Movatterモバイル変換


[0]ホーム

URL:


RCSB PDB
249,906
Structures from the PDB archive
1,068,577
Computed Structure Models (CSM)
  • PDB-101
  • wwPDB
  • EMDataResource
  • NAKB: Nucleic Acid Knowledgebase
  • wwPDB Foundation
  • PDB-IHM Logo

 3DRC|pdb_00003drc

INVESTIGATION OF THE FUNCTIONAL ROLE OF TRYPTOPHAN-22 IN ESCHERICHIA COLI DIHYDROFOLATE REDUCTASE BY SITE-DIRECTED MUTAGENESIS


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Observed: 
    0.156 (Depositor) 

wwPDB Validation  3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

Investigation of the functional role of tryptophan-22 in Escherichia coli dihydrofolate reductase by site-directed mutagenesis.

Warren, M.S.Brown, K.A.Farnum, M.F.Howell, E.E.Kraut, J.

(1991) Biochemistry 30: 11092-11103

  • PubMed1932031 Search on PubMed
  • DOI: https://doi.org/10.1021/bi00110a011
  • Primary Citation of Related Structures:  
    2DRC,3DRC

  • PubMed Abstract: 

    We have applied site-directed mutagenesis methods to change the conserved tryptophan-22 in the substrate binding site of Escherichia coli dihydrofolate reductase to phenylalanine (W22F) and histidine (W22H). The crystal structure of the W22F mutant in a binary complex with the inhibitor methotrexate has been refined at 1.9-A resolution. The W22F difference Fourier map and least-squares refinement show that structural effects of the mutation are confined to the immediate vicinity of position 22 and include an unanticipated 0.4-A movement of the methionine-20 side chain. A conserved bound water-403, suspected to play a role in the protonation of substrate DHF, has not been displaced by the mutation despite the loss of a hydrogen bond with tryptophan-22. Steady-state kinetics, stopped-flow kinetics, and primary isotope effects indicate that both mutations increase the rate of product tetrahydrofolate release, the rate-limiting step in the case of the wild-type enzyme, while slowing the rate of hydride transfer to the point where it now becomes at least partially rate determining. Steady-state kinetics show that below pH 6.8, kcat is elevated by up to 5-fold in the W22F mutant as compared with the wild-type enzyme, although kcat/Km(dihydrofolate) is lower throughout the observed pH range. For the W22H mutant, both kcat and kcat/Km(dihydrofolate) are substantially lower than the corresponding wild-type values. While both mutations weaken dihydrofolate binding, cofactor NADPH binding is not significantly altered. Fitting of the kinetic pH profiles to a general protonation scheme suggests that the proton affinity of dihydrofolate may be enhanced upon binding to the enzyme. We suggest that the function of tryptophan-22 may be to properly position the side chain of methionine-20 with respect to N5 of the substrate dihydrofolate.


  • Organizational Affiliation
    • Department of Chemistry, University of California, San Diego, La Jolla 92093.
Biological Assembly 1  

 Explore in 3DStructure |Sequence Annotations |Validation Report |Ligand Interaction (MTX)


Global Symmetry: Cyclic - C2  (Explore in 3D)
Global Stoichiometry: Homo 2-mer - A2 


Find Similar Assemblies

Biological assembly 1 assigned by authors.

PreviousNext

Macromolecule Content 

  • Total Structure Weight: 37.06 kDa 
  • Atom Count: 2,954 
  • Modeled Residue Count: 318 
  • Deposited Residue Count: 318 
  • Unique protein chains: 1

Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
DIHYDROFOLATE REDUCTASE159Escherichia coliMutation(s): 0 
EC: 1.5.1.3
UniProt
Find proteins for P0ABQ4 (Escherichia coli (strain K12))
Explore P0ABQ4 
Go to UniProtKB:  P0ABQ4
Entity Groups 
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP0ABQ4
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 3 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
MTX
Query on MTX

Download Ideal Coordinates CCD File 
D [auth A],
G [auth B]
METHOTREXATE
C20 H22 N8 O5
FBOZXECLQNJBKD-ZDUSSCGKSA-N
CA
Query on CA

Download Ideal Coordinates CCD File 
F [auth B]CALCIUM ION
Ca
BHPQYMZQTOCNFJ-UHFFFAOYSA-N
CL
Query on CL

Download Ideal Coordinates CCD File 
C [auth A],
E [auth B]
CHLORIDE ION
Cl
VEXZGXHMUGYJMC-UHFFFAOYSA-M
Binding Affinity Annotations 
IDSourceBinding Affinity
MTXBindingDB: 3DRCIC50: min: 3, max: 8.8 (nM) from 3 assay(s)
EC50: 1 (nM) from 1 assay(s)
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Observed: 0.156 (Depositor) 
Space Group: P 61
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 93.12α = 90
b = 93.12β = 90
c = 73.87γ = 120
Software Package:
Software NamePurpose
TNTrefinement

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1994-01-31
    Type: Initial release
  • Version 1.1: 2008-03-03
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2017-11-29
    Changes: Derived calculations, Other
  • Version 1.4: 2024-02-21
    Changes: Data collection, Database references, Derived calculations
  • RCSB PDB is hosted by

  • The Rutgers Artificial Intelligence and Data Science Collaboratory logo
    Uiversity of California San Diego logoSan Diego Supercomputer Center logo
    University of California San Francisco Logo

RCSB PDB Core Operations are funded by theU.S. National Science Foundation (DBI-2321666), theUS Department of Energy (DE-SC0019749), and theNational Cancer Institute,National Institute of Allergy and Infectious Diseases, andNational Institute of General Medical Sciences of theNational Institutes of Health under grant R01GM157729. RCSB PDB uses resources of the National Energy Research Scientific Computing Center (NERSC), a Department of Energy User Facility.


[8]ページ先頭

©2009-2026 Movatter.jp