employees are placed within the private enterprise   network so as to avoid access restrictions imposed by a firewall.   With the above model, private resources of an enterprise are   restricted for access from the Internet. Firewall may be configured   to occasionally permit access to a certain resource or service but is   not recommended on an operational basis as that could constitute a   security threat to the enterprise. It is of interest to note that   even when the firewall is configured to permit access to internal   resources from pre-defined external node(s), many internal servers,   such as NFS, enforce address based authentication and do not co-   operate when the IP address of the external node is not in corporate   IP address domain. In other words, with the above security model, itSrisuresh                    Informational                      [Page 5]

RFC 2888             Secure Remote Access with L2TP          August 2000   becomes very difficult to allow employees to access corporate   resources, via the Internet, even if you are willing to forego   security over the Internet.   With the advent of IPsec, it is possible to secure corporate data   across the Internet by employing a Security Gateway within the   enterprise. Firewall may be configured to allow IKE and IPsec packets   directed to a specific  Security Gateway behind the firewall. It then   becomes the responsibility of the Security Gateway to employ the   right access list for external connections seeking entry into the   enterprise. Essentially, the access control functionality for IPsec   secure packets would be shifted to the Security Gateway (while the   access control for clear packets is retained with the firewall). The   following figure illustrates the model where a combination of   Firewall and Security Gateway control access to internal resources.Srisuresh                    Informational                      [Page 6]

RFC 2888             Secure Remote Access with L2TP          August 2000                        ------------                       (            )                      (              )                     (    Internet    )                      (              )                       (___________ )                       WAN  |                 .........|\|....                          |                +-----------------+                |Enterprise Router|                +-----------------+                    |                    |   DMZ - Network   ------------------------------------------------------------            |            |                     |           +--+         +--+              +----------+           |__|         |__|              | Firewall |               /____\       /____\             +----------+               DMZ-Name     DMZ-Web   ...         |               Server       Server etc.           | LAN                                             |                  ------------------------------------                      |                          |                 +----------+         +------------------+                 |   LNS    |         | Security Gateway |                 |  Server  |         |      (SGW)       |                 +----------+         +------------------+                                               |                                     ------------------                                    (                  )                                   (  Internal Network  )                                  (   (Private to the    )                                   (   enterprise)      )                                    (_________________ )     Figure 2: Security Model based on Firewall and Security Gateway   In order to allow employee dial-in over the Internet, an LNS may be   placed behind a firewall, and the firewall may be configured to allow   UDP access to the LNS from the Internet. Note, it may not be possible   to know all the IP addresses of the LACs located on the Internet at   configuration time. Hence, the need to allow UDP access from any node   on the Internet. The LNS may be configured to process only the L2TP   packets and drop any UDP packets that are not L2TP.Srisuresh                    Informational                      [Page 7]

RFC 2888             Secure Remote Access with L2TP          August 2000   Such a configuration allows remote access over the Internet. However,   the above setup is prone to a variety of security attacks over the   Internet. It is easy for someone on the Internet to steal a remote   access session and gain  access to precious resources of the   enterprise. Hence it is important that all packets are preserved with   IPsec to a security Gateway (SGW) behind the LNS, so the Security   Gateway will not allow IP packets into corporate network unless it   can authenticate the same.   The trust model of secure remote access assumes that the enterprise   and the end user are trusted domains. Everything in between is not   trusted. Any examination of the end-to-end packets by the nodes   enroute would violate this trust model. From this perspective, even   the LAC node enroute must not be trusted with the end-to-end IP   packets. Hence, location and operation of LAC is not relevant for the   discussion on security. On the other hand, location and operation of   LNS and the Security Gateway (SGW) are precisely the basis for   discussion.   Having security processing done on an independent Security gateway   has the following shortcomings.   1. Given the trust model for remote access, the SGW must be      configured with a set of security profiles, access control lists      and IKE authentication parameters for each user. This mandates an      independent provisioning of security parameters on a per-user      basis. This may not be able to take advantage of the user-centric      provisioning on RADIUS, used by the LNS node.   2. Unlike the LNS, SGW may not be in the routing path of remote      access packets. I.e., there is no guarantee that the egress IP      packets will go through the chain of SGW and LNS before they are      delivered to remote user. As a result, packets may be subject to      IPSec in one direction, but not in the other. This can be a      significant threat to the remote access trust model.   3. Lastly, the SGW node does not have a way to know when a remote      user node(s) simply died or the LAC-LNS tunnel failed. Being      unable to delete the SAs for users that no longer exist could      drain the resources of the SGW. Further, the LNS cannot even      communicate the user going away to the SGW because, the SGW      maintains its peer nodes based on IKE user ID, which could be      different the user IDs employed by the LNS node.Srisuresh                    Informational                      [Page 8]

RFC 2888             Secure Remote Access with L2TP          August 20005. Secure Remote Access   Combining the functions of IPsec Security Gateway and LNS into a   single system promises to offer a viable solution for secure remote   access. By doing this, remote access clients will use a single node   as both (a) PPP termination point providing NAS service, and (b) the   Security gateway node into the enterprise. We will refer this node as   "Secure Remote Access Server" (SRAS).   The SRAS can benefit greatly from the confluence of PPP session and   IPsec tunnel end points. PPP session monitoring capability of L2TP   directly translates to being able to monitor IPsec tunnels. Radius   based user authorization ability could be used to configure the   security characteristics for IPsec tunnel. This includes setting   access control filters and security preferences specific to each   user. This may also be extended to configuring IKE authentication and   other negotiation parameters, when automated key exchange is   solicited. Security attributes that may be defined in Radius are   discussed in detail insection 7. Needless to say, the centralized   provisioning capability and scalability of Radius helps in the   configuration of IPsec.   As for remote access, the benefit is one of IPsec security as   befitting the trust model solicited by enterprises for the end-to-end   IP packets traversing the Internet. You may use simply AH where there   is no fear of external eaves-dropping, but you simply need to   authenticate packet data, including the source of packet. You may use   ESP (including ESP-authentication), where there is no trust of the   network and you do not want to permit eaves-dropping on corporate   activities.   Operation of SRAS requires that the firewall be configured to permit   UDP traffic into the SRAS node. The SRAS node in turn will process   just the L2TP packets and drop the rest. Further, the SRAS will   require all IP packets embedded within PPP to be one of AH and ESP   packets, directed to itself. In addition, the SRAS will also permit   IKE UDP packets (with source and destination ports sets to 500)   directed to itself in order to perform IKE negotiation and generate   IPsec keys dynamically. All other IP packets embedded within PPP will   be dropped. This enforces the security policy for the enterprise by   permitting only the secure remote access packets into the enterprise.   When a PPP session is dropped, the IPsec and ISAKMP SAs associated   with the remote access user are dropped from the SRAS. All the   shortcomings listed in the previous section with LNS and SGW on two   systems disappear withe Secure Remote Access Server. Figure 3 below   is a typical description of an enterprise supporting remote access   users using SRAS system.Srisuresh                    Informational                      [Page 9]

RFC 2888             Secure Remote Access with L2TP          August 2000                                                   ------------              Remote Access  +-------------+      (            )        +--+______   Link    | Local Access|     (              )        |__|     /___________| Concentrator|----(    Internet    )       /____\                |    (LAC)    |     (              )       RA-Host               +-------------+      (____________)                                  WAN  |                            .........|\|....                                     |                           +-----------------+                           |Enterprise Router|                           +-----------------+                               |                               |   DMZ - Network             ------------------------------------------            |            |                     |           +--+         +--+              +----------+           |__|         |__|              | Firewall |               /____\       /____\             +----------+               DMZ-Name     DMZ-Web   ...         |               Server       Server etc.           | LAN                                             |                  ------------------------------------                                     |                                +---------------+                                | Secure Remote |                                | Access Server |                                |    (SRAS)     |                                +---------------+                                         |                               ---------------------                              (                     )                 +--+       (    Internal Network    )                 |__|------(     (Private to the      )                /____\      (     enterprise)        )                Ent-Host     (______________________)     Figure 3: Secure Remote Access Server operation in an Enterprise   The following is an illustration of secure remote access data flow as   end-to-end IP packets traverse the Internet and the SRAS. The example   shows IP packet tunneling and IPsec transformation as packets are   exchanged between a remote Access host (RA-Host) and a host within   the enterprise (say, Ent-Host).Srisuresh                    Informational                     [Page 10]

RFC 2888             Secure Remote Access with L2TP          August 2000   Note, the IP packets originating from or directed to RA-Host are   shown within PPP encapsulation, whereas, all other packets are shown   simply as IP packets.  It is done this way to highlight the PPP   packets encapsulated within L2TP tunnel. The PPP headers below are   identified by their logical source and destination in parenthesis.   Note, however, the source and recipient information of the PPP data   is not a part of PPP header. This is described thus, just for   clarity. In the case of an L2TP tunnel, the L2TP header carries the   PPP session ID, which indirectly identifies the PPP end points to the   LAC and the LNS. Lastly, the IPsec Headers section below include the   tunneling overhead and the AH/ESP headers that are attached to the   tunnel.Srisuresh                    Informational                     [Page 11]

RFC 2888             Secure Remote Access with L2TP          August 2000   RA-Host to Ent-Host Packet traversal:   ------------------------------------   RA-Host              LAC                   SRAS              Ent-Host   =====================================================================   +----------------------+   | PPP Header           |   | (RA-Host ->SRAS)     |   +----------------------+   | Tunnel-Mode IPsec    |   | Hdr(s)(RA-Host->SRAS)|   +----------------------+   | End-to-end IP packet |   | transformed as needed|   | (RA-Host->Ent-Host)  |   +----------------------+      ---------------------->                   +----------------------+                   | IP Header            |                   | (LAC->SRAS)          |                   +----------------------+                   | UDP Header           |                   +----------------------+                   | L2TP Header          |                   | (incl. PPP Sess-ID)  |                   +----------------------+                   | PPP Header           |                   | (RA-Host ->SRAS)     |                   +----------------------+                   | Tunnel-Mode IPsec    |                   | Hdr(s)(RA-Host->SRAS)|                   +----------------------+                   | End-to-end IP packet |                   | transformed as needed|                   | (RA-Host->Ent-Host)  |                   +----------------------+                      ---------------------->                                      +----------------------+                                      | End-to-end IP packet |                                      | (RA-Host->Ent-Host)  |                                      +----------------------+                                         ---------------------->Srisuresh                    Informational                     [Page 12]

RFC 2888             Secure Remote Access with L2TP          August 2000   Ent-Host to RA-Host Packet traversal:   ------------------------------------   Ent-Host             SRAS                  LAC               RA-Host   =====================================================================   +----------------------+   | End-to-end IP packet |   | (Ent-Host->Ra-Host)  |   +----------------------+      ---------------------->                   +----------------------+                   | IP Header            |                   | (SRAS->LAC)          |                   +----------------------+                   | UDP Header           |                   +----------------------+                   | L2TP Header          |                   | (incl. PPP Sess-ID)  |                   +----------------------+                   | PPP Header           |                   | (SRAS->RA-Host)      |                   +----------------------+                   | Tunnel-Mode IPsec    |                   | Hdr(s)(SRAS->RA-Host)|                   +----------------------+                   | End-to-end IP packet |                   | transformed as needed|                   | (Ent-Host->RA-Host)  |                   +----------------------+                      ---------------------->                                     +----------------------+                                     | PPP Header           |                                     | (SRAS->RA-Host)      |                                     +----------------------+                                     | Tunnel-Mode IPsec    |                                     | Hdr(s)(SRAS->RA-Host)|                                     +----------------------+                                     | End-to-end IP packet |                                     | transformed as needed|                                     | (Ent-Host->RA-Host)  |                                     +----------------------+                                        ---------------------->Srisuresh                    Informational                     [Page 13]

RFC 2888             Secure Remote Access with L2TP          August 20006. Limitations to Secure Remote Access using L2TP   The SRAS model described is not without its limitations. Below is a   list of the limitations.   1. Tunneling overhead: There is considerable tunneling overhead on      the end-to-end IP packet. Arguably, there is overlap of      information between tunneling headers. This overhead will undercut      packet throughput.      The overhead is particularly apparent at the LAC and SRAS nodes.      Specifically, the SRAS has the additional computational overhead      of IPsec processing on all IP packets exchanged with remote users.      This can be a significant bottleneck in the ability of SRAS to      scale for large numbers of remote users.   2. Fragmentation and reassembly: Large IP packets may be required to      undergo Fragmentation and reassembly at the LAC or the LNS as a      result of multiple tunnel overhead tagged to the packet.      Fragmentation and reassembly can havoc on packet throughput and      latency. However, it is possible to avoid the overhead by reducing      the MTU permitted within PPP frames.   3. Multiple identity and authentication requirement: Remote Access      users are required to authenticate themselves to the SRAS in order      to be obtain access to the link. Further, when they require the      use of IKE to automate IPsec key exchange, they will need to      authenticate once again with the same or different ID and a      distinct authentication approach. The authentication requirements      of IKE phase 1 [Ref 8] and LCP [Ref 3] are different.      However, it is possible to have a single authentication approach      (i.e., a single ID and authentication mechanism) that can be      shared between LCP and IKE phase 1.  The Extended Authentication      Protocol(EAP) [Ref 4] may be used as the base to transport IKE      authentication mechanism into PPP. Note, the configuration      overhead is not a drag on the functionality perse.   4. Weak security of Link level authentication: As LCP packets      traverse the Internet, the Identity of the remote user and the      password (if a password is used) is sent in the clear. This makes      it a target for someone on the net to steal the information and      masquerade as remote user. Note, however, this type of password      stealing will not jeopardize the security of the enterprise per      se, but could result in denial of service to remote users. An      intruder can collect the password data and simply steal the link,      but will not be able to run any IP applications subsequently, as      the SRAS will fail non-IPsec packet data.Srisuresh                    Informational                     [Page 14]

RFC 2888             Secure Remote Access with L2TP          August 2000      A better approach would be to employ Extended Authentication      Protocol (EAP) [Ref 4] and select an authentication technique that      is not prone to stealing over the Internet. Alternately, the LAC      and the SRAS may be independently configured to use IPsec to      secure all LCP traffic exchanged between themselves.7. Configuring RADIUS to support Secure Remote Access.   A centralized RADIUS database is used by enterprises to maintain the   authentication and authorization requirements of the dial-in Users.   It is also believed that direct dial-in access (e.g., through the   PSTN network is) safe and trusted and does not need any scrutiny   outside of the link level authentication enforced in LCP. This belief   is certainly not shared with the dial-in access through the Internet.   So, while the same RADIUS database may be used for a user directly   dialing-in or dialing in through the Internet, the security   requirements may vary. The following RADIUS attributes may be used to   mandate IPsec for the users dialing-in through the Internet.  The   exact values for the attributes and its values may be obtained from   IANA (referSection 10).7.1. Security mandate based on access method   A new RADIUS attribute IPSEC_MANDATE (91) may be defined for each   user. This attribute may be given one of the following values.      NONE            (=0)     No IPsec mandated on the IP packets                               embedded within PPP.      LNS_AS_SRAS     (=1)     Mandates Tunnel mode IPsec on the IP                               packets embedded within PPP, only so                               long as the PPP session terminates                               at an LNS. LNS would be the tunnel                               mode IPsec end point.      SRAS            (=2)     Mandates Tunnel mode IPsec on the IP                               packets embedded within PPP,                               irrespective of the NAS type the PPP                               terminates in. I.e., the IPsec mandate                               is not specific to LNS alone, and is                               applicable to any NAS, terminating                               PPP. NAS would be the tunnel mode                               IPsec end point.Srisuresh                    Informational                     [Page 15]

RFC 2888             Secure Remote Access with L2TP          August 2000   When IPSEC_MANDATE attribute is set to one of LNS_AS_SRAS or SRAS,   that would direct the NAS to drop any IP packets in PPP that are not   associated with an AH or ESP protocol. As an exception, the NAS will   continue to process IKE packets (UDP packets, with source and   destination port set to 500) directed from remote users. Further, the   security profile parameter, defined in the following section may add   additional criteria for which security is not mandatory.7.2. Security profile for the user   A new SECURITY_PROFILE (92) parameter may be defined in RADIUS to   describe security access requirements for the users. The profile   could contain information such as the access control security   filters, security preferences and the nature of Keys (manual or   automatic generated via the IKE protocol) used for security purposes.   The SECURITY-PROFILE attribute can be assigned a filename, as a   string of characters. The contents of the file could be vendor   specific. But, the contents should include (a) a prioritized list   access control security policies, (b) Security Association security   preferences associated with each security policy.7.3. IKE negotiation profile for the user   If the security profile of a user requires dynamic generation of   security keys, the parameters necessary for IKE negotiation may be   configured separately using a new IKE_NEGOTIATION_PROFILE (93)   parameter in RADIUS. IKE-NEGOTIATION_PROFILE attribute may be   assigned a filename, as a string of characters. The contents of the   file could however be vendor specific. The contents would typically   include (a) the IKE ID of the user and  SRAS, (b) preferred   authentication approach and the associated parameters, such as a   pre-shared-key or a pointer to X.509 digital Certificate, and, (c)   ISAKMP security negotiation preferences for phase I.8. Acknowledgements   The author would like to express sincere thanks to Steve Willens for   initially suggesting this idea. The author is also thankful to Steve   for the many informal conversations which were instrumental in the   author being able to appreciate the diverse needs of the Remote   Access area.Srisuresh                    Informational                     [Page 16]

RFC 2888             Secure Remote Access with L2TP          August 20009. Security Considerations   This document is about providing secure remote access to enterprises   via the Internet. However, the document does not address security   issues for network layers other than IP. While the document focus is   on security over the Internet, the security model provided is not   limited to the Internet or the IP infrastructure alone. It may also   be applied over other transport media such as Frame Relay and ATM   clouds. If the transport media is a trusted private network   infrastructure, the security measures described may not be as much of   an issue. The solution suggested in the document is keeping in view   the trust model between a remote user and enterprise.10. IANA Considerations   This document proposes a total of three new RADIUS attributes to be   maintained by the IANA. These attributes IPSEC_MANDATE,   SECURITY_PROFILE and IKE_NEGOTIATION_PROFILE may be assigned the   values 91, 92 and 93 respectively so as not to conflict with the   definitions for recognized radius types, as defined inhttp://www.isi.edu/in-notes/iana/assignments/radius-types.   The following sub-section explains the criteria to be used by the   IANA to assign additional numbers as values to the IPSEC-MANDATE   attribute described insection 7.1.10.1.  IPSEC-MANDATE attribute Value   Values 0-2 of the IPSEC-MANDATE-Type Attribute are defined inSection7.1; the remaining values [3-255] are available for assignment by the   IANA with IETF Consensus [Ref 11].REFERENCES   [1]  Townsley, W., Valencia, A., Rubens, A., Pall, G., Zorn, G. and        B. Palter, "Layer Two Tunneling Protocol L2TP",RFC 2661, August        1999.   [2]  Rigney, C., Rubens, A., Simpson, W. and S. Willens, "Remote        Authentication Dial In User Service (RADIUS)",RFC 2138, April        1997.   [3]  Simpson, W., "The Point-to-Point Protocol (PPP)", STD 51,RFC1661, July 1994.   [4]  Blunk, L. and Vollbrecht, J. "PPP Extensible Authentication        Protocol (EAP)",RFC 2284, March 1998.Srisuresh                    Informational                     [Page 17]

RFC 2888             Secure Remote Access with L2TP          August 2000   [5]  Kent, S. and R. Atkinson, "Security Architecture for the        Internet Protocol",RFC 2401, November 1998.   [6]  Kent, S. and R. Atkinson, "IP Encapsulating Security Payload        (ESP)",RFC 2406, November 1998.   [7]  Kent, S. and R. Atkinson, "IP Authentication Header",RFC 2402,        November 1998.   [8]  Harkins, D. and D. Carrel, "The Internet Key Exchange (IKE)",RFC 2409, November 1998.   [9]  Piper, D., "The Internet IP Security Domain of Interpretation        for ISAKMP",RFC 2407, November 1998.   [10] Reynolds, J. and J. Postel, "Assigned Numbers", STD 2,RFC 1700,        October 1994.        See alsohttp://www.iana.org/numbers.html   [11] Narten, T. and H. Alvestrand, "Guidelines for writing an IANA        Considerations Section in RFCs",BCP 26,RFC 2434, October 1998.   [12] Meyer, G., "The PPP Encryption Control Protocol (ECP)",RFC1968, June 1996.   [13] Sklower, K. and G. Meyer, "The PPP DES Encryption Protocol,        Version 2 (DESE-bis)",RFC 2419, September 1998.Author's Address   Pyda Srisuresh   Campio Communications   630 Alder Drive   Milpitas, CA 95035   U.S.A.   Phone: +1 (408) 519-3849   EMail: srisuresh@yahoo.comSrisuresh                    Informational                     [Page 18]

RFC 2888             Secure Remote Access with L2TP          August 2000Full Copyright Statement   Copyright (C) The Internet Society (2000).  All Rights Reserved.   This document and translations of it may be copied and furnished to   others, and derivative works that comment on or otherwise explain it   or assist in its implementation may be prepared, copied, published   and distributed, in whole or in part, without restriction of any   kind, provided that the above copyright notice and this paragraph are   included on all such copies and derivative works.  However, this   document itself may not be modified in any way, such as by removing   the copyright notice or references to the Internet Society or other   Internet organizations, except as needed for the purpose of   developing Internet standards in which case the procedures for   copyrights defined in the Internet Standards process must be   followed, or as required to translate it into languages other than   English.   The limited permissions granted above are perpetual and will not be   revoked by the Internet Society or its successors or assigns.   This document and the information contained herein is provided on an   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.Acknowledgement   Funding for the RFC Editor function is currently provided by the   Internet Society.Srisuresh                    Informational                     [Page 19]

[8]ページ先頭

©2009-2026 Movatter.jp