Genotype Imputation from Large Reference Panels
- PMID:29799802
- DOI: 10.1146/annurev-genom-083117-021602
Genotype Imputation from Large Reference Panels
Abstract
Genotype imputation has become a standard tool in genome-wide association studies because it enables researchers to inexpensively approximate whole-genome sequence data from genome-wide single-nucleotide polymorphism array data. Genotype imputation increases statistical power, facilitates fine mapping of causal variants, and plays a key role in meta-analyses of genome-wide association studies. Only variants that were previously observed in a reference panel of sequenced individuals can be imputed. However, the rapid increase in the number of deeply sequenced individuals will soon make it possible to assemble enormous reference panels that greatly increase the number of imputable variants. In this review, we present an overview of genotype imputation and describe the computational techniques that make it possible to impute genotypes from reference panels with millions of individuals.
Keywords: GWAS; genome-wide association study; genotype imputation; imputation.
Similar articles
- Accuracy of genome-wide imputation of untyped markers and impacts on statistical power for association studies.Hao K, Chudin E, McElwee J, Schadt EE.Hao K, et al.BMC Genet. 2009 Jun 16;10:27. doi: 10.1186/1471-2156-10-27.BMC Genet. 2009.PMID:19531258Free PMC article.
- Meta-imputation: An efficient method to combine genotype data after imputation with multiple reference panels.Yu K, Das S, LeFaive J, Kwong A, Pleiness J, Forer L, Schönherr S, Fuchsberger C, Smith AV, Abecasis GR.Yu K, et al.Am J Hum Genet. 2022 Jun 2;109(6):1007-1015. doi: 10.1016/j.ajhg.2022.04.002. Epub 2022 May 3.Am J Hum Genet. 2022.PMID:35508176Free PMC article.
- Comparison of genotype imputation strategies using a combined reference panel for chicken population.Ye S, Yuan X, Huang S, Zhang H, Chen Z, Li J, Zhang X, Zhang Z.Ye S, et al.Animal. 2019 Jun;13(6):1119-1126. doi: 10.1017/S1751731118002860. Epub 2018 Oct 29.Animal. 2019.PMID:30370890
- Accurate Imputation of Untyped Variants from Deep Sequencing Data.Torkamaneh D, Belzile F.Torkamaneh D, et al.Methods Mol Biol. 2021;2243:271-281. doi: 10.1007/978-1-0716-1103-6_13.Methods Mol Biol. 2021.PMID:33606262Review.
- Strategies for Imputing and Analyzing Rare Variants in Association Studies.Hoffmann TJ, Witte JS.Hoffmann TJ, et al.Trends Genet. 2015 Oct;31(10):556-563. doi: 10.1016/j.tig.2015.07.006.Trends Genet. 2015.PMID:26450338Free PMC article.Review.
Cited by
- Genotype imputation accuracy and the quality metrics of the minor ancestry in multi-ancestry reference panels.Shi M, Tanikawa C, Munter HM, Akiyama M, Koyama S, Tomizuka K, Matsuda K, Lathrop GM, Terao C, Koido M, Kamatani Y.Shi M, et al.Brief Bioinform. 2023 Nov 22;25(1):bbad509. doi: 10.1093/bib/bbad509.Brief Bioinform. 2023.PMID:38221906Free PMC article.
- A Pipeline for Phasing and Genotype Imputation on Mixed Human Data (Parents-Offspring Trios and Unrelated Subjects) by Reviewing Current Methods and Software.Baldrighi GN, Nova A, Bernardinelli L, Fazia T.Baldrighi GN, et al.Life (Basel). 2022 Dec 5;12(12):2030. doi: 10.3390/life12122030.Life (Basel). 2022.PMID:36556394Free PMC article.Review.
- Single-cell transcriptome sequencing allows genetic separation, characterization and identification of individuals in multi-person biological mixtures.Kulhankova L, Montiel González D, Bindels E, Kling D, Kayser M, Mulugeta E.Kulhankova L, et al.Commun Biol. 2023 Feb 20;6(1):201. doi: 10.1038/s42003-023-04557-z.Commun Biol. 2023.PMID:36805025Free PMC article.
- Eleven grand challenges in single-cell data science.Lähnemann D, Köster J, Szczurek E, McCarthy DJ, Hicks SC, Robinson MD, Vallejos CA, Campbell KR, Beerenwinkel N, Mahfouz A, Pinello L, Skums P, Stamatakis A, Attolini CS, Aparicio S, Baaijens J, Balvert M, Barbanson B, Cappuccio A, Corleone G, Dutilh BE, Florescu M, Guryev V, Holmer R, Jahn K, Lobo TJ, Keizer EM, Khatri I, Kielbasa SM, Korbel JO, Kozlov AM, Kuo TH, Lelieveldt BPF, Mandoiu II, Marioni JC, Marschall T, Mölder F, Niknejad A, Rączkowska A, Reinders M, Ridder J, Saliba AE, Somarakis A, Stegle O, Theis FJ, Yang H, Zelikovsky A, McHardy AC, Raphael BJ, Shah SP, Schönhuth A.Lähnemann D, et al.Genome Biol. 2020 Feb 7;21(1):31. doi: 10.1186/s13059-020-1926-6.Genome Biol. 2020.PMID:32033589Free PMC article.Review.
- Importance of Genetic Studies of Cardiometabolic Disease in Diverse Populations.Fernández-Rhodes L, Young KL, Lilly AG, Raffield LM, Highland HM, Wojcik GL, Agler C, Love SM, Okello S, Petty LE, Graff M, Below JE, Divaris K, North KE.Fernández-Rhodes L, et al.Circ Res. 2020 Jun 5;126(12):1816-1840. doi: 10.1161/CIRCRESAHA.120.315893. Epub 2020 Jun 4.Circ Res. 2020.PMID:32496918Free PMC article.Review.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources