VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors
- PMID:27595385
- PMCID: PMC5519826
- DOI: 10.1038/nn.4377
VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors
Abstract
Dopaminergic ventral tegmental area (VTA) neurons are critically involved in a variety of behaviors that rely on heightened arousal, but whether they directly and causally control the generation and maintenance of wakefulness is unknown. We recorded calcium activity using fiber photometry in freely behaving mice and found arousal-state-dependent alterations in VTA dopaminergic neurons. We used chemogenetic and optogenetic manipulations together with polysomnographic recordings to demonstrate that VTA dopaminergic neurons are necessary for arousal and that their inhibition suppresses wakefulness, even in the face of ethologically relevant salient stimuli. Nevertheless, before inducing sleep, inhibition of VTA dopaminergic neurons promoted goal-directed and sleep-related nesting behavior. Optogenetic stimulation, in contrast, initiated and maintained wakefulness and suppressed sleep and sleep-related nesting behavior. We further found that different projections of VTA dopaminergic neurons differentially modulate arousal. Collectively, our findings uncover a fundamental role for VTA dopaminergic circuitry in the maintenance of the awake state and ethologically relevant sleep-related behaviors.
Figures







Comment in
- Too bored to stay awake.Happ M, Halassa MM.Happ M, et al.Nat Neurosci. 2016 Sep 27;19(10):1274-6. doi: 10.1038/nn.4383.Nat Neurosci. 2016.PMID:27669985No abstract available.
Similar articles
- GABA and glutamate neurons in the VTA regulate sleep and wakefulness.Yu X, Li W, Ma Y, Tossell K, Harris JJ, Harding EC, Ba W, Miracca G, Wang D, Li L, Guo J, Chen M, Li Y, Yustos R, Vyssotski AL, Burdakov D, Yang Q, Dong H, Franks NP, Wisden W.Yu X, et al.Nat Neurosci. 2019 Jan;22(1):106-119. doi: 10.1038/s41593-018-0288-9. Epub 2018 Dec 17.Nat Neurosci. 2019.PMID:30559475Free PMC article.
- Arousal State-Dependent Alterations in VTA-GABAergic Neuronal Activity.Eban-Rothschild A, Borniger JC, Rothschild G, Giardino WJ, Morrow JG, de Lecea L.Eban-Rothschild A, et al.eNeuro. 2020 Mar 30;7(2):ENEURO.0356-19.2020. doi: 10.1523/ENEURO.0356-19.2020. Print 2020 Mar/Apr.eNeuro. 2020.PMID:32054621Free PMC article.
- Role of dopamine projections from ventral tegmental area to nucleus accumbens and medial prefrontal cortex in reinforcement behaviors assessed using optogenetic manipulation.Han X, Jing MY, Zhao TY, Wu N, Song R, Li J.Han X, et al.Metab Brain Dis. 2017 Oct;32(5):1491-1502. doi: 10.1007/s11011-017-0023-3. Epub 2017 May 19.Metab Brain Dis. 2017.PMID:28523568
- The control of sleep and wakefulness by mesolimbic dopamine systems.Oishi Y, Lazarus M.Oishi Y, et al.Neurosci Res. 2017 May;118:66-73. doi: 10.1016/j.neures.2017.04.008. Epub 2017 Apr 20.Neurosci Res. 2017.PMID:28434991Review.
- VTA GABA Neurons at the Interface of Stress and Reward.Bouarab C, Thompson B, Polter AM.Bouarab C, et al.Front Neural Circuits. 2019 Dec 5;13:78. doi: 10.3389/fncir.2019.00078. eCollection 2019.Front Neural Circuits. 2019.PMID:31866835Free PMC article.Review.
Cited by
- Too bored to stay awake.Happ M, Halassa MM.Happ M, et al.Nat Neurosci. 2016 Sep 27;19(10):1274-6. doi: 10.1038/nn.4383.Nat Neurosci. 2016.PMID:27669985No abstract available.
- Acute Ongoing Nociception Delays Recovery of Consciousness from Sevoflurane Anesthesia via a Midbrain Circuit.Zhong CC, Xu Z, Gan J, Yu YM, Tang HM, Zhu Y, Yang JX, Ding HL, Cao JL.Zhong CC, et al.J Neurosci. 2024 Aug 21;44(34):e0740242024. doi: 10.1523/JNEUROSCI.0740-24.2024.J Neurosci. 2024.PMID:39019613Free PMC article.
- Probing different paradigms of morphine withdrawal on sleep behavior in male and female C57BL/6J mice.Bedard ML, Lord JS, Perez PJ, Bravo IM, Teklezghi AT, Tarantino L, Diering G, McElligott ZA.Bedard ML, et al.bioRxiv [Preprint]. 2023 Feb 15:2022.04.06.487380. doi: 10.1101/2022.04.06.487380.bioRxiv. 2023.Update in:Behav Brain Res. 2023 Jun 25;448:114441. doi: 10.1016/j.bbr.2023.114441.PMID:36415467Free PMC article.Updated.Preprint.
- Bidirectional and context-dependent changes in theta and gamma oscillatory brain activity in noradrenergic cell-specific Hypocretin/Orexin receptor 1-KO mice.Li S, Franken P, Vassalli A.Li S, et al.Sci Rep. 2018 Oct 19;8(1):15474. doi: 10.1038/s41598-018-33069-8.Sci Rep. 2018.PMID:30341359Free PMC article.
- A Neuronal Hub Binding Sleep Initiation and Body Cooling in Response to a Warm External Stimulus.Harding EC, Yu X, Miao A, Andrews N, Ma Y, Ye Z, Lignos L, Miracca G, Ba W, Yustos R, Vyssotski AL, Wisden W, Franks NP.Harding EC, et al.Curr Biol. 2018 Jul 23;28(14):2263-2273.e4. doi: 10.1016/j.cub.2018.05.054. Epub 2018 Jul 12.Curr Biol. 2018.PMID:30017485Free PMC article.
References
- Robbins TW, Everitt BJ. A role for mesencephalic dopamine in activation: commentary on Berridge (2006) Psychopharmacology (Berl.) 2007;191:433–437. - PubMed
- Berridge KC, Robinson TE. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience. Brain Res. Brain Res. Rev. 1998;28:309–369. - PubMed
- Wise RA. Dopamine, learning and motivation. Nat. Rev. Neurosci. 2004;5:483–494. - PubMed
- Schultz W. Multiple dopamine functions at different time courses. Annu. Rev. Neurosci. 2007;30:259–288. - PubMed
Publication types
MeSH terms
Related information
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases