Movatterモバイル変換


[0]ホーム

URL:


RCSB PDB
249,906
Structures from the PDB archive
1,068,577
Computed Structure Models (CSM)
  • PDB-101
  • wwPDB
  • EMDataResource
  • NAKB: Nucleic Acid Knowledgebase
  • wwPDB Foundation
  • PDB-IHM Logo

 1THR|pdb_00001thr

STRUCTURES OF THROMBIN COMPLEXES WITH A DESIGNED AND A NATURAL EXOSITE INHIBITOR


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.30 Å
  • R-Value Observed: 
    0.155 (Depositor) 

wwPDB Validation  3D Report Full Report


This is version 1.6 of the entry. See complete history


Literature

Structures of thrombin complexes with a designed and a natural exosite peptide inhibitor.

Qiu, X.Yin, M.Padmanabhan, K.P.Krstenansky, J.L.Tulinsky, A.

(1993) J Biological Chem 268: 20318-20326

  • PubMed8376390 Search on PubMed
  • Primary Citation of Related Structures:  
    1THR,1THS

  • PubMed Abstract: 

    The structures of two hirudin-based fibrinogen recognition exosite peptide inhibitors with significantly different sequences complexed with alpha-thrombin at a site distinct from the active site (exosite) have been determined crystallographically at 2.2 and 2.3 A resolution. One is a designed synthetic peptide with some nonconventional amino acid residues (MDL-28050), and the other is a natural COOH-terminal peptide isolated from the leech Hirudinaria manillensis (hirullin P18). The structures have been refined by restrained least squares methods to R values of 0.161 and 0.155, respectively. The first stretch of each peptide, corresponding to hirudin 55-59, associates with thrombin similar to hirudin and hirugen (hirudin 53-64). Although the remaining residues of the inhibitors interact with and bind to thrombin, the binding is accomplished. through a rigid body conformational adjustment of the peptide with respect to the conformation displayed by hirudin and hirugen (40 degrees rotation about the Ile59, CA-C bond). This causes the side groups of cyclohexylalanine 64' of MDL-28050 and Ile60, of hirullin to point in the opposite direction of the all important Tyr63, ring of hirudin and hirugen but permits the residues to penetrate and interact with the 3(10) turn hydrophobic binding pocket of thrombin. Thus, the hydrophobic interaction is accomplished in a different way by virtue of the substrate conformational readjustment. The results show that the first stretch of peptide makes concerted and efficient binding interactions with thrombin, and the peptide positions of the inhibitors are fairly specific and homologous so that the stretch appears to be related to specific recognition associated with the exosite. The relative flexibility of structure and sequence of the second stretch is a display of tolerance of imprecision by thrombin in its COOH-terminal hydrophobic association with hirudin-based inhibitors.


  • Organizational Affiliation
    • Department of Chemistry, Michigan State University, East Lansing 48824-1322.
Biological Assembly 1  

 Explore in 3DStructure |Sequence Annotations |Validation Report


Global Symmetry: Asymmetric - C1 
Global Stoichiometry: Hetero 3-mer - A1B1C1 


Find Similar Assemblies

Biological assembly 1 assigned by authors and generated by PISA (software)

PreviousNext

Macromolecule Content 

  • Total Structure Weight: 35.45 kDa 
  • Atom Count: 2,541 
  • Modeled Residue Count: 292 
  • Deposited Residue Count: 308 
  • Unique protein chains: 3

Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
ALPHA-THROMBIN (SMALL SUBUNIT)A [auth L]36Homo sapiensMutation(s): 0 
EC: 3.4.21.5
UniProt & NIH Common Fund Data Resources
Find proteins for P00734 (Homo sapiens)
Explore P00734 
Go to UniProtKB:  P00734
PHAROS:  P00734
GTEx:  ENSG00000180210 
Entity Groups 
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP00734
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
ALPHA-THROMBIN (LARGE SUBUNIT)B [auth H]259Homo sapiensMutation(s): 0 
EC: 3.4.21.5
UniProt & NIH Common Fund Data Resources
Find proteins for P00734 (Homo sapiens)
Explore P00734 
Go to UniProtKB:  P00734
PHAROS:  P00734
GTEx:  ENSG00000180210 
Entity Groups 
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP00734
Sequence Annotations
Expand
  • Reference Sequence

Find similar proteins by:  Sequence   |   3D Structure  

Entity ID: 3
MoleculeChains Sequence LengthOrganismDetailsImage
HIRULLINC [auth I]13Hirudinaria manillensisMutation(s): 0 
UniProt
Find proteins for P26631 (Hirudinaria manillensis)
Explore P26631 
Go to UniProtKB:  P26631
Entity Groups 
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP26631
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.30 Å
  • R-Value Observed: 0.155 (Depositor) 
Space Group: C 1 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 71.43α = 90
b = 72.32β = 100.55
c = 72.81γ = 90
Software Package:
Software NamePurpose
PROLSQrefinement

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1994-01-31
    Type: Initial release
  • Version 1.1: 2008-03-03
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2012-12-12
    Changes: Other
  • Version 1.4: 2013-03-13
    Changes: Other
  • Version 1.5: 2024-06-05
    Changes: Data collection, Database references, Other
  • Version 1.6: 2024-11-20
    Changes: Structure summary
  • RCSB PDB is hosted by

  • The Rutgers Artificial Intelligence and Data Science Collaboratory logo
    Uiversity of California San Diego logoSan Diego Supercomputer Center logo
    University of California San Francisco Logo

RCSB PDB Core Operations are funded by theU.S. National Science Foundation (DBI-2321666), theUS Department of Energy (DE-SC0019749), and theNational Cancer Institute,National Institute of Allergy and Infectious Diseases, andNational Institute of General Medical Sciences of theNational Institutes of Health under grant R01GM157729. RCSB PDB uses resources of the National Energy Research Scientific Computing Center (NERSC), a Department of Energy User Facility.


[8]ページ先頭

©2009-2026 Movatter.jp