This study analyzes energetic neutral atom (ENA) spectral properties across distinct regions of globally distributed flux (GDF) sky maps, using Interstellar Boundary Explorer data from a full solar cycle, corrected for time dispersion. By time-shifting the data to the heliosheath using GDF source distances from D. B. Reisenfeld et al., we achieve a more accurate representation of heliosheath GDF energy spectra. We quantify ENA spectral characteristics, heliosheath line-of-sight-integrated proton pressure, and heliosheath proton temperature, comparing these to solar wind properties at 1 au and interplanetary scintillation-derived solar wind data. Our findings show that the spectral index is generally anticorrelated with heliosheath proton temperature and pressure, except in the central tail, where a partial positive correlation is observed. The lowest spectral index values occur when high-latitude heliosheath regions are dominated by fast solar wind from polar coronal holes. The south pole exhibits the flattest energy spectra due to plasma heating from both fast solar wind and a late-2014 pressure pulse. The central tail shows shorter variability (5–6 yr) for spectral index and heliosheath proton temperature, while proton pressure follows the 11 yr solar cycle. Most spectral shapes exhibit a “knee” distribution, peaking during solar maximum, with an “ankle” shape observed only at the south pole during solar cycle transitions. Asymmetry in proton pressure in the lobes is driven by the draping effect of the local interstellar magnetic field. This study provides insights into the energetic properties of GDF across the heliosphere, enhancing our understanding of the heliospheric environment.
The Interstellar Boundary Explorer (IBEX) mission has shown that variations in the energetic neutral atom (ENA) flux from the outer heliosphere are associated with the solar cycle and longer-term variations in the solar wind (SW). In particular, there is a good correlation between the dynamic pressure of the outbound SW and variations in the later-observed IBEX ENA flux. The time difference between observations of the outbound SW and the heliospheric ENAs with which they correlate ranges from approximately 2 to 6 yr or more, depending on ENA energy and look direction. This time difference can be used as a means of "sounding" the heliosheath, that is, finding the average distance to the ENA source region in a particular direction. Here, we apply this method to build a 3D map of the heliosphere. We use IBEX ENA data collected over a complete solar cycle, from 2009 through 2019, corrected for survival probability to the inner heliosphere. Here we divide the data into 56 "macropixels" covering the entire sky. As each point in the sky is sampled once every 6 months, this gives us a time series of 22 points macropixel–1 on which to time-correlate. Consistent with prior studies and heliospheric models, we find that the shortest distance to the heliopause, dHP, is slightly south of the nose direction (dHP ~ 110–120 au), with a flaring toward the flanks and poles (dHP ~ 160–180 au). The heliosphere extends at least ~350 au tailward, which is the distance limit of the technique.
As part of a published effort to study low-frequency magnetic waves excited by newborn interstellar pickup ions seen by the Voyager spacecraft, we developed a set of control intervals that represent the background turbulence when the observations are not dominated by wave excitation. This paper begins an effort to better understand solar wind turbulence from 1 to 45 au while spanning greater than one solar cycle. Here, we first focus on the diagnostics marking the onset of dissipation. This includes an expected break in the power spectrum at frequencies greater than the proton cyclotron frequency and a resultant steepening of the spectrum at higher frequencies. Contrary to what is established at 1 au, we only see the spectral break in rare instances. The expected scaling of the spectral index with the turbulence rate is seen, but it is not as clearly established as it was at 1 au. We also find that both Voyager data from 1 to 45 au and Advanced Composition Explorer data from 1 au show significant bias of the magnetic helicity at dissipation scales when the dissipation-range power-law spectral index steepens. We conclude that dissipation dynamics are similar throughout the heliosphere in so far as we have examined to date.
We examine both Voyager and Advanced Composition Explorer magnetic field measurements at frequencies that characterize the inertial range and evaluate the anisotropy of the fluctuations as they relate to both the compressive component and underlying wavevector anisotropy of the turbulence. The magnetic fluctuation anisotropy as it relates to the compressive component is directly dependent upon both the plasma beta of the thermal proton component and the ratio of magnetic fluctuation magnitude to the strength of the mean magnetic field. This has been seen before at 1 au. The magnetic fluctuation anisotropy in the plane perpendicular to the mean magnetic field, which is a measure of the anisotropy of the underlying wavevector distribution, should depend on the angle between the mean magnetic field and the radial direction and should be confined to values between one and the index of the power spectrum, which is typically 5/3. Our results show that the average of this anisotropy exceeds the value of the spectral index and is out of bounds with the theory. Although the results are suggestive of past analyses, we find that spherical expansion of the turbulence may offer at least a partial explanation of the apparent amplification of this measured anisotropy.
Polar coronal holes (PCHs) fill the high-latitude heliosphere with fast solar wind during the minimum phase of the solar cycle. This leads to a hardening of the energy spectrum of the proton plasma in the inner heliosheath (IHS), observed as energetic neutral atoms (ENAs) by the Interstellar Boundary Explorer (IBEX). In particular, the highest-energy channel of the IBEX-Hi instrument (at 4.3 keV) is a very sensitive indicator of pretermination shock fast wind entering the IHS. Herein, we show that the 4.3 keV ENA flux observed from the ecliptic poles is well correlated with the area of the solar surface covered by PCHs throughout the solar cycle, which demonstrates the existence of a direct connection between coronal structure and the dynamic properties of the IHS.
Observations from the Interstellar Boundary Explorer (IBEX) of energetic neutral atoms (ENAs) reveal two populations, those emitted from a narrow (~20°–40°) ribbon that is centered on the local interstellar magnetic field, and a globally distributed flux (GDF) that is controlled by processes in the heliosheath. This is a third study utilizing a previously developed technique to separate ENA emissions in the ribbon from the GDF. In the first ribbon separation study, we analyzed the first year of IBEX data at the energies of 0.7 keV and above; the second study analyzed data down to 0.2 keV using the first five years of IBEX data. Here, we utilize the separation analysis from 0.7 keV and above to study time evolution in 3 year intervals over the first nine years of IBEX data. This study is the first to reveal the global time evolution of the GDF distinct from that of the IBEX ribbon. We show that the time evolution of the GDF within 40° of the upwind pressure maximum is driven by changes in the solar wind ram pressure through compression and rarefaction in the heliosheath. In contrast, the GDF is relatively stable in the region centered on the heliotail downwind with respect to the interstellar flow. The evolution of the IBEX ribbon is observed to have a time lag with respect to the upwind GDF evolution, likely due to the secondary (neutral) solar wind source. The time lag observed in the ribbon evolution is consistent with the generation of ions retained for several years beyond the heliopause. These observations lend further support to secondary solar wind models of the IBEX ribbon, but also require that there is a significant several year time lag for reneutralization of ions that form the IBEX ribbon. We use this study of the 9 year separation of the IBEX ribbon from the globally distributed flux to prepare for a formal IBEX data release of ribbon and globally distributed flux maps to the heliophysics community.