Movatterモバイル変換


[0]ホーム

URL:


Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
Thehttps:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIH NLM Logo
Log inShow account info
Access keysNCBI HomepageMyNCBI HomepageMain ContentMain Navigation
pubmed logo
Advanced Clipboard
User Guide

Full text links

Nature Publishing Group full text link Nature Publishing Group
Full text links

Actions

Share

.1996 Sep;14(9):1129-32.
doi: 10.1038/nbt0996-1129.

Methyl jasmonate-induced overproduction of paclitaxel and baccatin III in Taxus cell suspension cultures

Affiliations

Methyl jasmonate-induced overproduction of paclitaxel and baccatin III in Taxus cell suspension cultures

Y Yukimune et al. Nat Biotechnol.1996 Sep.

Abstract

Taxus cell culture may be an alternative source of paclitaxel and related taxane production. Significantly increased amounts of paclitaxel and baccatin III were observed in cultured cells of Taxus species after exposure to methyl jasmonate. Among the three species of Taxus tested, Taxus media showed the highest paclitaxel content while Taxus baccata showed the highest baccatin III content when 100 microM of methyl jasmonate was added to the culture media. Furthermore, the activities of methyl jasmonate and related substances for inducing paclitaxel production were compared in cell suspension cultures of T. media. Methyl jasmonate and its free acid showed the strongest promoting activity. Reduction of the keto group at the C-3 position greatly reduced this activity. cis-Jasmone, which does not have a carboxyl group at the C-1 position, had almost no activity. These results suggest that these two regions of methyl jasmonate are important for promoting the production of paclitaxel and related taxanes in Taxus cell cultures.

PubMed Disclaimer

Comment in

Similar articles

See all similar articles

Cited by

See all "Cited by" articles

MeSH terms

Substances

Related information

LinkOut - more resources

Full text links
Nature Publishing Group full text link Nature Publishing Group
Cite
Send To

NCBI Literature Resources

MeSHPMCBookshelfDisclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.


[8]ページ先頭

©2009-2025 Movatter.jp