Rings (Algebra)
Enlarge textShrink textTopic
- Save successfulThe item can be found in your Personal ZoneשגיאהLog in to your account to save
- LC database, Mar. 11, 1997(ring theory)
- TEST(Ring theory)

In mathematics, a ring is an algebraic structure consisting of a set with two binary operations typically called addition and multiplication and denoted like addition and multiplication of integers. They work similarly to integer addition and multiplication, except that multiplication in a ring does not need to be commutative. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series. More formally, a ring is a set that is endowed with two binary operations (addition and multiplication) such that the ring is an abelian group with respect to addition. The multiplication is associative, is distributive over the addition operation, and has a multiplicative identity element. Some authors apply the term ring to a further generalization, often called a rng, that omits the requirement for a multiplicative identity, and instead call the structure defined above a ring with identity. A commutative ring is a ring with a commutative multiplication. This property has profound implications on ring properties. Commutative algebra, the theory of commutative rings, is a major branch of ring theory. Its development has been greatly influenced by problems and ideas of algebraic number theory and algebraic geometry. In turn, commutative algebra is a fundaments tool in these branches of mathematics. Examples of commutative rings include every field (such as the real or complex numbers), the integers, the polynomials in one or several variables with coefficients in another ring, the coordinate ring of an affine algebraic variety, and the ring of integers of a number field. Examples of noncommutative rings include the ring of n × n real square matrices with n ≥ 2, group rings in representation theory, operator algebras in functional analysis, rings of differential operators, and cohomology rings in topology. The conceptualization of rings spanned the 1870s to the 1920s, with key contributions by Dedekind, Hilbert, Fraenkel, and Noether. Rings were first formalized as a generalization of Dedekind domains that occur in number theory, and of polynomial rings and rings of invariants that occur in algebraic geometry and invariant theory. They later proved useful in other branches of mathematics such as geometry and analysis. Rings appear in the following chain of class inclusions: rngs ⊃ rings ⊃ commutative rings ⊃ integral domains ⊃ integrally closed domains ⊃ GCD domains ⊃ unique factorization domains ⊃ principal ideal domains ⊃ Euclidean domains ⊃ fields ⊃ algebraically closed fields
Read more on Wikipedia >